Journal article Open Access

Localizing Perturbations in Pressurized Water Reactors Using One-Dimensional Deep Convolutional Neural Networks

Pantera L.; Stulik P.; Vidal-Ferràndiz A.; Carreño A.; Ginestar D.; Ioannou G.; Tasakos T.; Alexandridis G.; Stafylopatis A.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">neutron noise</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">neutron diffusion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">deep learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">convolutional neural networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">pressurized water reactor</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">perturbation localization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">VVER-1000</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">absorber of variable strength</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">FEMFFUSION</subfield>
  </datafield>
  <controlfield tag="005">20220105014849.0</controlfield>
  <controlfield tag="001">5817438</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Nuclear Research Institute, 250 68 Řež, Czech Republic</subfield>
    <subfield code="a">Stulik P.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Instituto de Seguridad Industrial, Radifísica y Medioambiental Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain</subfield>
    <subfield code="a">Vidal-Ferràndiz A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Instituto de Seguridad Industrial, Radifísica y Medioambiental Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain</subfield>
    <subfield code="a">Carreño A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain</subfield>
    <subfield code="a">Ginestar D.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of Communication and Computer Systems, Zografou Campus, National Technical University of Athens, 15780 Zografou, Greece</subfield>
    <subfield code="a">Ioannou G.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of Communication and Computer Systems, Zografou Campus, National Technical University of Athens, 15780 Zografou, Greece</subfield>
    <subfield code="a">Tasakos T.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of Communication and Computer Systems, Zografou Campus, National Technical University of Athens, 15780 Zografou, Greece</subfield>
    <subfield code="a">Alexandridis G.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of Communication and Computer Systems, Zografou Campus, National Technical University of Athens, 15780 Zografou, Greece</subfield>
    <subfield code="a">Stafylopatis A.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">12748203</subfield>
    <subfield code="z">md5:5c3b44e4ec8781df2aedeab416e97523</subfield>
    <subfield code="u">https://zenodo.org/record/5817438/files/2022_Pantera_Sensors_paper_V1.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-12-24</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5817438</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="v">22</subfield>
    <subfield code="p">Sensors</subfield>
    <subfield code="n">113</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CEA, DES, IRESNE, DER, SPESI, LP2E, Cadarache, 13108 Saint-Paul-Lez-Durance, France</subfield>
    <subfield code="a">Pantera L.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Localizing Perturbations in Pressurized Water Reactors Using One-Dimensional Deep Convolutional Neural Networks</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">754316</subfield>
    <subfield code="a">Core monitoring techniques and experimental validation and demonstration</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This work outlines an approach for localizing anomalies in nuclear reactor cores during their steady state operation, employing deep, one-dimensional, convolutional neural networks. Anomalies are characterized by the application of perturbation diagnostic techniques, based on the analysis of the so-called &amp;ldquo;neutron-noise&amp;rdquo; signals: that is, fluctuations of the neutron flux around the mean value observed in a steady-state power level. The proposed methodology is comprised of three steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets are used to train deep learning models that learn to identify and locate the given perturbations within the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to deal with the hexagonal geometry in the time and frequency domains. The examined perturbations are absorbers of variable strength, and the trained models are tested on actual plant data acquired by the in-core detectors of the Temel&amp;iacute;n VVER-1000 Power Plant in the Czech Republic. The whole approach is realized in the framework of Euratom&amp;rsquo;s CORTEX project.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.3390/s22010113</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
31
37
views
downloads
Views 31
Downloads 37
Data volume 471.7 MB
Unique views 25
Unique downloads 36

Share

Cite as