Project deliverable Open Access

Data-driven analytics applied on UAV imagery using deep learning

Christos Angelidis; Iosif Sklavidis; Athanasios Siouras; Konstantinos Stergiou; Serafeim Moustakidis; Christodoulos Santorinaios

This deliverable presents the overall development status of the deep learning analytics applied on UAV imagery (both visual and thermal) on M18 of the project’s lifetime. Within the duration of T3.3, several DL pipelines were designed, implemented, and tested on the task of object detection with humans as the main object of interest. Different variants of the pipelines were investigated including various powerful State-of-the-Art object detection network including Yolov4, scaled-Yolov4, Yolov5, Detectron2 and FasterRCNN. In addition, a novel hybrid inference mechanism was proposed, developed, and tested to cope with the identified challenges especially with respect to the effect of the UAV flight altitude. The proposed inference mechanism combines the output of altitude-dependent local deep learning increasing the generalisation capabilities of the OD system. An extensive experiment set-up was designed to identify the best performing deep learning networks and demonstrate the detection performance of the proposed object detection pipeline utilizing both spectral and thermal information.

Files (5.5 MB)
Name Size
SnR_D3.5 - Data-driven analytics applied on UAV imagery using deep learning_v1.00.pdf
5.5 MB Download
All versions This version
Views 3636
Downloads 2323
Data volume 127.5 MB127.5 MB
Unique views 2424
Unique downloads 1414


Cite as