Journal article Open Access

Masquerade Attack Analysis for Secured Face Biometric System

Shweta Policepatil; Sanjeeva Kumar M. Hatture


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Face Recognition; Pattern Recognition; Feature Extraction; Anti-Spoofing, Masquerade Attack.</subfield>
  </datafield>
  <controlfield tag="005">20220110134848.0</controlfield>
  <controlfield tag="001">5832162</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science and  Engineering, Basaveshwar Engineering College, Bagalkot, Visvesvaraya  Technological University, Belagavi ( Karnataka), India.</subfield>
    <subfield code="a">Sanjeeva Kumar M. Hatture</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">591012</subfield>
    <subfield code="z">md5:49103cd2ab1ff3d7c708660e1dc47dd4</subfield>
    <subfield code="u">https://zenodo.org/record/5832162/files/B63090710221.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-07-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5832162</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">225-232</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Recent Technology and Engineering (IJRTE)</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Pursuing, Master Degree, Department of  Computer Science and Engineering, Basaveshwar Engineering College  (Autonomous), Bagalkot, Visvesvaraya Technological University, Belagavi  ( Karnataka), India.</subfield>
    <subfield code="a">Shweta Policepatil</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Masquerade Attack Analysis for Secured Face  Biometric System</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2277-3878</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number:</subfield>
    <subfield code="0">(handle)100.1/ijrte.B63090710221</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Biometrics systems are mostly used to establish an automated way for validating or recognising a living or nonliving person&amp;#39;s identity based on physiological and behavioural features. Now a day&amp;rsquo;s biometric system has become trend in personal identification for security purpose in various fields like online banking, e-payment, organizations, institutions and so on. Face biometric is the second largest biometric trait used for unique identification while fingerprint is being the first. But face recognition systems are susceptible to spoof attacks made by nonreal faces mainly known as masquerade attack. The masquerade attack is performed using authorized users&amp;rsquo; artifact biometric data that may be artifact facial masks, photo or iris photo or any latex finger. This type of attack in Liveness detection has become counter problem in the today&amp;#39;s world. To prevent such spoofing attack, we proposed Liveness detection of face by considering the countermeasures and texture analysis of face and also a hybrid approach which combine both passive and active liveness detection is used. Our proposed approach achieves accuracy of 99.33 percentage for face anti-spoofing detection. Also we performed active face spoofing by providing several task (turn face left, turn face right, blink eye, etc) that performed by user on live camera for liveness detection.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2277-3878</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijrte.B6309.0710221</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
18
19
views
downloads
Views 18
Downloads 19
Data volume 11.2 MB
Unique views 15
Unique downloads 19

Share

Cite as