Journal article Open Access

Techniques of Indoor-Outdoor Scene Classification using the VGG-16 CNN Model

Kajal Gupta; RK Sharma


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Scene Classification, Indoor-Outdoor Classification, Deep Learning, Neural Network Model VGG 16, CCN, Data Augmentation, Imagedatagenerator, Optimizers.</subfield>
  </datafield>
  <controlfield tag="005">20220110134848.0</controlfield>
  <controlfield tag="001">5832171</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Associate Professor, Faculty Of Engineering and  Technology, Agra College, Agra (U.P.), India.</subfield>
    <subfield code="a">RK Sharma</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">492082</subfield>
    <subfield code="z">md5:0d4c6e831391cb75cf302e0bf6fdea60</subfield>
    <subfield code="u">https://zenodo.org/record/5832171/files/B62970710221.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-07-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5832171</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">242-247</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Recent Technology and Engineering (IJRTE)</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">M.Tech degree, Department of Computer Science and  Engineering, Faculty Of Engineering and Technology, Agra College, Agra  (U.P.), India.</subfield>
    <subfield code="a">Kajal Gupta</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Techniques of Indoor-Outdoor Scene Classification  using the VGG-16 CNN Model</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2277-3878</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijrte.B62970710221</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In the world of today, computers have begun to rule the people as the machines carry out practically every work that people can accomplish. Scene classification is one such concept that becomes increasingly important when robots replicate the actions of a human being Scene categorization may be done on interior or exterior scenes using various extraction techniques, as well as categorization of indoor and outdoor scenes in these two categories is more difficult. The methodology for the indoor/outdoor classification scene has the drawback of inadequate accuracy. This research aims to enhance the accuracy by using the Convolution Neural Network Model in VGG-16. This paper proposes a new approach to VGG-16 to classify images into their classes. The algorithm results are tested using SUN397- indoor-outdoor dataset &amp;amp; the tentative data reveal that the methodology proposed is superior to the existing technology for the scene classification of indoor-outdoor (I/U).&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2277-3878</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijrte.B6297.0710221</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
34
15
views
downloads
Views 34
Downloads 15
Data volume 7.4 MB
Unique views 28
Unique downloads 15

Share

Cite as