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Knowledge Connectivity Requirements for
Solving Byzantine Consensus with Unknown

Participants
Eduardo Adilio Pelinson Alchieri, Alysson Bessani, Fabı́ola Greve, Joni da Silva Fraga

Abstract—Consensus is a fundamental building block to solve many practical problems that appear on reliable distributed systems. In
spite of the fact that consensus is being widely studied in the context of standard networks, few studies have been conducted in order
to solve it in dynamic and self-organizing systems characterized by unknown networks. While in a standard network the set of
participants is static and known, in an unknown network, such set and number of participants are previously unknown. This work
studies the problem of Byzantine Fault-Tolerant Consensus with Unknown Participants, namely BFT-CUP. This new problem aims at
solving consensus in unknown networks with the additional requirement that participants in the system may behave maliciously. It
presents the necessary and sufficient knowledge connectivity conditions in order to solve BFT-CUP under minimal synchrony
requirements. In this way, it proposes algorithms that are shown to be optimal in terms of synchrony and knowledge connectivity
among participants in the system.

Index Terms—Distributed Agreement, Consensus with Unknown Participants, Byzantine Fault Tolerance, Self-organizing Systems.
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1 INTRODUCTION

THE consensus problem [1], [2], [3], [4], [5], and more
generally agreement problems, form the basis for most

solutions related to the development of reliable distributed
systems [6], [7]. Through these protocols, participants are
able to coordinate their actions in order to maintain state
consistency and ensure system progress. Consensus has
been extensively studied in standard networks, where the
set of processes involved in a particular computation is static
and known by all participants in the system. Nonetheless,
even in these environments, the consensus problem has
no deterministic solution in presence of one single process
crash, when entities behave asynchronously [3]. Due to this
limitation, usually some synchrony need to be assumed in
the system [1], [8].

In self-organizing systems, such as wireless mobile ad-
hoc networks, sensor networks and unstructured peer to
peer networks (P2P), solving consensus is even more dif-
ficult. In these environments, initial complete knowledge
about the participants in the system is a strong assumption
since the system composition changes frequently. These
environments define indeed a new model of dynamic dis-
tributed systems which has essential differences regarding
the standard static networks. Consequently, it brings new
challenges to the specification and resolution of problems.
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Most of the studies about consensus are not suitable
for these systems because they assume a static and known
set of participants (e.g., [1], [2], [4], [9], [10], [11]). Some
notably exceptions are the works of Cavin et al. [12], [13]
and Greve et al. [14], [15] for the crash failure model and the
work of Alchieri et al. [16] for the Byzantine failure model.
These works identify necessary and sufficient knowledge
connectivity requirements to solve consensus when the
set of participants is unknown in the system. The work
presented herein extends these previous results providing
novel algorithms and knowledge connectivity conditions.
Related Work. Cavin et al. [12] defined the CUP problem
(consensus with unknown participants) to solve consensus in
a failure-free asynchronous network with unknown par-
ticipants. With this aim, the participant detector abstraction
(namely, PD) has been defined to provide processes with an
initial knowledge about the system membership. The work
establishes the necessary and sufficient knowledge connec-
tivity conditions able to solve CUP, which are represented by
the One Sink Reducibility participant detector (namely, OSR).
In a subsequent study [13], the same authors extend their
results to a crash-prone model and provide a solution to
FT-CUP (Fault-Tolerant CUP). They show that to solve FT-
CUP with the minimal requirements regarding knowledge
connectivity (represented by the OSR PD), it is necessary to
enrich the system with the Perfect (P) failure detector [1].

Greve and Tixeuil [14] go one step further and show that
there is in fact a trade-off between knowledge connectiv-
ity and synchrony for consensus in fault-prone unknown
networks. They provide an alternative solution for FT-CUP
which requires minimal synchrony assumptions; indeed, the
same assumptions already identified to solve consensus in a
standard environment, which are represented by Eventually
Strong (♦S) failure detectors [1]. They prove that the k-OSR
PD [14] unify the necessary and sufficient requirements to
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Table 1
SOLUTIONS for the CONSENSUS WITH UNKNOWN PARTICIPANTS.

Work Failure Model PD Sink Size Connectivity Synchrony

CUP [12] no failures OSR 1 OSR asynchronous
FT-CUP [13] crash OSR 1 safe crash pattern asynchronous + P

FT-CUP [14], [15] crash k-OSR 2f + 1 f + 1 node-disjoint paths asynchronous + ♦S
BFT-CUP [16] Byzantine k-OSR 3f + 1 2f + 1 node-disjoint paths as the underlying consensus

BFT-CUP (this paper) Byzantine k-OSR 2f + 1 correct safe Byzantine failure pattern as the underlying consensus

solve uniform FT-CUP, assuming ♦S .
In an earlier version of this work [16], we studied the

FT-CUP problem under Byzantine failures [4] (Byzantine FT-
CUP or BFT-CUP) and identified conditions for solving it
in an asynchronous system. By using a path of reductions
similar to [14], we provided a solution to BFT-CUP in a
system extended with the same participant detector: k-OSR.

The solutions presented in all these works start by using
the information given by the PD that forms a “knowledge”
connectivity graph, in which an edge between participants
i and j represents the fact that i initially knows j. Using
such initial knowledge, each process tries to expand the
set of processes it knows, by exchanging the knowledge
about the system with other participants until a set of
participants that share exactly the same view of the system
is identified. These participants form what we call the sink
of the knowledge graph, and run any standard consensus
protocol (for know networks), sending the decided value to
other non-sink participants by request.

Table 1 summarizes the requirements for solving CUP,
FT-CUP and BFT-CUP in terms of number of participants
in the sink, connectivity and synchrony. To the best of our
knowledge, these are the only works to study knowledge
connectivity conditions necessary for solving consensus
in a system with unknown participants, considering the
message-passing model.

Besides the works summarized in Table 1, there are
works studying the FT-CUP problem in a shared memory
model [17], or other distributed computing problems such
as leader election [18], resource allocation [19] and failure
detection [20] when participants are unknown. None of
these works consider Byzantine failures.
Contributions. This paper extends these previous results,
notably [16], by trying to answer the following question:
“What is the minimum knowledge that a process must have about
the existence of others in order to solve the consensus problem in a
system subject to up to f Byzantine failures?” In answering this
question, this paper presents the following contributions:

1) It redefines the k-OSR PD in order to establish
even weaker conditions regarding the knowledge
connectivity necessary for solving BFT-CUP;

2) It introduces the notion of safe Byzantine failure pat-
tern, which refines previous results by considering
the actual position of failed nodes in the knowledge
connectivity graph, establishing thus the minimal
conditions in which BFT-CUP is solvable;

3) It presents novel algorithms for showing that the
safe Byzantine failure pattern is sufficient to solve
the BFT-CUP problem.

Paper Organization. The remaining of the paper is or-
ganized in the following way. Section 2 presents some
preliminary definitions. Section 3 describes a dissemination
protocol. Section 4 describes the BFT-CUP protocol. Section
5 proves the necessary conditions to solve BFT-CUP. Finally,
Section 6 presents final remarks.

2 PRELIMINARIES

2.1 System Model

We consider a distributed system composed by a finite set Π
of processes (also called participants or nodes) drawn from
a larger universe U . In a known network, Π is known to every
participating process, while in an unknown network, a process
i ∈ Π may only be aware of a subset Πi ⊆ Π.

Processes are subject to Byzantine failures [4]. A process
that does not follow its algorithm in some way is said to
be faulty. A process that is not faulty is said to be correct.
Despite the fact that a process does not know all participants
of the system (i.e., Π), it does know the expected maximum
number of faulty process in Π, denoted by f . We define F as
the set of processes in the system that actually have failed,
F is unknown and |F | ≤ f . We assume that all processes
have a unique id, and that it is infeasible for a faulty process
to obtain additional ids to launch a sybil attack [21].

Processes communicate by sending and receiving mes-
sages through authenticated and reliable point to point channels.
Authenticity of messages disseminated to a not yet known
process is verified through message channel redundancy,
as explained in Section 3. A process i may only send a
message directly to another process j if j ∈ Πi, i.e., if i
knows j. Of course, if i sends a message to j such that
i 6∈ Πj , upon receipt of the message, j may add i to Πj ,
i.e., j now knows i and become able to send messages to
it. We assume the existence of an underlying routing layer
resilient to Byzantine failures [22], [23], in such a way that
if j ∈ Πi and there is sufficient network connectivity, then i
can send a message reliably to j.

Our protocol does not require any assumption about
the relative speed of processes or message transfer delays
(asynchronous systems). However, our protocol uses an
underlying (standard) Byzantine consensus black box. Such
primitive can be implemented in an eventually synchronous
system (e.g., [8], [10]) or in a completely asynchronous
system (e.g., using randomization [2], [5], [24], [25]). Conse-
quently, our algorithms do not require any additional syn-
chrony than what is required by the underlying consensus
primitive.
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2.2 Participant Detectors

To solve any nontrivial distributed coordination task, pro-
cesses must somehow get a partial knowledge about the
others. The participant detector oracle, namely PD, was pro-
posed to handle this subset of known processes [12]. It can
be seen as a distributed oracle that provides hints about
the participating processes in the computation. Let i.PD
be defined as the participant detector of a process i. When
queried by i, i.PD returns a subset of processes in Π to
which i can send messages.

Participant detectors provide an initial list of participants
through which it is possible to expand the knowledge about
Π. Notice that Byzantine processes can selectively hide the
knowledge they possess or forge their knowledge about
other participants. We say a participant p is a neighbor of
another participant i if and only if p ∈ i.PD.

The information provided by the participant detectors
of all processes form a knowledge connectivity graph, which
is directed since the PD initial knowledge is not necessarily
bidirectional [12].

Definition 1 (Knowledge Connectivity Graph). Let Gdi =
(V,E) be the directed graph representing the knowledge relation
determined by the PD oracle. Then, V = Π and (i, j) ∈ E if and
only if j ∈ i.PD, i.e., i knows j.

It is important to remark that the knowledge connectiv-
ity graph defines the list of processes that a process initially
knows in the system, not the connectivity of the network. As
described in Section 2.1, we assume an underlying routing
layer that allow processes to communicate.

Based on the properties of Gdi, some classes of partici-
pant detectors have been proposed to solve CUP [12] and
FT-CUP [13], [14]. The k-OSR (k-One Sink Reducibility) PD
was proposed by [14] to solve FT-CUP with minimal syn-
chrony assumptions and also has been used in a previous
work to solve BFT-CUP [16]. In this paper, we redefine the
k-OSR PD in order to establish even weaker knowledge
connectivity conditions for solving BFT-CUP.

Before presenting the new k-OSR PD definition, we need
to introduce some graph notations. Let G = (V,E) be
the undirected graph representing the knowledge relation
determined by the PD oracle. Then, V = Π and (i, j) ∈ E
if and only if j ∈ i.PD or i ∈ j.PD, i.e., i knows j or
j knows i. The undirected graph obtained from the directed
knowledge connectivity graph Gdi = (Vdi, Edi) is defined as
G = (Vdi, {(i, j) : (i, j) ∈ Edi ∨ (j, i) ∈ Edi}). We say that a
subgraph Gc of Gdi is k-strongly connected if for any pair (i,j)
of nodes in Gc, i can reach j through at least k node-disjoint
paths in Gc

1. A component Gsink = (Vsink, Esink) of Gdi is
a sink component if and only if there is no path from a node
in Gsink to other nodes of Gdi, except nodes in Gsink itself.
Finally, a participant p ∈ Gdi is a sink participant if and only
if p ∈ Gsink, otherwise p is a non-sink participant.

1. Recall that Gc is not a communication network graph but it repre-
sents the knowledge of processes; consequently, the notion of k-strongly
connected means that there are enough knowledge connectivity in Gc

for processes to reach each other, i.e., there are at least k node-disjoint
paths.

Definition 2 (k-One Sink Reducibility PD (k-OSR)). This
class of PD contains all knowledge connectivity graphs Gdi such
that:

1) the undirected graph G obtained from Gdi is connected;
2) the directed acyclic graph (DAG) obtained by reducing

Gdi to its strongly connected components has exactly one
sink, namely Gsink;

3) the sink component Gsink is k-strongly connected;
4) for all i, j, such that i 6∈ Gsink and j ∈ Gsink, there are

at least k node-disjoint paths from i to j.

If Gdi is a knowledge connectivity graph that satisfy the
k-OSR PD definition, we say that Gdi ∈ k-OSR. Figure 1
presents two knowledge connectivity graphs satisfying the
k-OSR definition, for k = 3 and k = 5. For example, in Fig-
ure 1(a), the value returned by 1.PD is the subset {2, 3, 4}
of Π, meaning that process 1 initially knows processes 2, 3
and 4.
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Figure 1. Knowledge connectivity graphs satisfying k-OSR PD definition.

In our algorithms we assume that each process i queries
its participant detector i.PD exactly once at the beginning of
the protocol execution. This means that the partial snapshot
made by processes about the knowledge relationship is
made once for all processes, so that there will be one graph
Gdi representing the system at the start of the protocols
execution. Indeed, the union of the initial queries defines
a single knowledge connectivity graph Gdi. The main objec-
tive of this paper is to shed light in the minimal properties
required from Gdi for solving Byzantine consensus. Further-
more, processes do not know others initial views, which
means that each one of them may obtain only a subgraph of
Gdi.

2.3 The Safe Byzantine Failure Pattern
Previous works showed that to solve both FT-CUP [14] and
BFT-CUP [16], it is necessary that Gdi satisfy the k-OSR
PD condition. In these works, the connectivity parameter
k is chosen in a conservative way, always considering the
worst scenario for all participants in the system and all
combinations of failures. However, this value can be relaxed
in accordance with the position of faulty processes in Gdi.
More specifically, the previous proposed solution for BFT-
CUP [16] does not consider the dynamism of the failures in
the system, that is, it does not account for the actual pattern
of failures in Gdi, and defines bounds for the worst case
scenario: the degree of connectivity as k ≥ 2f + 1 in order
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to tolerate up to f Byzantine failures. This means that each
process must have at least 2f + 1 node-disjoint paths to
all other processes in Gsink. However, as we will show in
this paper, if there are f + 1 node-disjoint paths composed
by correct processes connecting these processes, then BFT-
CUP admits solution. This means that during execution,
depending on the location of the f failures in Gdi, weaker
conditions are necessary for solving BFT-CUP. In this sense,
the minimum knowledge about the system composition can
be expressed not only by taking into account the knowledge
connectivity of processes, but also the actual location of
failures in Gdi ∈ k-OSR PD.

To better illustrate this idea, consider the 5-OSR graph
presented in Figure 1(b). The previous solution for BFT-
CUP [16] states that it is possible to tolerate up to two
malicious failures in that scenario (k ≥ 2f+1, k = 5, f = 2).
However, a 3-OSR graph is sufficient to solve BFT-CUP in an
execution in which nodes 4 and 10 are faulty, as illustrated
in Figure 2.
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Figure 2. Safe Byzantine Failure Pattern (f = 2).

Notice that, the knowledge that processes have about
the system is greater in the graph presented in Figure 1(b).
Besides that, in the previous solution [16], non-sink partic-
ipants must be grouped into k-strongly connected compo-
nents, a condition that is not necessary in the redefined k-
OSR (Definition 2). To represent this decrease in the required
knowledge about the system composition, we define the
notion of a safe Byzantine failure pattern.

Definition 3 (Safe Byzantine Failure Pattern). Let Gdi be
a knowledge connectivity graph, f be the maximum number of
processes in Gdi that may fail and F be the set of faulty processes
in Gdi during an execution, we define the safe Byzantine failure
pattern for Gdi and F as the graph Gsafe = Gdi \ F : (F ⊂
Gdi) ∧ (|F | ≤ f) ∧ (Gdi \ F ∈ (f + 1)-OSR).

We say that a graph Gdi is Byzantine-safe for F if its safe
Byzantine failure pattern holds during the execution, i.e., if
Gsafe exists. Notice that this pattern ensures that whatever
the actual location of the failures in Gdi (i.e., the set of
nodes in F ), Gsafe satisfies the (f + 1)-OSR PD properties.
Consequently, Gsafe contains at least f + 1 node-disjoint
paths composed by correct processes between processes in
Gsink and between a process outside Gsink to a process
inside it.

Differently from the knowledge connectivity conditions
stated in [16], the safe Byzantine failure pattern defines
connectivity conditions that consider the actual location

of the failures in the graph (although processes do not
know these locations). In this way, it contains graphs that
may not satisfy the conditions stated in [16], but do allow
the BFT-CUP resolution. Consequently, the pattern refines
the previous minimal knowledge conditions by considering
all possible graphs in which the BFT-CUP can be solved,
despite the occurrence of up to f faults.

2.4 The Consensus Problem
The consensus problem consists of ensuring that all correct
processes of a distributed system eventually decide the
same value, previously proposed by some process. Thus,
each process i proposes a value vi and all correct processes
decide on some unique value v among the proposed values.
Formally, consensus is defined by the following properties
(e.g., [1]):

• Validity: if a correct process decides v, then v was
proposed by some process.

• Agreement: no two correct processes decide differ-
ently.

• Termination: every correct process eventually decides
some value.2

• Integrity: every correct process decides at most once.

The BFT-CUP problem corresponds to the consensus in
unknown networks (CUP) with the additional requirement
that a bounded number of participants can be subject to
Byzantine failures.

3 REACHABLE RELIABLE BROADCAST

This section introduces a new primitive, namely reachable
reliable broadcast, used by processes to communicate. This
primitive is generic enough to be used in any system where
processes do not know all participants of the computation
and need to broadcast messages reliably. In this paper, it
will be used in the solution of BFT-CUP. Before defining
how processes invoke the primitive, let us define the notion
of f-reachability.

Definition 4 (f-reachability). Consider Gdi a knowledge con-
nectivity graph and let f be the number of nodes in Gdi that may
fail. For any two participants p, q ∈ Gdi, q is f -reachable from
p in Gdi if there are at least f + 1 node-disjoint paths from p to q
in Gdi composed only by correct processes.

Let m be a message, processes access the reachable reli-
able broadcast primitive by invoking two basic operations:

• reachable bcast(m,p) – through which the partici-
pant p broadcasts m to all f -reachable participants
from p in Gdi.

• reachable deliver(m,p) – invoked by a receiver to
deliver m sent by the participant p.

The reachable reliable broadcast should satisfy the fol-
lowing properties:

• RB Validity: If a correct participant p invokes reach-
able bcast(m,p) then (i) some correct participant q,

2. In case a randomized protocol is used as underlying Byzantine
consensus, the termination is ensured with probability 1 [2], [5], [24].
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f -reachable from p in Gdi, eventually invokes reach-
able deliver(m,p) (ii) or there is no correct participant
f -reachable from p in Gdi.

• RB Integrity: For any message m, if a correct par-
ticipant q invokes reachable deliver(m,p) then some
participant p has invoked reachable bcast(m,p).

• RB Agreement: If a correct participant q invokes
reachable deliver(m,p), where m was sent by a correct
process p that invoked reachable bcast(m,p), then all
correct participants f -reachable from p in Gdi invoke
reachable deliver(m,p).

These properties establish a communication primitive
with specification similar to the usual reliable broadcast [1],
[2], [24]. Nonetheless, this primitive only ensures the deliv-
ery of messages to the correct processes that are f -reachable
from a correct sender in Gdi. More specifically, our agree-
ment property differs from standard agreement property
due to the lack of knowledge that processes have about the
system. In this model, a malicious process is able to send a
message m using only some paths in Gdi in a way that only
a subset (and not all) of the correct processes reachable from
it will deliver m.

In this sense, our primitive is weaker than classical reli-
able or echo broadcast primitives, but it is enough to solve
BFT-CUP: the DISCOVERY sub-protocol does not require
agreement in the messages sent by malicious processes (see
Section 4).

3.1 The Reachable Reliable Broadcast Protocol

Algorithm 1 presents an implementation for the reachable
reliable broadcast primitive. Its main idea is that partic-
ipants flood their messages to all f -reachable processes,
which, in turn, deliver these messages as soon as their
authenticity has been proved.
Notations. The algorithm uses the following notations:

• i.received msgs – set containing tuples of the form
〈m,m.route〉 in which m is a message received by
process i and m.route is an ordered list of processes
that have received m. The first element of m.route
contains the id of its original sender.

• computeDisjointRoutes(m, i .received msgs) – a
function that receives as input a message m and a set
of routes from where m was received at participant
i and computes the number of node-disjoint paths
through which m has been received at i.

• appendRoute(m.route, i) – a function that adds i to
the end of m.route;

• getFirstElement(m.route),
getLastElement(m.route) – functions that return the
first and last process id of m.route, respectively.

Description. A process i broadcasts a message m by the
invocation of reachable bcast(m, i) (line 6). In this case,
through a RC FLOODING(m,m.route = [i]) message, i
sends m to its neighbors, i.e., the processes returned by
its participant detector. The message carries the m.route
list, that is initialized with i and contains the accumulated
route according with the path traversed from the sender to
a receiver.

When RC FLOODING(m,m.route) is received by i (from
j), the content of the message is first evaluated in lines 8-16.
If its content is valid, process i forwards m to its neighbors,
except j. This implements the flooding of m in such a way
that it will arrive at all f -reachable participants from the
sender (line 17).

During the evaluation of the contents of
RC FLOODING(m,m.route), i initially certifies that m
has been actually sent by j and that it has not yet
been received by itself (line 8). Then, i appends its
id to m.route (line 9) and stores m together with the
m.route in the i.received msgs bag (line 10). Finally,
i delivers m if and only if it has received m through
f + 1 node-disjoint paths, i.e., the authenticity of m has
been verified since it was received by at least one path
composed only by correct processes. This is done using the
computeDisjointRoutes function (line 11). If that is the case,
i calls reachable deliver(m, initiator) to deliver m sent by
the initiator and then removes it from its i.received msgs
bag (line 15).

Algorithm 1 Reachable Reliable Broadcast (participant i).
constant:
1) f : int // upper bound on the number of failures

variables:
2) i.received msgs : bag of 〈m,m.route〉 tuples

message:
3) RC FLOODING: // struct of this message
4) m : message to flood // value to be disseminated
5) route : ordered list of nodes // path traversed by m

** Initiator Only **
upon invocation of reachable bcast(m, i)
6) ∀j ∈ i.PD, send RC FLOODING(m,m.route = [i]) to j;

** All Nodes **
INIT:
7) i.received msgs← ∅;

upon receipt of RC FLOODING(m,m.route) from j
8) if getLastElement(m.route) = j ∧ i 6∈m.route then
9) appendRoute(m.route, i);

10) i.received msgs← i.received msgs ∪ {〈m,m.route〉};
11) routes← computeDisjointRoutes(m, i.received msgs);
12) if routes ≥ f + 1 then
13) initiator ← getFirstElement(m.route);
14) trigger reachable deliver(m, initiator);
15) i.received msgs← i.received msgs \ {〈m, ∗〉};
16) end if
17) ∀z ∈ i.PD \ {j}, send RC FLOODING(m,m.route) to z;
18) end if

The solution presented herein is based on the approach
of [26] and it enforces that each participant appends itself
at the end of the routing information in order to send or
forward a message. A participant will process a received
message only if the participant that is sending (or forward-
ing) this message appears at the end of the accumulated
route. Nonetheless, a malicious participant is able to modify
the accumulated route (removing or adding participants)
and to modify or block the message being propagated.
However, the connectivity degree ensures that messages
will be received at all f -reachable participants (there will be
at least f + 1 node-disjoint paths composed only by correct
processes).

Our primitive needs only f + 1 correct node-disjoint
paths (2f +1 if we consider that f paths contain some faulty
process) because RB Agreement considers only messages
broadcast by correct processes. Consequently, a message
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sent by a malicious process may be delivered only by
some processes, but not all. In a standard Byzantine reliable
broadcast algorithm [24], which requires at least 3f + 1
processes, a message broadcast by a faulty process is either
(1) delivered by all correct processes or (2) not delivered by
any processes.

3.2 Reachable Reliable Broadcast Correctness
Algorithm 1 has the drawback that a message may be
delivered more than once by its receivers, but this does not
affect its correctness. Moreover, its properties are sufficient
to solve BFT-CUP (Section 4). Let us prove the correctness
of the reachable reliable broadcast algorithm.

Lemma 1 (RB Validity) If a correct participant p in-
vokes reachable bcast(m,p) then (i) some correct participant
q, f -reachable from p in Gdi, eventually invokes reach-
able deliver(m,p) or (ii) there is no correct participant f -
reachable from p in Gdi.

Proof. Let us first prove Case (i). From Definition 4, since q
is f -reachable from p, there are at least f + 1 node-disjoint
paths in Gdi composed only by correct nodes from p to q.
Let P : p = 0, 1, ..., k = q be one of those paths. Let us
prove by induction on k that q will receive the message m
sent through P . The base case (k = 1) is trivial, since p is
correct and then it will invokes reachable bcast(m,p) to all
its neighbors returned from p.PD (line 6). By the induction
step, the claim is valid for process i in P (k = i). Then, on
the reception of m by i, predicate of line 8 will be satisfied
since moreover processes in the path are correct. Then, i
will execute line 17 sending m to all its neighbors including
i+1 ∈ i.PD (k = i+1); since channels are reliable, i+1 will
receive m and the claim follows. Since there are at least f+1
node-disjoint paths in Gdi composed only by correct nodes
from p to q, it is ensured that q receives m through the f + 1
node-disjoint paths (including P ), thus satisfying predicate
of line 8 at least f + 1 times. Then, the authenticity of m
can be verified at q through redundancy. This is done by the
execution of lines 9–11, which are responsible to maintain
information regarding the different routes from which m
has been received at q. Whenever the message authenticity
is proved (line 12) the delivery of m is authorized at q by the
invocation of reachable deliver(m,p) (line 14). This proves
that if q is a correct node f -reachable from p in Gdi, then q
delivers m at least once.

Case (ii) can be proved by exactly the same arguments
of Case (i): since all correct participant disseminate m to all
its neighbors (line 17), if m is not delivered by some correct
participant in Gdi, then there is no correct participant which
is f -reachable from p in Gdi. �

Lemma 2 (RB Integrity) For any message m, if a correct par-
ticipant q invokes reachable deliver(m,p) then some participant
p has invoked reachable bcast(m,p).

Proof. Consider that a correct participant q invokes reach-
able deliver(m,p), then q received m through f + 1 node-
disjoint paths from p (lines 8-16). Now, we have to prove that
p has invoked reachable bcast(m,p). Assume, for the sake of
contradiction, that p has not invoked reachable bcast(m,p).

In this case, in order to receive m at q through some path
P : p, ..., z, ..., q, a malicious participant z needs to forge
the dissemination of m from p. As there are at most f
malicious participants, m will be received at q from at most
f node-disjoint paths (each of these f paths may contain
one malicious participant) and q never will invoke reach-
able deliver (m,p), reaching a contradiction. Consequently, if
a correct participant q invokes reachable deliver(m,p), then
some participant p has invoked reachable bcast(m,p). �

Lemma 3 (RB Agreement) If a correct participant q invokes
reachable deliver(m,p), where m was sent by a correct process p
that invoked reachable bcast(m,p), then all correct participants
f -reachable from p in Gdi invoke reachable deliver(m,p).

Proof. From Lemma 2, if a correct participant q invokes
reachable deliver(m,p), then some participant p has invoked
reachable bcast(m,p). From Lemma 1, if a correct participant
p invokes reachable bcast(m,p), then some correct partici-
pant q, f -reachable from p in Gdi, eventually invokes reach-
able deliver(m,p). By generalization, all correct participants
f -reachable from p in Gdi invoke reachable deliver(m,p). �

4 BFT-CUP: BYZANTINE CONSENSUS WITH UN-
KNOWN PARTICIPANTS

This section presents an algorithm for solving BFT-CUP
under the safe Byzantine failure pattern assumption. As
previously stated, we assume that there is an underlying
routing layer able to deliver messages reliably between
known processes despite Byzantine faults and asynchrony.
Besides this communication infrastructure, our solution uses
the reachable reliable broadcast primitive described in previ-
ous section and a standard Byzantine consensus black box
(e.g., [10]).

Using these building blocks and the participant detector
abstraction for getting some initial knowledge about the
participants of the system, the BFT-CUP protocol is divided
in three sub-protocols (see Figure 3). The DISCOVERY sub-
protocol (Section 4.1) is used by each participant to increase
its knowledge about other processes in the system. In the
SINK sub-protocol, each participant discovers if it belongs
to the sink component or not (Section 4.2). In the last sub-
protocol, CONSENSUS, the participants in the sink execute
a standard Byzantine consensus and disseminate the deci-
sion value to non-sink participants (Section 4.3).

CONSENSUS'

SINK'

DISCOVERY'

REACHABLE'BROADCAST'

Re
lia
bl
e'
Ch

an
ne

ls'

Standard'
Consensus'

ParAcipant'
Detector'

Figure 3. Building blocks and sub-protocols of the BFT-CUP algorithm.
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The protocols discussed in this section consider the fol-
lowing assumptions beside the ones described in our system
model.

Assumption 1 (Knowledge connectivity) The knowledge con-
nectivity graph Gdi is Byzantine-safe for F .

Assumption 2 (BFT consensus) The necessary conditions to
execute a standard BFT consensus among processes in Gsink,
namely, it contains at least 2f + 1 correct processes.

4.1 Participants Discovery

The first step to solve consensus in a system with unknown
participants is to provide processes with the maximum
possible knowledge about the system composition.

4.1.1 The DISCOVERY Protocol
The main idea behind the algorithm (Algorithm 2) is that
each participant i runs a kind of breadth-first search in
Gdi, where i broadcasts a message requesting information
about neighbors of each participant f -reachable in Gdi.
An important characteristic of this algorithm is that it is
only ensured to terminate at sink participants, i.e., non-sink
participants may not terminate the execution of the protocol.
In these cases, a non-sink participant will still be able to
discover all sink participants, which is enough to obtain
the value decided in the sink and terminate. A participant
that terminates this algorithm will obtain a partial view of
the system, composed by the maximal set of participants
f -reachable from it in Gdi. In this way, this algorithm
ensures the following properties: (1) each sink participant
i terminates the protocol by discovering exactly Gsink, i.e.,
it returns i.known = Vsink; (2) each non-sink participant
i discovers Gsink, i.e, eventually i.known ⊃ Vsink; and
(3) each non-sink participant i that terminates this protocol
obtains strictly more knowledge than a sink participant, i.e.,
it returns i.known ⊃ Vsink.
Notations. The algorithm uses the following notations:

1) i.known – set containing ids of all processes known
by i.

2) i.received – set containing ids of processes that sent
a reply message (SET NEIGHBOR) to i.

3) i.msg pend – set containing ids of processes that
should send a message to i, i.e., for each j ∈
i.msg pend, i should receive a message from j.

4) i.nei pend – set of tuples 〈j, j.neighbor〉, where
j.neighbor contains ids of possible neighbors of j.
It represents a process j that i knows but it did not
got enough information to be sure that all processes
in j.neighbor really exists.

5) #〈∗,j〉i.nei pend – number of tuples
〈∗, ∗.neighbor〉 ∈ i.nei pend with j ∈ ∗.neighbor,
i.e., number of different processes that reported to i
that j is in their neighborhood.

6) i.asked – set containing the ids of processes that
asked i about the decision.

7) i.decision – variable containing the consensus de-
cision value (set up during the execution of Algo-
rithm 4).

Algorithm 2 DISCOVERY code of participant i.
constant:
1) f : int // upper bound on the number of failures

variables:
2) i.known : set of nodes // known nodes
3) i.nei pend : set of 〈node, node.neighbor〉 tuples // i does not

know all neighbors of node
4) i.msg pend : set of nodes // nodes that i is waiting for replies
5) i.received : set of nodes // nodes that i has received a reply
6) i.asked : set of nodes // nodes that have required the decision

value
7) i.decision : value // decision value

message:
8) GET NEIGHBOR
9) SET NEIGHBOR:

neighbor : set of nodes // neighbors of the sending node
10) SET DECISION:

decision : value // the decided value

Task MAIN
11) i.known, i.msg pend← {i} ∪ i.PD;
12) i.nei pend, i.received, i.asked← ∅;
13) Fork DELIVER();
14) reachable bcast(GET NEIGHBOR, i);

Task DELIVER
15) upon execution of reachable deliver(GET NEIGHBOR, p);
16) if i.decision =⊥ then // i has not decided yet
17) i.asked← i.asked ∪ {p};
18) else // i already decided
19) send SET DECISION(i.decision) to p;
20) end if
21) send SET NEIGHBOR(i.PD) to p;

22) upon receipt of SET NEIGHBOR(p.neighbor) from p
23) i.received← i.received ∪ {p};
24) i.msg pend← i.msg pend \ {p};
25) i.nei pend← i.nei pend ∪ {〈p, p.neighbor〉};
26) for all j: (#〈∗,j〉i.nei pend > f ) ∧ (j 6∈ i.known) do
27) i.known← i.known ∪ {j};
28) if {j} 6∈ i.received then
29) i.msg pend← i.msg pend ∪ {j};
30) end if
31) end for
32) for all 〈j, j.neighbor〉 ∈ i.nei pend do
33) if (∀z ∈ j.neighbor: z ∈ i.known) then
34) i.nei pend← i.nei pend \ {〈j, j.neighbor〉};
35) end if
36) end for
37) if (|i.nei pend| + |i.msg pend|) ≤ f then
38) return i.known;
39) end if

Description. In the initialization of Algorithm 2, the sets
i.known and i.msg pend are updated according with the
neighbors returned by the participant detector i.PD (line
11). Then, i broadcasts (using Algorithm 1) a message
GET NEIGHBOR, requesting information about system com-
position to all participants f -reachable from it in Gdi (line
14). The Task DELIVER is launched in line 13 to deal with the
delivery of such a message and to disseminate the decision
of consensus if it has already been taken.

When i delivers a message GET NEIGHBOR sent by a par-
ticipant p (line 15), it sends back to p a reply SET NEIGHBOR,
indicating its neighbors (line 21). Moreover, this message
carries also a request for the decision value: if i already
knows the decision value, it sends this value to p; otherwise
i stores the identifier of p in i.asked in order to be able to
send the decision to it as soon as it gets to know the decided
value (Algorithm 4).

Upon receipt of a SET NEIGHBOR message from p (line
22), i updates the sets of received replies, pending neighbors
and pending messages with p (lines 23–25) and verifies
whether i has acquired knowledge about any new par-
ticipant (lines 26–31). To ensure safety, i gets to know a
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participant j if and only if at least f + 1 other processes
reported to i that j is their neighbor (line 26). After this
verification, the set of pending neighbors is updated (lines
32–36), according to the new participants discovered.

In order to decide if there is still some participant to
be discovered, i uses the i.nei pend and i.msg pend sets,
which store the pending messages related to replies received
by i. The algorithm ends when there remains at most f
pending messages (lines 37–39). The intuition behind this
condition is that by assuming the safe Byzantine failure
pattern there will be enough knowledge connectivity to
ensure that if there are at most f pending messages at
process i, then i has already discovered all processes f -
reachable from it in Gdi ∈ k-OSR (see Lemmata 6, 7 and
8). Consequently, the algorithm ends by returning the set of
participants discovered by i, which contains all participants
(correct or faulty) f -reachable from i in Gdi.

Termination at non-sink participants. As mentioned before,
Algorithm 2 may not terminate in a participant that is not
in the sink Gsink of Gdi. Consider two participants p, q
such that p, q ∈ Gdi \ Gsink and q is f -reachable from p
(Definition 4). The fact that q is f -reachable by p does not
imply that all the neighbors of q are f -reachable by p. It
may happen that some neighbors of q could not deliver the
GET NEIGHBOR message sent by p and thus will not send a
reply to p, remaining in the p.nei pend set. Consequently,
the number of pending replies at p could never be lower (or
equal) to the threshold f (line 37). Hopefully, if that is the
case, p can still wait for the decision value that will be sent
to it by the processes that are f -reachable from it in Gdi (at
least all processes in Gsink).

Figure 4 presents a scenario for a 2-OSR PD (f = 1,
no failures), where Algorithm 2 does not terminate at non-
sink participant 1. This happens because, although par-
ticipants 2 and 3 are f -reachable from 1 (actually 2, 3 ∈
1.PD), participants 4 (neighbor of 2) and 5 (neighbor of
3) are not f -reachable from 1 and will never deliver the
GET NEIGHBOR message from 1. Consequently, 2 and 3
remain in 1.nei pend forever and, as f = 1, the algorithm
does not terminate at non-sink participant 1. Fortunately,
this does not happen with sink participants, since all partic-
ipants in Gsink are f -reachable from any participant in Gdi

and by the k-OSR PD properties (Definition 2), processes in
Gsink only have neighbors that also belong to Gsink.

6

8

7

9

4

2

1

3

5

Sink Component

Figure 4. Gdi generated by a 2-OSR PD (no failures).

4.1.2 DISCOVERY Correctness
The DISCOVERY protocol uses the reachable reliable broadcast
primitive to discover the participants in the sink Gsink of
Gdi. We start by proving two lemmata that shows this is
indeed true if the safe Byzantine failure pattern is assumed.

Lemma 4 (Sink Participants Reachability) Under Assump-
tion 1, each node q ∈ Gsink is f -reachable from any node
p ∈ Gdi.

Proof. From the definition of safe Byzantine failure pattern
(Definition 3), there are at least k ≥ f + 1 node-disjoint
paths composed by correct processes from any node p ∈ Gdi

to each node q ∈ Gsink. Then, by f -reachability definition
(Definition 4), the lemma follows. �

Lemma 5 (Sink Participants Messages Delivery) Under As-
sumption 1, the REACHABLE RELIABLE BROADCAST primitive
ensures that messages from any correct process p ∈ Gdi will be
delivered to every correct process q ∈ Gsink.

Proof. From Lemma 4, each participant q ∈ Gsink is
f -reachable from every participant p ∈ Gdi. Thus, this
proof follows directly from Lemmata 1 (RB Validity), 2
(RB Integrity) and 3 (RB Agreement). �

Algorithm DISCOVERY satisfies some properties stated
by Lemmata 6, 7 and 8. Before proceeding with the proofs,
let us make two important observations about the algo-
rithm.

Observation 1 From Lemma 4 and the properties of Gdi \ F ∈
k-OSR, we have that (i) every node z ∈ Gsink is f -reachable
from every p ∈ Gdi (Definition 4); (ii) if p ∈ Gsink then only
nodes in Gsink are f -reachable from p; and (iii) every z ∈ Gsink

(correct or faulty) is known by at least f + 1 correct neighbors,
thus, z ∈ PD of at least f + 1 correct nodes.

Observation 2 For a process j, j ∈ i.known if: (1) j ∈ i.PD
(from line 11); or (2) Let X := {q|j ∈ q.PD ∧ q is f -reachable
from i}, then |X| > f (from lines 11, 14–15, 21–22, 26–27), i.e.,
there are more than f processes f -reachable from i that know j
and reported this to i, satisfying the predicate of line 26.

Lemma 6 Under Assumption 1, a correct participant i ∈ Gdi

executing algorithm DISCOVERY eventually discovers all par-
ticipants in Gsink.

Proof. From Lemma 5, when a correct node i executes a
reachable bcast(GET NEIGHBOR, i) (line 14), every correct
node q ∈ Gsink, calls reachable deliver(GET NEIGHBOR, i)
(line 15) and sends a SET NEIGHBOR message containing
q.PD in response (line 21). Due to the assumption of reliable
channels between every pair of processes, this message will
be received by i (line 22). Now, let us prove that i keeps re-
ceiving these messages until it collects enough information
to discover all participants in Gsink.

For every node q ∈ Gsink, there are at least f + 1 correct
node-disjoint paths from i to q (Assumption 1). Since all
neighbors of i (including the f +1 present in such paths) are
in i.msg pend at the beginning of execution (line 11), the al-
gorithm only ends at i after at least one of these participants
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has been removed from i.msg pend. This happens because
the algorithm ends when |i.nei pend| + |i.msg pend| ≤ f
(line 37). Let P be one of the correct node-disjoint paths from
i to q, P : i = 0, z = 1, x = 2, ..., n = k, q; we will prove
by induction on k that q must be discovered by i before
termination. For the base case (k = 1), node z ∈ i.PD
is removed from i.msg pend when i received the reply
SET NEIGHBOR from z (line 24), but when this happens
z ∈ i.nei pend (line 25) and the algorithm does not finish
because z is still in a pending set of i. Since node x ∈ z.PD,
z is only removed from i.nei pend after i had discovered
x (lines 33-35). When this happens, x ∈ i.msg pend (lines
26-31) and the algorithm does not finish because now x is in
a pending set of i. By the induction step, the claim is valid
for node n in P (k = n). Then, n ∈ (k − 1).PD is removed
from i.msg pend when i received the reply SET NEIGHBOR
from n, but when this happens n ∈ i.nei pend and the
algorithm does not finish because now n is in a pending
set of i. Since q ∈ n.PD, n is only removed from i.nei pend
after i had discovered q (lines 33-35) and the claim follows.
By generalization, the algorithm does not finish at a correct
node i before it had discovered all participants in Gsink.

Since we proved that node i does not finish the algorithm
before it had discovered all participants in Gsink, we can
consider that i eventually reach a state in which: for every
correct node q ∈ Gsink, q ∈ i.received ∧ q 6∈ i.msg pend
(from lines 11–12, 23–24, 27–29) and; for a malicious or a
crashed node x ∈ Gsink that does not sent back a reply
SET NEIGHBOR to i, x 6∈ i.received∧ x ∈ i.msg pend (from
Observations 1 and 2 and lines 11–12, 23–24, 27–29). In both
situations, i will receive SET NEIGHBOR (neigh) messages
from at least f + 1 correct neighbors of x, q in which
x,q ∈ neigh. Then, the predicate of line 26 is satisfied, and
thus, every x, q ∈ i.known (line 27). By generalization, i
eventually discovers all participants in Gsink. �

Lemma 7 (Sink Participants – DISCOVERY) Under As-
sumption 1, algorithm DISCOVERY executed by a correct node
i ∈ Gsink satisfies the following properties:

• Sink Termination: i terminates the execution;
• Sink Accuracy: i returns a set i.known = Vsink.

Proof. We start by proving Sink Accuracy before proceed to
Sink Termination.

Sink Accuracy: From Lemma 6, for every p ∈ Gsink we
have that p ∈ i.known. Now, let us prove that a node
z 6∈ Gsink (not f -reachable from i) will not be in i.known.
Suppose that a malicious node x gets to known i and
sent a SET NEIGHBOR (x.neighbor) message to i indicating
its presence in the system and/or the presence of z (z ∈
x.neighbor). In this case, x ∈ i.received, 〈x, x.neighbor〉 ∈
i.nei pend (lines 23–25), but x, z 6∈ i.known and x, z 6∈
i.msg pend, since at most f processes could report to i the
knowledge about x, z and from Observation 2, the predicate
of line 26 will not be satisfied.

Consequently, at the end of the algorithm, following
Lemma 6 and Observations 1 and 2, we can conclude
that (i) i.known = Vsink (satisfying Accuracy); (ii) {Vsink \
F} ⊇ i.received ⊆ {Vsink ∪ F}; (iii) i.msg pend ⊆
F , i.msg pend = {i.known \ i.received}, |{i.known \

i.received}| ≤ f , |i.msg pend| ≤ f ; and (iv) i.nei pend ⊆
F , |i.nei pend| ≤ f .

Sink Termination: Now, let us prove that eventually
|i.nei pend| + |i.msg pend| ≤ f and the algorithm ter-
minates (line 37). From Assumption 1 and Observation 1,
only nodes in Gsink are f -reachable from i and a node
in Gsink is f -reachable from any other node in Gsink.
Consequently, eventually ∀j correct: 〈j, ∗〉 6∈ i.nei pend
and j 6∈ i.msg pend. Thus, i.nei pend ∪ i.msg pend ⊆ F .
Moreover, if 〈j, ∗〉 ∈ i.nei pend then j 6∈ i.msg pend (from
lines 11–12, 23–24). Thus, |i.nei pend| + |i.msg pend| ≤ f ,
satisfying Termination. This concludes our proof and the
lemma follows. �

Lemma 8 (Non-sink Participants – DISCOVERY) Under
Assumption 1, algorithm DISCOVERY executed by a correct
node i 6∈ Gsink satisfies the following properties:

• Non-sink Accuracy: Eventually Vsink ⊂ i.known;
• Non-sink Conditional Termination: If i terminates the

algorithm, i returns Vsink ⊂ i.known.

Proof. We start by proving Non-sink Accuracy before pro-
ceed to Non-sink Termination.

Non-sink Accuracy: At the beginning of execution
i.known = {i} ∪ i.PD (line 11) and from Lemma 6, for
every p ∈ Gsink we have that p ∈ i.known. Consequently,
eventually i.known ⊇ {i}∪ i.PD∪Vsink ensuring Non-sink
Accuracy.

Non-sink Conditional Termination: Consider that the algo-
rithn ends by returning i.known (line 38). As eventually
i.known ⊇ {i} ∪ i.PD ∪ Vsink, Vsink ⊂ i.known and the
lemma follows. �

4.2 Defining the Sink Component
The DISCOVERY sub-protocol eventually terminates in each
sink participant, allowing them to discover all participants
in Gsink. For non-sink participants, that protocol may termi-
nate or not. Due to this, the second phase of our BFT-CUP
protocol is necessary to determine which participants, from
those who had finished the previous DISCOVERY, belong
to Gsink. Recall that a process that does not terminate the
previous phase does not belong to Gsink.

4.2.1 The SINK Protocol
This intermediary phase is represented by Algorithm 3
(SINK). It is executed by some process to determine whether
it is a member of Gsink or not. It exploits the fact that
after completing the DISCOVERY algorithm, the members
of Gsink have the same partial view of the system (which is
Gsink), whereas other participants have strictly more knowl-
edge than these participants, i.e., each non-sink participant
knows at least itself and the members of Gsink. In this
way, this algorithm ensures the following properties: (1)
each sink participant i terminates the protocol by returning
〈true, Vsink〉; and (2) if a non-sink participant i terminates
DISCOVERY, then it also terminates SINK by returning
〈false, i.known〉, such that i.known ⊃ Vsink.
Notations. The algorithm uses the following notations:

1) i.known – set containing ids of all processes known
by i;
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2) i.nacked – set containing ids of nodes which are not
in the same graph component of i in Gdi;

3) i.acked – set containing ids of nodes which are in
the same graph component of i in Gdi;

4) i.in the sink – a boolean variable determining
whether i is in the sink component.

Description. In the initialization phase (MAIN task), process
i executes DISCOVERY in order to obtain its partial view
of the system (line 10). Non-sink participants may never
terminate this procedure, while sink participants finish it
by discovering exactly all processes in Gsink. If i finishes
DISCOVERY, it disseminates its set of known processes (line
14) to determine if it belongs to Gsink or not. When this
message is delivered by process j, it replies with an ack to i
if it has the same knowledge of i (i.e., j belongs to the same
component of i). Otherwise, j replies a nack (lines 16-21). It
is important to notice that j only replies to i after finishing
DISCOVERY. This means that at least the correct processes
in Gsink will reply.

Algorithm 3 SINK code of participant i
constant:
1) f : int // upper bound on the number of failures

variables:
2) i.known : set of nodes // known nodes
3) i.nacked : set of nodes // not in the same component of i
4) i.acked : set of nodes // in the same component of i
5) i.in the sink : boolean // is i in the sink?

message:
6) REQUEST:
7) known : set of nodes
8) RESPONSE:
9) ack/nack : boolean

** All Nodes **
Task MAIN
10) i.known← DISCOVERY();
11) i.acked← {i};
12) i.nacked,← ∅;
13) for all j ∈ i.known: j 6= i do
14) send REQUEST(i.known) to j;
15) end for

16) upon receipt of REQUEST(p.known) from p
17) if i.known = p.known then
18) send RESPONSE(ack) to p;
19) else
20) send RESPONSE(nack) to p;
21) end if

22) upon receipt of RESPONSE(m) from p
23) if m = nack then
24) i.nacked← i.nacked ∪ {p};
25) if |i.nacked| > f then
26) i.in the sink ← false;
27) return 〈i.in the sink, i.known〉;
28) end if
29) else
30) i.acked← i.acked ∪ {p};
31) if |i.acked| ≥ |i.known| − f then
32) i.in the sink ← true;
33) return 〈i.in the sink, i.known〉;
34) end if
35) end if

Upon receipt of a reply from a process p (line 22), two
situations are possible: (1) if the reply is a nack, i adds p to
the set i.nacked of nodes belonging to other components; if
the number of nodes in i.nacked exceeds f , i concludes that
it does not belong to Gsink and returns false (lines 23–29).
This condition holds because all nodes outside Gsink know
all nodes in Gsink. Otherwise, (2) if the reply is an ack, i
adds p to the set i.acked. Then, if i has received acks from

all known processes, excluding the possible f faulty ones
(line 31), it concludes that it belongs to Gsink. This condition
holds because every process in Gsink receives replies only
from members of Gsink. Moreover, in both cases, a collusion
of f malicious participants cannot lead a process to decide
incorrectly.

4.2.2 SINK Correctness

Lemmata 9 and 10 state properties satisfied by the SINK
algorithm.

Lemma 9 (Sink Participants – SINK) Under Assumption 1,
algorithm SINK executed by a correct node i ∈ Gsink satisfies the
following properties:

• Sink Termination: i terminates the execution;
• Sink Accuracy: i returns 〈true, Vsink〉.

Proof. By Lemma 7, every correct process j ∈ Gsink

terminates DISCOVERY; moreover, ∀j, j.known = Vsink.
Then, i will receive RESPONSE (ack) messages (line 22) to
its REQUEST (line 14) from every correct j ∈ Gsink, since
moreover channels are reliable. On the occurrence of a
collusion of f malicious processes that replies nack to i, at
most |i.nacked| ≤ f . Thus, predicate of line 25 will never
be satisfied. Since the number of corrects is |i.known| − f ,
eventually predicate of line 31 is satisfied and i returns
〈true, Vsink〉, thus satisfying Termination and Accuracy. �

Lemma 10 (Non-sink Participants – SINK) Under Assump-
tion 1, algorithm SINK executed by a correct node i 6∈ Gsink

satisfies the following properties:

• Non-sink Conditional Termination: if i terminates DIS-
COVERY, then i terminates SINK as well;

• Non-sink Accuracy: if i terminates, it returns
〈false, i.known〉.

Proof. If i terminates the execution of DISCOVERY, it sends
a REQUEST to all nodes in i.known. By Lemma 8, i.known ⊃
Vsink. Thus, every correct process j ∈ Gsink will receive the
REQUEST from i and reply with a RESPONSE (nack), since
(j.known = Vsink) 6= i.known, by Lemma 7, since moreover
channels are reliable. From the properties of Gdi \ F ∈ k-
OSR and Lemma 4, there are at least f + 1 correct nodes in
Gsink. Thus, i will receive in line 22 at least f + 1 responses
carrying out nack and the predicate of line 25 (|i.nacked| ≥
f + 1) will be eventually satisfied. Moreover, i will never
receive a number of replies with a RESPONSE (ack), such
that |i.acked| ≥ |i.known| − f , even on the occurrence of a
collusion of f malicious processes that replies ack to i, and
then the predicate of line 31 will never be satisfied. Thus,
eventually i returns 〈false, i.known〉, satisfying Conditional
Termination and Accuracy. �

4.3 Achieving Consensus

After processes discover whether they belong to Gsink or
not, the processes in the sink execute a standard Byzantine
consensus and then, afterwards, send the decision value to
non-sink processes.
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4.3.1 The CONSENSUS Protocol
Algorithm 4 presents the CONSENSUS protocol.
Notations. The algorithm uses the following notations:

• i.known – set containing ids of all processes known
by i;

• i.in the sink – a boolean variable indicating
whether i is in the sink component;

• i.asked – set containing the ids of processes that
asked i about the decision value. This value has
been set up during the execution of Algorithm 2
(DISCOVERY);

• i.decision – variable containing the decision value;
• i.values – set of tuples of the type 〈nodeid, value〉;
• #〈∗,v〉 – the number of times that the decision value

equals v appears in any tuple 〈∗, v〉 ∈ i.values.

Algorithm 4 CONSENSUS code of participant i
constant:
1) f : int // upper bound on the number of failures

input:
2) i.initial : value // proposal value (input)

variables:
3) i.in the sink : boolean // is i in the sink?
4) i.known : set of nodes // partial view of i
5) i.decision : value // decision value
6) i.asked : set of nodes // nodes requiring the decision
7) i.values : set of 〈node, value〉 tuples // reported decisions

message:
8) SET DECISION:
9) decision : value // the decided value

** All Nodes **
Task MAIN
10) i.decision, i.in the sink ←⊥;
11) i.values, i.known← ∅;
12) i.asked← Its value comes from Algorithm 2 (DISCOVERY)
13) Fork GATHER DECISION;
14) (i.in the sink, i.known)← SINK();

** Node In Sink **
15) if i.in the sink then // underlying Byzantine consensus
16) Consensus.propose(i.initial)
17) upon Consensus.decide(v)
18) i.decision← v;
19) ∀j ∈ i.asked, send SET DECISION(i.decision) to j;
20) return i.decision;
21) end if

** Node Not In Sink **
Task GATHER DECISION
22) upon receipt of SET DECISION(v) from p
23) if i.decision =⊥ then
24) i.values← i.values ∪ {〈p, v〉};
25) if #〈∗,v〉 i.values > f then
26) i.decision← v;
27) return i.decision;
28) end if
29) end if

Description. The algorithm starts with each process execut-
ing the SINK protocol (line 14) in order to get its system
partial view and decide if it is in Gsink. If process i 6∈ Gsink,
it could had been blocked on the execution of Algorithm
2 (DISCOVERY). Anyway, it will wait for a decision on
the execution of the GATHER DECISION Task that has been
launched in line 13. If process i ∈ Gsink, it terminates SINK
and can progress on the execution of the remaining of the
algorithm. Thus, depending on whether or not the process
belongs to Gsink, two distinct behaviors are possible:

(1) If i ∈ Gsink, it executes a standard Byzantine consen-
sus (lines 16-17) with the processes in its view (i.known). We

use the following interface to the standard consensus algo-
rithm: Consensus.propose(value) to initiate a consensus in-
stance by proposing value and Consensus.decide(decision)
that is a callback function called by the standard consensus
algorithm to inform that a decision was taken. When the
decision is taken, it will send it to all processes that have
been asked for it (line 19). These processes are in the i.asked
set and have been identified during Algorithm 2 (DISCOV-
ERY). Notice that, during the execution of DISCOVERY, the
decision could had already been taken, and, in this case, on
the execution of the DELIVER Task, i will send it directly to
asking processes.

(2) If i 6∈ Gsink, it does not participate in the standard
consensus. During the execution of DISCOVERY, i has sent
messages to all f -reachable participants. Since all processes
in Gsink are f -reachable from i, it is ensured that each
correct process j ∈ Gsink sends SET DECISION(j.decision)
to i when the decision has been taken, since moreover
i ∈ j.asked. Node i decides for a value v only after it has
received v from at least f + 1 other participants, ensuring
that v is gathered from at least one correct participant (lines
22-29).

4.3.2 CONSENSUS Correctness
Theorem 1 shows that the CONSENSUS protocol solves
BFT-CUP. However, before presenting this theorem, we need
to prove the following lemma.

Lemma 11 A correct node j ∈ Gdi that communicated with
correct node i ∈ Gsink before the decision has been taken in line
18 of CONSENSUS is in i.asked.

Proof. From Lemmata 4 and 5, every message that j reach-
able broadcasts is delivered by i. Consequently, since the
DELIVER Task of the DISCOVERY algorithm keeps execut-
ing, as soon as a message from j is delivered by i before the
decision has been taken, it will put j in i.asked (lines 15–17
of DISCOVERY). �

Theorem 1 Under Assumptions 1 and 2, algorithm
CONSENSUS solves BFT-CUP.

Proof. Depending on whether or not node i belongs to
Gsink, two distinct behaviors are possible:

(1) If i ∈ Gsink: On the execution of SINK (line 14), i
gets 〈true, Vsink〉 (Lemma 9). Then, i executes an underlying
standard Byzantine consensus (line 16) with the nodes in
Vsink. From Assumption 2, Vsink has at least 2f + 1 correct
nodes, then all the properties of the underlying Byzantine
consensus will be met, i.e., Validity, Integrity, Agreement and
Termination. Thus, process i will eventually execute line 17
and decide. The decided value is then sent to all nodes in
i.asked (line 19). Finally, the decided value is returned to the
application (line 20). From Lemma 11, every correct node
j ∈ Gdi that communicates with i, j ∈ i.asked. However, if
due to the lack of synchronism, the messages from j ∈ Gdi

have not yet arrived at i on the time i is executing CON-
SENSUS, j 6∈ i.asked. In this case, since the DELIVER Task
of the DISCOVERY algorithm keeps executing, as soon as
these messages arrive at i, it will send the decision value to
j (line 19 of DISCOVERY).
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(2) If i 6∈ Gsink: On the execution of SINK (line 14), i can
be blocked or otherwise can get 〈false, i.known〉 (Lemma
10). In any case, i will not participate to the standard consen-
sus (line 15). It will expect for the decision on the execution
of the GATHER DECISION Task (lines 22–29) launched in
line 13. When a SET DECISION(v) arrives at i (line 22), if
i has not yet decided, it will store v in the i.values set (line
24) and, as soon as f + 1 equal values are received (line 25),
i returns the decided value to the application (line 27). From
the behavior (1) above, there are at least 2f +1 correct nodes
in Gsink who sent the decision (when it is taken) to i, either
on the execution of line 19 of the CONSENSUS or on the
execution of line 19 of the DELIVER Task of DISCOVERY.
This ensures that at least f + 1 decision messages will
arrive, eventually satisfying the predicate at line 25. This
predicate avoids a collusion of f malicious participants and
the process reliable decide, returning the decided value to
the application (lines 26–27). This concludes the proof and
the lemma follows. �

5 NECESSARY CONDITIONS TO BFT-CUP
This section presents the necessary conditions to solve BFT-
CUP, namely, the knowledge connectivity model of As-
sumption 1 and the BFT consensus model of Assumption 2.

In the following lemmata, Gdi = (V,E) is the directed
knowledge connectivity graph returned by a PD, G is the
undirected graph obtained from Gdi and Dag(Gdi) is the
DAG (Direct Acyclic Graph) obtained by reducing Gdi to its
strongly connected components.

We start by proving that Gdi should not have more than
one sink (Lemma 12), G should be connected (Lemma 13),
and the knowledge connectivity defined by the safe Byzan-
tine failure pattern (Assumption 1) is necessary to solve
BFT-CUP (Lemma 14). Afterward, we prove that 2f + 1
correct processes in Gsink (Assumption 2) is also necessary
to solve BFT-CUP (Lemma 15). Finally, Theorem 2 concludes
the proof presenting the necessary and sufficient conditions
for BFT-CUP.

Lemma 12 In order to solve BFT-CUP in an asynchronous
system extended with a PD, Dag(Gdi) should have exactly one
sink component.

Proof. Assume for the purpose of contradiction, a standard
proof technique, that Dag(Gdi) obtained from Gdi ∈ PD has
more than one sink, yet there exists a BFT-CUP protocol A
in the asynchronous system. We will show that A admits an
execution that violates Agreement.

Consider system X in which Dag(Gdi) has more than
one sink. Let G1 = (V1, E1) and G2 = (V2, E2) be two of
those sinks. Assume that all nodes in G1 have input value
equals to v1 and all nodes in G2 have input value equals
to v2 6= v1. Let us construct a system X1 derived from
X composed only by processes in G1 such that the initial
input values of the processes are equal v1 as well. Consider
an execution e1 of A for X1. By the Termination property,
processes in G1 eventually decide at time t1. By the Validity
property, they decide v1. Similarly, it is possible to construct
a system X2 derived from X composed only by processes
in G2 such that the initial input values of the processes are

equal v2 as well. Consider an execution e2 of A for X2. By
the Termination property, processes in G2 eventually decide
at time t2. By the Validity property, they decide v2.

Consider now the original system X containing all pro-
cesses from G1 and G2. From the system assumptions,
the cardinality n of the system composition is unknown
and the only knowledge that a process has is provided by
PD and represented by Gdi. Let K1 =

⋃
i∈V1

i.PD be the
set of processes known by all processes in G1. Similarly,
let K2 =

⋃
j∈V2

j.PD be the set of processes known by
all processes in G2. From the graph properties, there is
no outgoing edge from a process in a sink to the other
processes outside the sink. Thus, K1 ⊆ V1 and K2 ⊆ V2

and processes either in G1 or G2 have no knowledge about
the other processes in Gdi (including processes in the other
sink components). Also, since the system is asynchronous,
consider that a process i outside a sink, i ∈ V \ {V1 ∪ V2},
does not take any step until time t = max{t1, t2}; or,
alternatively, if i sends a message to a process j ∈ V1 ∪ V2,
the delivery of this message is delayed until after time t.

Clearly, it is possible to have an execution e of algorithm
A in system X in which processes in G1 take steps exactly
as in execution e1 for system X1 up to time t. In both
executions, the steps that these processes take are the same
up to time t. Then, in execution e, processes in G1 decide for
v1 at t1 ≤ t. Similarly, in the same execution e of algorithm
A in system X , processes in G2 may take steps exactly as
in execution e2 for system X2 up to time t. In both cases,
the steps that these processes take in executions e2 and e are
the same steps up to time t. Then, in execution e, processes
in G2 decide for v2 at t2 ≤ t. But, since processes in G1

decide for v1 and processes in G2 decide for v2, v1 6= v2, the
Agreement property is violated in execution e, thus reaching
a contradiction that A solves BFT-CUP in system X . �

Lemma 13 In order to solve BFT-CUP in an asynchronous
system extended with a PD, G should be connected.

Proof. The proof follows directly from Lemma 12, since if G
is not connected, there exists at least two sink components
in Dag(Gdi). �

Observation 3 Following the results of Dolev [26], in an asyn-
chronous unknown network, the number of malicious failures
should be less than half of the connectivity degree in order
to processes be able to communicate properly. This ensures the
authentication of the communication: the receiver of some message
is able to verify the identity of its sender, ensuring that no forged
messages are processed. Without this, it is not possible to tolerate
process misbehavior in an asynchronous system, since a single
faulty process can play the roles of all other processes to others.

Lemma 14 Let us consider an asynchronous system with un-
known participants prone to at most f Byzantine failures in which
the BFT-CUP problem can be solved. Let A be a protocol able to
solve BFT-CUP based on the PD information. ProtocolA requires
the knowledge connectivity graph Gdi to satisfy the safe Byzantine
failure pattern.

Proof. The safe Byzantine failure pattern states that Gdi \
F ∈ k-OSR, k ≥ f + 1, assuming that F is the set
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of participants in Gdi that actually fail, |F | ≤ f . Let
Gsink = (Vsink, Esink) be the sink component of Gdi. The
conditions stated in the lemma ensure that whatever the
actual pattern of failures, Gdi \ F satisfies the properties of
the k-OSR PD, k ≥ f + 1. As a result, there exists at least
k ≥ f + 1 node-disjoint paths composed by correct processes
between processes in Gsink and between a process outside
Gsink to a process inside it.

Now, assume by contradiction that there is a protocol
A that solves BFT-CUP with a PD that does not satisfy the
safe Byzantine failure pattern. The following four scenarios
are possible: either (1) the undirected graph G obtained
from Gdi \ F is not connected; or (2) the DAG obtained
from the decomposition of Gdi \F to its strongly connected
components has more than one sink; or (3) the unique sink
component Gsink of Gdi \ F , is not k-strongly connected,
k ≥ f + 1 and thus, there exists less than (f + 1)-correct-
node-disjoint paths between its processes; or (4) there are
i, j, such that i 6∈ Gsink and j ∈ Gsink and there exists less
than (f + 1)-node-disjoint paths from i to j in Gdi \ F .

Scenario (1): Connectivity is a necessary condition to
solve BFT-CUP (Lemma 13).

Scenario (2): One sink component is a necessary condi-
tion to solve BFT-CUP (Lemma 12).

Scenario (3): From Observation 3, Gsink does not have
enough connectivity and the existence of f faulty nodes may
split it into at least two components in Gdi, G1 and G2, in
a way that no message from nodes in G1 (respectively, G2)
can be authenticated by nodes in G2 (respectively, G1). In
this case, processes will believe that Gdi has at least two
sinks: G1 and G2. From Lemma 12, one sink component is
necessary.

Scenario (4): if there exists less than (f +1)-node-disjoint
paths from i 6∈ Gsink to j ∈ Gsink in Gdi\F , then i f -reaches
at most f nodes in Gsink (since Gsink \F is (f + 1)-strongly
connected). Let C ⊂ Gdi \ F be the set of these nodes f -
reachable from i; then, |C| ≤ f and j 6∈ C . Notice that C
is a vertex cut of at most f processes in Gdi \ F , dividing
Gdi \ F into at least two components: BC (before cut) and
AC (after cut), such that, i ∈ BC and Gsink = AC ∪ C .

Now, we will show that there is an execution e of
protocol A that violates Agreement. As Π is unknown, to
solve BFT-CUP, i needs to find other processes with which
it can collaborate (a subset of Π). The only way to do
that is by executing a search in Gdi. Going on the search,
i iteratively requests newly known processes about their
view to get knowledge improvement. This search terminates
when i discovers a sufficient number of processes in Gdi.
Since the system is asynchronous and at least f processes in
Gdi could be malicious, in order to ensure Termination the
search has to end when i has inquired all known processes,
except from f . Clearly, we could have an execution e of
protocol A in which i finishes its search before inquiring
the processes in C , since |C| ≤ f . We can consider that in
this execution e, i has previously discovered the processes
in BC and then in C ; thus, in the end of the search, i
discovers BC ∪ C . Since processes in C are not inquired by
i, it will have no knowledge about AC . By generalization,
in execution e, all processes in BC discovers BC ∪ C as
well. Cleary, the execution e will exhibit two sinks: the
actual Gsink = AC ∪ C and BC ∪ C . By Lemma 12, one

sink component is a necessary condition to ensure BFT-CUP
Agreement.

From Scenarios 1 to 4, we conclude that A does not
exists. �

Lemma 15 In order to solve BFT-CUP in an asynchronous
system extended with a PD, the sink component of Gdi must
have at least 2f + 1 correct processes.

Proof. A corollary of Lemma 12 is that decisions must
be taken by the processes in the sink component of Gdi

and, in order to ensure Agreement, the non-sink participants
should wait for the decision coming from the sink processes.
According to [5], a necessary condition to solve standard
Byzantine consensus in a non-synchronous system is the
existence of at least 2f + 1 correct processes in the system.
Consequently, the lemma follows. �

Theorem 2 Let us consider an asynchronous system with un-
known participants prone to at most f Byzantine failures in which
the BFT-CUP problem can be solved. Let A be a protocol able to
solve BFT-CUP based on the PD information.

• NECESSITY: Protocol A requires Gdi to follow the safe
Byzantine failure pattern (Assumption 1) and the unique
sink component of Gdi to have at least 2f + 1 correct
processes (Assumption 2).

• SUFFICIENCY: The safe Byzantine failure pattern (As-
sumption 1) and 2f + 1 correct processes in the sink
(Assumption 2) are sufficient for protocol A be able to
solve BFT-CUP.

Proof. The necessity follows directly from Lemmata 14 and
15. The sufficiency follows directly from Theorem 1. �

On one hand, the sufficient conditions specify what is
enough for solving BFT-CUP (but it does not mean that
all of these conditions are necessary). On the other hand,
the necessary conditions specify minimum requirements to
solve BFT-CUP (but it does not mean that they are suffi-
cient). This paper proves that the safe Byzantine failure pattern
together with 2f+1 correct sink participants are both sufficient
and necessary to solve BFT-CUP (Theorem 2).

6 CONCLUSION

In this paper, we identified necessary and sufficient con-
ditions to solve the BFT-CUP problem in an asynchronous
system. These conditions are related with the degree of
knowledge about the system composition that participants
must initially obtain. The proposed protocols complement
previous works about consensus with unknown partici-
pants by decreasing the minimum degree of knowledge
necessary to solve BFT-CUP. The new threshold is showed to
be optimal. As a side effect, a BFT dissemination primitive,
namely reachable reliable broadcast, has been defined and can
be used in other protocols for unknown networks.
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