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Abstract—It is often useful for a code component (e.g., a
library) to be able to maintain information that is hidden from
the rest of the program (e.g., private keys used for signing, or
usage counters used for behavioral monitoring of the program).
In this paper, we present an extension to a previously developed
mechanism for controlling access to libraries, in order to imple-
ment a scheme that allows each library to have its own private
storage space. When running code outside the address space of
a given library, the pages containing the private memory of that
library are not mapped into the program’s address space, hence
are not accessible to the rest of the program. Finally, we present
an API that allows library developers to utilize private storage.
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I. INTRODUCTION

The advancement of technology is everlasting and non-
stop, which leads to modern software systems becoming
more and more complex. This results in new challenges
and vulnerabilities being discovered every day and users
increasingly requiring security considerations and provisions
for their applications. At the same time, there is a parallel and
oftentimes one-step-ahead increase in attackers’ capabilities
and effectiveness, especially if there is profit involved in their
illicit activities. However, complete security of a program is
unfeasible. Conceding that vulnerable code will be included
in production software systems, there is a need to either detect
these vulnerabilities so that they may be fixed before an adver-
sary can exploit them in a zero-day attack or determine if such
a vulnerability is actively being exploited. Our compromise
is that by monitoring the behavior of a program we can
distinguish such situations, determine whether their cause is
security-related and, if so, take appropriate corrective actions.
We implement such actions at an abstract level, between
the Operating System (OS) and a running application. Our
approach is to break up a running application into its main
components (essentially the main program and the libraries it
uses) by leveraging the Memory Management Unit (MMU)
of the Linux kernel and examine the interactions between
the individual components. We use two techniques for our
analysis, based our previous work [1]–[3], which enables
us to intercept all library calls from both the user as well
as the kernel side, analyze them and take some form of
action (reporting, argument checking, policy enforcement, etc.)
before allowing them to continue.

Looking at the subject of software run-time behavior mon-
itoring, analysis and modification from another point of view,
we propose to implement the notion of a Trusted Execution

Environment (TEE) at the memory space of a user application.
A TEE [4] is a secure, integrity-protected processing environ-
ment, consisting of memory and storage capabilities [5]. It
establishes an isolated execution environment that runs parallel
to a standard OS and it protects sensitive code and data from
privileged attacks without compromising the native OS. It pre-
vents unauthorized access or modification of executing code
and data while they are in use, so that the applications running
the code can have high levels of trust in the TEE, because
they can ignore threats from the rest of the system. Hardware
vendors (e.g., Intel) have already implemented the concept
of TEE into their products (e.g., SGX technology). Virtual
TEEs (e.g., Open-TEE [6]) allow developers to create trusted
applications using the GlobalPlatform TEE specification [7].

In this paper, we present our idea to include the concept
of a TEE to our previous work [2] [3], where we program
the MMU in such a way so as to map protected private pages
into the address space of a running program, that are accessible
only by specific functions inside the external libraries that said
program uses. Upon interception of a library call, our system
- after redirecting the call through the gate (already mapped,
specially crafted library) - determines if the call can access
the information stored securely in the newly-mapped private
memory. In this way, we protect sensitive data inside a secure
enclosure and we minimize what can access them, as we limit
their exposure to only a specific set of legitimate functions
found in the gate library, imposing serious limitations on what
actions can be performed on the protected data, by what part
of the program and at which point in execution time.

The remainder of this paper is organized in the following
manner: In Section II, we present some important work that
has been carried out over the years with respect to defenses
against code injection/reuse attacks C[IR]As, as well TEEs
- the two aspects of our approach. In Section III, we detail
the design of our mechanism. In Section IV, we describe
the implementation specifics. In Section V, we evaluate our
approach both in terms of performance and memory coverage.
We also list two real-life scenarios where our mechanism can
be used. In Section VI, we conclude our work.

II. BACKGROUND AND RELATED WORK

Behavior control techniques have been the subject of re-
search against code reuse attacks [8]–[13] for many years.

The DisARM defense technique [14] protects against both
code-injection and code-reuse based buffer overflow attacks
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by breaking the ability of attackers to manipulate the return
address of a function. DisARM uses a fine-grained analysis
of the binary to find all critical interactions that manipulate
the hardware PC and verifies any change to the PC before the
change is applied. For each such critical instruction, a veri-
fication block is inserted immediately before the instruction
in order to evaluate whether the target address is valid with
respect to the current instruction the program is executing.

Kanuparthi et al. [15] propose a hardware-based dynamic
integrity checking approach. It permits the instructions to
commit before the integrity check is complete, and allows
them to make changes to the register file, but not the data
cache. The changes made by the instructions are held in the
store buffer or in a shadow register file until the check is
complete. Then, the values are accordingly written to the L1
data cache or the original register file. The system is rolled
back to a known state, if the checker deems the instructions
as modified.

In [16], Graziano et al. discuss a new class of Direct
Kernel Object Manipulation (DKOM) attacks that they call
Evolutionary DKOM (E-DKOM). The goal of this attack is
to alter the way some data structures “evolve” over time. It
targets the evolution of a data structure in memory, with the
goal of tampering with a particular property of the operating
system. On the attack side, they are able to temporarily block
any process or kernel thread, without leaving any trace that
could be identified by existing DKOM detection and protection
systems. On the defense side, they present the design and
implementation of a hypervisor-based detector that can verify
the fairness of the OS scheduler. Their implementation shows
that it needs to be customized on a case-by-case basis and that
evolutionary attacks are very hard to deal with, requiring more
research to mitigate this threat.

Kayaalp et al. [17] examine a signature-based detection
of code reuse attacks (CRAs), where the attack is detected
by observing the behavior of programs and detecting the
gadget execution patterns. They demonstrate a new attack
that renders previously proposed signature-based approaches
ineffective by introducing delay gadgets, in order to obfuscate
the execution patterns of the attack without performing any
useful computation. They develop a complete working JOP
attack that incorporates delay gadgets. Then, they propose
and develop the Signature-based CRA Protection (SCRAP)
hardware-based architecture for detecting such stealth JOP
attacks. SCRAP recognizes the formal grammar that expresses
the attack signatures or the patterns of executed instructions
that are indicative of a JOP attack, which are significantly
different from those of the regular programs as they execute
frequent indirect jump (or call) instructions to jump from
gadget to gadget.

Additionally, with regards to TEEs, Intel’s Software Guard
Extensions (SGX) [18] is a hardware feature that helps encrypt
a portion of memory. This portion - enclave - is used by the
OS/applications to define private regions of code and data that
cannot be accessed by any (potentially running at a higher
privilege level) process outside the enclave, thus preserving

the confidentiality and integrity of sensitive code and data.
However, several attacks have been developed that break the
security of SGX. In [19], Schwarz et al. were able to extract
a full RSA private key by performing a cache side-channel
attack on a co-located SGX enclave. Later on, countermeasures
were released against this attack [20] [21]. More recently, the
Spectre attack [22] was adapted to target SGX enclaves [23].
Similarly, the Foreshadow attack exploits speculative execu-
tion (e.g., Spectre) in order to read the contents of SGX-
protected memory [24]. Additionally, it has been proven that
a ROP attack can be constructed and launched all from within
an enclave [25] [26]. However, a defense against this attack
vector was later presented in [27].

III. DESIGN

The goal of our proposed approach is two-fold. On one
hand, since it is based on our previous approach [2] [3],
it thwarts control-flow hijacking attacks by segregating a
process’s executable areas which correspond to its external
libraries or the main executable. It, then, imposes strict control
over any attempt to invoke such an area, by redirecting all calls
through a gate library - mapped by a custom Linux kernel, one
for each area - where we can implement several checks before
allowing a call to move forward (Figure 1).

Figure 1. Memory segmentation and access control

On the other hand, it protects sensitive information of an
application (e.g., a private signing key) by mapping private se-
cure memory pages for each area at run-time and making them
accessible only to specific functions inside the gate library and
only at specific intervals during execution (Figure 2).

Separation of data used by the libraries from data used
by the running application is a significant step of our ap-
proach. Originally, the application and library code share their
stack and heap spaces, which provides a breeding ground
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Figure 2. Secure memory mapping

for interfering with the execution of library code. Since we
already have a mechanism that allows us to rewrite the page
table whenever a library boundary is crossed, we can now
extend it by adding private memory for every library. This
is memory that is accessible only when running code of a
specific library; code outside this library will find the pages
associated with the private memory inaccessible. In this way,
our gates can maintain state (e.g., which library tried to access
the gate indicating a possible breach attempt if different from
the associated one, how many times a given routine has been
called, or the sequence of calls to various library functions).
Library code can, thus, take advantage of private memory to
protect its own data structures e.g., making them completely
inaccessible (no read/write/execute rights) to the rest of the
program.

Transparency is, also, of paramount importance. Applica-
tions continue to work as originally intended by the developer,
but the access control mechanism underneath delivers secure
execution of the program. When a call to a separated library
is intercepted, our mechanism redirects it through the gate
library where a decision is made on how it will proceed and
if it is allowed to access the information securely stored in the
private pages.

IV. IMPLEMENTATION

Based on our design, there are two aspects to our approach:
(a) compartmentalization and (b) private memory mapping.

A. Compartmentalization

In order to compartmentalize the running application based
on its libraries, we separate all the executable Virtual Memory
Areas (VMAs) and map a custom gate library in the process’s
memory space, one for each identified VMA. Aiming to
adhere to the library-level granularity of our design (i.e.,
intercept only calls between libraries and not internal ones),
after we make all the VMAs non-executable (NX), we then
follow the procedure depicted in Figure 3, when transitioning
from one library to another. We first check the previous
address where we caused a deliberate fault to determine if it
corresponds to the same VMA as the current one (meaning
same executable/library) (Figure 3 (1)), in which case we
leave the VMA as executable (the current VMA needs to

Check previous address

Store
current
address

2

Previous VMA Current VMA1

!=

3a

True

Mark VMA
as NX

3b

False

Figure 3. Compartmentilizing an application at library-level granularity

be executable by default, in order not to disrupt execution)
and store the current faulting address in a custom field in the
process (Figure 3 (2)) .

If the previous and current VMAs are different (meaning
different executables/libraries by extension), we mark the pre-
vious VMA as NX (Figure 3 (3a)), before storing the current
faulting address in the custom field (Figure 3 (3b)). At this
stage all the addresses of our process are in a non-executable
state, but the execution is able to continue since it is in the
context of the Page Fault Exception Handler (PFEH) [28]
that intervened to rectify our deliberate page fault, which we
caused in order to intercept the call. From there it is redirected
inside the gate, where a security policy can be applied in order
to determine whether to allow the call to access the requested
information inside the protected memory and to continue to
the originally-intended path. When the PFEH intervenes to
rectify the next fault, the same procedure is followed from the
top.

B. Private Memory Mapping

Following the separation of the process’s memory area into
regions, we are now ready to associate private memory pages
with each of them. After mapping the gates, we introduce
protected pages to the process’s memory space, where we
can save sensitive information that need protection against
disclosure, tampering, execution, etc. These pages are only
mapped when the CPU executes code within the associated
library. When execution is transferred outside the library, the
pages get unmapped, thus protecting data stored in them from
unauthorized access.

This whole procedure is performed automatically on the
kernel side, without requiring access to the source code/binary
of the application or linked libraries, thus making our approach
completely transparent.
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Application Programming Interface: In order to facilitate
the use of this extended capability, we propose an Application
Programming Interface (API) analogous to the one used for
shared memory [29]. Listing 1 showcases a sample of our
proposed API, where the code has the ability to allocate a
private memory space to a specific region.

1 . . .
2 char * add r ;
3 i n t fd ;
4 fd = scrm_open ( PAGE_SIZE , <FLAGS> ) ;
5 add r = mmap(NULL, PAGE_SIZE ,
6 PROT_READ | PROT_WRITE ,
7 MAP_PRIVATE , fd , 0 ) ;
8 s c r m _ a s s o c ( < c a l l e r > , fd , addr ,
9 add r + PAGE_SIZE ) ;

10 . . .
11 s c r m _ u n l i n k ( fd ) ;
12 . . .

Listing 1. Usage example of Secure API

First, we create a secure memory (scrm) object with specific
flags and its size set to that of a page (line 4). Then we map
the object into the process’s address space (line 5). Following,
we associate the object with the caller (a given region) in line
8. Finally, after some processing we return the memory to the
system, by unlinking the scrm object.

V. EVALUATION

In order to evaluate the performance overhead incurred
by our mechanism, we use the OpenSSL benchmark test
of Phoronix Test Suite (PTS). Our test-bed can be seen in
Figure 4, as reported by PTS.

Figure 4. System configuration

PTS [30] is an open-source automated benchmarking suite
that supports a variety of platforms, including Linux. We use
it to run a benchmark test for the OpenSSL library, which
is executed five times, for both cases: (a) default MMU,
(b) MMU customized with our mechanism. The outcome

TABLE I
DEVIATION FOR EACH RUN OF THE OPENSSL BENCHMARK OF PTS

Deviation
# Default MMU Custom MMU
1 0.02% 0.04%
2 0.08% 1.3%
3 0.16% 1.23%
4 0.02% 1.32%
5 0.16% 1.32%
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Figure 5. Performance evaluation of our mechanism using the OpenSSL
benchmark of PTS

reports on the performance of RSA 4096-bit signing. Figure 5
summarizes the results of the tests (rounded numbers), while
Table I shows the deviation for each run. As is evident, there is
only minimal decrease in performance - about 2% on average
- when using our custom MMU, which makes our approach
very efficient.

A. Memory Coverage Analysis

In order to measure to what degree our mechanism com-
partmentalizes a program’s memory space and by extension
confines an attacker’s code base that is available at any given
point in time for them to mount an attack, we analyze four
well-known applications, i.e., NGINX HTTP server, VMware
Player, Sublime Text Editor and GNOME MPlayer - with
respect to their executable memory areas. We chose these
applications for analysis, based on their broad acceptance and
usage in their respective domains in a Linux environment.

In Table II, we can see the result of the analysis for
the NGINX HTTP server. We only measure the size of the
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TABLE II
MEMORY COVERAGE OF LIBRARIES FOR THE NGINX MAIN APPLICATION

Library Size (in bytes) % of total
nginx (main) 528384 6.84%
libnss_files 45056 0.58%
libnss_nis 45056 0.58%

libnsl 90112 1.17%
libnss_compat 32768 0.42%

libdl 2093056 27.11%
libc 1835008 23.77%
libz 102400 1.33%

libcrypto 2207744 28.59%
libpcre 450560 5.84%
libcrypt 36864 0.48%

libpthread 98304 1.27%
ld 155648 2.02%

Total 7720960 100%

TABLE III
LIBRARIES WITH MAXIMUM COVERAGE FOR THE OTHER THREE

APPLICATIONS

Application Library % of total
VMware Player libvmwareui 21.53%

Sublime Text Editor libgtk-3 20.63%
GNOME MPlayer libicudata 34.74%

executable VMAs, since all others are out of scope. We can
see that the biggest memory area corresponds to libcrypto
and it takes up around 29% of the program’s total executable
memory. Similarly, based on our analysis of the other three
applications (Table III) - details of which we omit for the sake
of space, since they are composed of tens of libraries - we can
see that at the maximum only a small portion of the address
space is available to the attacker at any given moment, which
results in them having much lower chances of success when
trying to launch a CRA. If we also consider that each of these
smaller regions has one or at most a few pages of memory
dynamically associated with it, where only it has access and
can store sensitive code and data, it becomes even clearer that
a rogue (part of an) application will find it extremely difficult
to gain access to this information and compromise the system.

B. Real-life Scenarios

In this section, we present two examples that showcase the
applicability of our defense mechanism.

First, let’s consider the case of the Dual Elliptic Curve
Deterministic Random Bit Generator (Dual_EC_DRBG)
backdoor. Dual_EC_DRBG [31] was presented as a
cryptographically-secure pseudorandom number generator that
used elliptic curve cryptography. Despite the fact that there
were several weaknesses publicly identified, one of which
being a backdoor that could only be exploited by someone
who knew about it (presumably the United States govern-
ment’s National Security Agency), the algorithm was adopted
as a standard by several standardization bodies. In such a
case, using our mechanism we would not have to wait for
a patch/updated version to be released or some other kind

of action to be taken by the responsible parties (later the
algorithm was withdrawn). Upon detecting a call to one of the
Dual_EC_DRBG-related functions, we immediately produce a
warning/error informing that this specific generator contains
vulnerabilities, and/or prevent the call to continue to the
intended function (we can also disable/remove the algorithm
from the results when reporting which pseudorandom number
generators are available in a library). In this way, our defense
acts more as a preventive measure and less as a responsive one
after the fact, protecting the user even before an attacker gets a
chance to exploit the vulnerabilities. Even in the case of such a
widely-adopted algorithm, used by a number of official bodies,
our approach would be able to offer sufficient information to
the users to make an informed decision.

The second scenario deals with handling a private key. In
this case, we leverage the OpenSSL library and specifically
its libcrypto/libssl libraries. When a program needs to sign
a piece of data (text, file, etc.), it needs access to a private
key. Under our scheme, when a call to a function from these
libraries is intercepted, it is redirected inside the gate, where
we forbid it to access the private key directly. We have already
included a secure function in the gate - sec_pkey(), which
is the only one that can access the secure private memory
associated with OpenSSL, where the key is stored. There is a
number of ways the key can be placed in memory: (a) after
the program starts, we read the private key from a file with
elevated privileges, store it in private memory and then close
the file. From then on we revoke access to the file, which
means that access to the key is provided only through the
gate and OpenSSL’s private memory, (b) the program creates
its own private key and places it in memory, or (c) the key
is initially retrieved from a file and stored in memory lazily,
i.e., only when there is a call to an OpenSSL function.
sec_pkey() retrieves the key, signs the data and returns

the result. This way, the rest of the program does not have
access to the private key. Inside sec_pkey() we can perform
a number of checks to verify that only a specific legitimate
OpenSSL function requested access to the key and that was
only to read it and at an appropriate point in execution time.
To determine at which point the execution is, we can store
in private memory a finite state automaton/state model of
the application, which e.g., we have created by running the
application through our custom MMU in learning mode or
the developer has provided us with. Inside the gate, we also
have a relevant function that is responsible for checking the
program state chk_stt(), that checks several parameters
(e.g., depth/size of stack, call origin/destination, number of
call parameters, etc.) and their combinations to determine if
the current state corresponds to the one saved in the model.
This way, we can make sure that execution is at the correct
point in time and that nothing has interfered with the execution
flow.

VI. CONCLUSION

In this paper, we present an extension of our previous work
in [2] [3] where, after separating the memory of a running
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process into regions at the granularity of executables/external
libraries, it maps private pages for each region that are only
accessible from the associated gate, leveraging the MMU.
Our approach is very efficient and transparent and can be
used on binary/legacy applications and existing environments,
as well as serve as a complimentary measure of defense
alongside already implemented mechanisms. Furthermore, we
present two scenarios where our mechanism can protect real-
life applications.
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