Journal article Open Access

Design of Piezoelectric Based Power Generation System for Electric Vehicle

Hariprasad Hegde; Ugra Mohan Roy; Mrinal Kumar

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="URL"></identifier>
      <creatorName>Hariprasad Hegde</creatorName>
      <affiliation>Department of Electrical Communication  Engineering, RUAS, Bangalore, India.</affiliation>
      <creatorName>Ugra Mohan Roy</creatorName>
      <affiliation>Assistant Professor, Department of Electrical  Communication Engineering, RUAS, Bangalore, India.</affiliation>
      <creatorName>Mrinal Kumar</creatorName>
      <affiliation>Department of Mechanical Engineer, Bangalore, India.</affiliation>
    <title>Design of Piezoelectric Based Power Generation System for Electric Vehicle</title>
    <subject>Dynamic charging, Electric vehicle, Energy harvesting, Piezoelectric device, Supercapacitor.</subject>
    <subject subjectScheme="issn">2277-3878</subject>
    <subject subjectScheme="handle">100.1/ijrte.D4781119420</subject>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</contributorName>
    <date dateType="Issued">2020-11-30</date>
  <resourceType resourceTypeGeneral="JournalArticle"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2277-3878</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijrte.D4781.119420</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Increase in demand for vehicles are most threatening for global warming. It cannot be stopped as it is one of the basic needs of the world. Few automobile companies started thinking about alternatives and developed hybrid vehicles, electric vehicles, solar powered vehicles, etc. As industry is directing towards new era, it opens up new problems as well. Many companies, institutions are researching on future electric vehicles and its specific problems. One of the needs in current scenario is dynamic charging of electric vehicle battery as it increases the number of running hours of vehicle, thus efficiency. This project would throw some light on dynamic recharging of electric vehicle battery by using piezoelectric devices installed on its tyres. Study has been conducted majorly on magnitude and signature of the output voltage and current from piezoelectric device and battery charging circuit. Supercapacitor is the primary component used in charging circuit to store the charge and feed back to battery of electric vehicle in running condition. Circuit has been simulated with 6 quantity of piezoelectric devices to understand the functionality of concept. It is concluded that 1.65 mW of power can be generated from 4 tyres of car at applied force of 50 N. But, actual force on tyre would vary from 900 N to 1500 N and it is fair to expect more power generation from each tyre.&lt;/p&gt;</description>
Views 26
Downloads 27
Data volume 40.8 MB
Unique views 21
Unique downloads 26


Cite as