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 Cancer is one of the most diffused and deadly diseases worldwide. Unfortunately, due to 

the very heterogeneous nature of tumors, it has been very challenging finding efficient 

treatments. Standard clinical procedures present many adverse side effects and may often 

cause drug resistance with consequent therapy failure, onset of metastases and relapse. 

Combination therapy has demonstrated limited success due to the difficulties in matching 

different molecules pharmacokinetic properties and in tuning the best dosage in order to 

achieve the desired effects. Recently, innovations in the nanotechnology field have 

allowed to design ad hoc nanocarriers able to selectively deliver drugs to target cells and 

release them upon specific triggers. Artificial intelligence approaches have been also 

developed and advances in the computational modeling field have greatly impacted 

human healthcare. The possibility to exploit algorithms for predicting drug responsiveness 

based on data retrieved from databases is greatly improving clinical strategies and 

supporting therapeutic decisions. In this review, we report recent advances in the 

nanomedical and artificial intelligence fields and describe novel strategies adopted for 

counteracting cancer drug resistance. Limits and promises of these approaches are 

discussed, together with some examples of preclinical and clinical applications. 
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Introduction.   

Cancer is one of the leading causes of death worldwide and 

one of the costliest diseases. Standard therapeutic 

treatments are mainly based on surgery, chemotherapy, 

radiation therapy and, recently, on targeted 

immunotherapy. Unfortunately, these approaches present 

many undesirable side effects, they are invasive and very 

often do not display enough selectivity for cancer cells. One 

phenomenon that commonly arises in patients during and 

upon chemotherapy is drug resistance, namely the capacity 

of tumor cells to become tolerant to the administered 

chemical agents and sometimes also to unrelated drugs, 

leading to multidrug resistance (MDR) [1,2]. This situation is 

correlated to therapy failure and is responsible for the 

diffusion of metastatic cancer and tumor relapse [3,4]. In the 

last years, researchers have focused on unraveling the 

mechanisms involved in cancer drug resistance, such as 

apoptosis inhibition, DNA damage repair, drug inactivation, 

altered drug efflux and target modifications [1,5,6]. Many 

strategies have been adopted for circumventing drug 

resistance, for instance by administering drug combinations 
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and small molecule inhibitors or by performing gene therapy 

[7]. Nevertheless, complications with tuning the right doses 

for achieving an appreciable effect and the difficulty to 

match the pharmacokinetic profiles of the proposed drugs 

has led to many unpredictable outcomes [8,9]. Indeed, each 

patient presents unique responses to a specific drug and this 

is especially true in very heterogeneous disorders such as 

cancer, thus making diagnosis and treatment very 

challenging [10,11]. Recently, the concept of precision 

medicine has gained fundamental importance in the clinical 

context, for establishing specific treatments for each patient, 

based on their peculiar genetic and epigenetic features [12]. 

Currently, efforts are centered on two innovative 

approaches, nanomedicine and artificial intelligence (AI), 

which are developing as intertwined tools for counteracting 

cancer drug resistance through personalized medicine. 

Nanotechnology has provided the means for designing and 

engineering nanomaterials formulated for delivering 

multiple drugs, ameliorating their physicochemical 

properties, enhancing their effectiveness and reducing 

possible adverse side effects [13–15]. Both inorganic and 

organic nanocarriers have been developed and modified, 

making them not merely subjected to passive delivery but 

also able to actively reaching specific tumor cells by means 

of functionalization with targeting ligands [16–20]. Thanks to 

this feature, nanocarriers can circumvent cell membrane 

transporters and enter the cells by endocytosis [18]. 

Interestingly, nanomedicines responsive to external stimuli 

display the great advantage of releasing the drug on site and 

upon specific triggers [20]. The importance of predicting 

drug responsiveness in oncology is fundamental and many 

efforts have been focused on developing appropriate 

techniques, from cell culture based chemosensitivity tests 

[21] to computational models [22]. However, standard 

methods present limitations, partially overcome by the 

advent of DNA, RNA, and protein-based assays [23,24], 

which rely on predictions coming from a defined number of 

genes [22,25]. Despite the many successes in reducing 

mortality, however it remains relatively difficult to find the 

correct genes to be analyzed as prognostic markers of drug 

resistance [25]. Examples in this direction are the publicly 

available Gene Expression Omnibus (GEO) database and The 

Cancer Genome Atlas (TCGA) that have provided huge 

amounts of data [26]. This review reports innovative 

nanomedical and AI approaches for counteracting drug 

resistance in cancer. A special focus on the developments at 

the preclinical and clinical stages is made, discussing the 

advantages and limits of this vibrant field of research.  

 

1. Nanomaterials for overcoming cancer drug 

resistance.  

Nanomaterials are contributing to personalized medicine 

from diagnosis to therapy: improvements in many 

technologies have allowed to perform single molecule DNA 

sequencing [27] and to exploit nanosensors to detect 

biomarkers with femtomolar concentration sensitivities 

[28]. In particular, advances in the design of theranostic 

agents combining drug delivery and imaging agents have 

revolutionized the field of nanomedicine [29]. Multiple kinds 

of carriers have been developed, thanks to their intrinsic 

properties such as i) high surface to volume ratio, and ii) 

several possibilities of modification by specific ligand 

functionalization for responding to external stimuli (Figure 

1). 

 

 
Figure 1. Scheme of the main inorganic and organic nanoparticles developed for counteracting cancer drug resistance. Possible 

functionalization with targeting ligand and external stimuli exploited for triggered drug release are reported. NPs: 

nanoparticles, IO: iron oxide, SLNs: solid lipid nanoparticles, NLCs: nanostructured lipid carriers, NIR: near-infrared.  
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Interestingly, nanoparticles (NPs) can easily penetrate cells 

by endocytic mechanisms, avoiding pump transporters 

involved in multidrug resistance. Considering inorganic 

nanomaterials, iron oxide NPs have been used for carrying 

chemotherapeutic molecules to drug resistant HeLa cells 

[30], and have displayed a more efficient behavior respect to 

the free molecule itself in vivo [31]. As mentioned before, 

the possibility to load NPs with multiple drugs for 

simultaneous delivery is of prominent importance for 

improving the potential of combination therapy, overcoming 

the limits due to pharmacokinetics and tumor 

microenvironment heterogeneity [32,33]. One further 

advantage of using metallic NPs is that they are responsive 

to alternating magnetic fields, generating localized 

hyperthermia, gaining drug release and efficient resistance 

reversal [34,35]. Similarly, to iron oxide, gold NPs have been 

synthetized and conjugated to specific drugs, achieving 

significant cytotoxic effects in drug resistant cancer cells 

[36,37]. Interestingly, a therapeutic approach, called 

photothermal therapy (PTT) has been adopted, based on the 

conversion of absorbed near-infrared (NIR) light to heat, 

specifically destroying cancer cells [38]. A recent study 

showed its efficacy upon administration of NPs to MDR 

tumor xenografts [39]. An interesting material used in 

nanomedicine is constituted by mesoporous silica 

nanoparticles (MSNs), excellent carriers of molecules inside 

drug resistant cancer cells [40]. When exploited for 

delivering siRNAs targeting P-glycoprotein (P-gp, also known 

as multidrug resistance protein 1) and doxorubicin, they 

showed accumulation due to enhanced permeability and 

retention effect, with resulting downregulation of specific 

protein expression [41]. Carbon based nanocarriers have 

been widely employed in nanomedicine for their high 

surface-to-volume ratio, thermal conductivity and ease of 

functionalization. For instance, i) carbon nanotubes, used in 

many applications such as imaging agents responsive to NIR 

irradiation [42] and as carriers for chemotherapeutics and P-

gp inhibitors in vitro and in vivo [43–45], and ii) graphene 

oxide loaded with siRNAs and chemotherapeutic agents, 

that have revealed successful in targeting drug resistant 

tumor cells [46,47]. Concerning organic materials, they have 

raised increasing interest thanks to i) biocompatibility, due 

to the presence of natural components in their formulations, 

and ii) high biodegradability. In this section, some researches 

concerning the use of lipidic and polymeric NPs will be 

reported. Liposomes, thanks to their nature, can 

encapsulate hydrophilic and hydrophobic molecules [48], 

they easily accumulate into tumors and, when appropriately 

modified (i.e., by PEGylation), they can be made enough 

stable to enhance their circulation times [49] eluding 

transporters involved in MDR [50]. Liposomes loaded with 

multiple drugs revealed to be effective both in vitro and in 

vivo, efficiently overcoming MDR [51,52]. Modifications that 

made them responsive to external stimuli, further enhanced 

their efficacy [53]. Another kind of lipid NPs, constituted by 

lipids solid at body temperature and a stabilizing surfactant, 

are called solid lipid nanoparticles (SLNs) [54]. They present 

higher stability and a more sustained release respect to 

liposomes. MDR was successfully overcome in breast cancer 

cells upon SLNs administration [55] and in in vitro and in vivo 

models of hepatocellular carcinoma [56]. Nanostructured 

lipid carriers (NLCs) constituted by one or more liquid lipid 

allowing to encapsulate high amounts of drugs [57] have 

demonstrated efficient in combination therapy, delivering 

paclitaxel and indocyanine green, targeting tumor cells and 

releasing chemicals upon laser irradiation in vitro and in vivo 

[58]. NLCs mediated targeted delivery of doxorubicin and 

vincristine revealed effective in vitro and in vivo [59]. Highly 

biocompatible polymeric NPs have been successfully used 

for circumventing MDR in cancer [50]. Multifunctional NPs 

loaded with chemotherapeutic agents and responsive to 

external triggers have displayed effectiveness in MDR 

tumors [60,61]. Interestingly, modifications have been 

performed allowing to specifically downregulate the 

expression of proteins correlated to multidrug resistance 

[62]. The biopolymer poly lactide-co-glycolide (PLGA) has 

been widely explored for fabricating NPs carrying paclitaxel 

and siRNAs directed against focal adhesion kinase and for 

treating ovarian cancer in vitro and in vivo [63]. Interestingly, 

poloxamers, copolymers able to interfere with P-gp efflux 

pumps, have been combined to PLGA for obtaining 

docetaxel-loaded PLGA d-α-tocopheryl polyethylene glycol 

1000 succinate (TPGS)/Poloxamer 235 NPs for breast cancer 

treatment [64]. In spite of the advantages of nanoparticle-

based treatments, it is important to know that very few trials 

have been registered involving their clinical translation. 

Formulations of camptothecin conjugated to cyclodextrin-

based polymers, have been reported for treating recurrent 

platinum-resistant ovarian, tubal and peritoneal cancer [65], 

castration resistant prostate cancer patients already treated 

with enzalutamide [66] and, combined with Olaparib, 

recurrent ovarian cancer [67]. Studies involving the 

administration of paclitaxel albumin-stabilized NPs, alone or 

in combination with other molecules, have been reported in 

platinum-resistant ovarian, fallopian tube, or primary 

peritoneal cancer [68–70], in taxol resistant patients with 

metastatic breast cancer [71] and in advanced gastric tumors 

[72]. Two clinical trials have been registered for studying the 

effects of the administration of docetaxel NPs in metastatic 

castration resistant prostate cancer [73] and in platinum-
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resistant ovarian cancer patients [74]. Concerning liposomes 

as therapeutic agents, one study is expected to administer 

irinotecan liposomes and bevacizumab to patients with 

platinum resistant ovarian, fallopian tube, or primary 

peritoneal cancer and to subjects with recurrent and 

refractory cancer [75]. Another trial performing a treatment 

with anti-EGFR immunoliposomes carrying cytotoxic 

molecules, and specifically targeting solid tumors 

overexpressing EGFR, has been described [76]. 

2. Artificial intelligence for overcoming cancer 

drug resistance 

In the last decades, AI has revolutionized many fields of 

human life [77] impacting with ground-breaking healthcare 

strategies and supporting problem solving and decision 

making in oncology [78]. Similarly to traditional medical 

approaches, where multidisciplinary teams integrating the 

most different competences are involved in finding the 

correct diagnosis, analyzing data and finally developing a 

treatment strategy, computational models are capable to 

learn and predict patterns, by mining and linking data, often 

walking along roads that researchers and physicians can’t 

walk [79] (Figure 2). Computational strategies can drastically 

improve basic research and precision oncology [78], cancer 

medical imaging (i.e., radiographic imaging [80,81] and 

digital pathology [82,83]) and translational oncology (i.e., 

cancer therapy [84–86] and drug discovery [87,88]), allowing 

to plan personalized treatments. From a generic point of 

view, computational technologies allow to i) collect huge 

amounts of digital data, acquired from heterogeneous 

sources, such as different types of images, next generation 

sequencing, large scale clinical trials and patients health 

records, and ii), improve drug discovery, correct diagnosis 

and therapy by early detection, modeling-based predictions, 

pattern recognition and data correlations, based on 

“automatically improve through experience” algorithms[78].  

 

 
Figure 2. Scheme of an artificial intelligence algorithm. In input, Big Data are retrieved from different databases. The dataset 

collected is subsequently analyzed by artificial intelligence (AI) algorithms with specific architectures. In order to improve the 

result, several solutions can be combined in a single algorithm. The obtained output is a prediction able to improve medical 

strategies and therapeutic decisions. 

 

Because the complexity and quantity of databases 

developed in the last decades are experimentally and 

economically not affordable by in vitro and in vivo 

researches, computational methods have revealed to be the 

most promising tools for supporting drug discovery and for 

screening drug combinations [89]. Machine learning (ML) 

algorithms are a subclass of AI, typically divided into 

different categories, depending on the signal or feedback 

provided to the learning system and on the statistical and 

probabilistic approach adopted [90,91]. Support-vector 

machines (SVMs) are a ML supervised approach, able to 

analyze data for classification and regression processes, very 

useful to recognize patterns in complex data [90]. Hazai et 

al., exploited a model of SVM to predict substrates of human 

breast cancer resistance protein (BCRP), involved in 

multidrug resistance onset, and demonstrated this method 

as an affordable system for the analysis of pharmacokinetics, 

efficacy and safety of specific drugs [92]. In a recent study, a 

SVM algorithm was implemented, presenting a high 

accurate solution in predicting drug responsiveness in many 

cancer cell lines. To train and test the model, datasets of 

gene expression and drug response collected in the National 

Cancer Institute panel of 60 human cancer cell lines (NCI-60) 

were used [93]. Another architecture exploited in the ML 

field is the Bayesian algorithm, a statistical model based on 

Bayes’ theorem [90]. Costello et al., demonstrated its impact 

in predicting drug response by analyzing 44 drug sensitivity 

prediction algorithms trained on datasets collected from 
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genomic, epigenomic and proteomic analyses performed in 

human breast cancer cell lines [94]. In order to unravel the 

highly heterogeneous nature of a pathology such as cancer, 

Gönen et al., proposed computational algorithms able to 

mining genomic information for obtaining robust predictors 

of drug responses. They focused on a Bayesian algorithm 

with two main properties: i) developing a simultaneous 

predictive model for all the drugs considered, stressing their 

common parameters, and ii) handling missing data 

concerning drug susceptibility measurements, in order not 

to discard data with missing outputs [95]. It is well known 

that patients affected by the same tumor display 

heterogeneous behaviors towards the same kind of therapy. 

Therefore, computational models have developed the so-

called ensemble methods, that use multiple learning 

algorithms to obtain a better predictive performance than 

using their learning algorithm alone. A typical example of an 

ensemble method is the “random forest” model, a ML 

strategy for classification using determined numbers of 

predictive sub-models called “decision trees”. A recent work 

demonstrated that adopting a random forest it could be 

feasible mapping pharmacogenomics alterations in 1,001 

human cancer cell lines and correlating the analysis with 

possible sensitivity to 265 drugs. The study showed the 

importance of different kinds of data in predicting drug 

response of specific tumor populations [96]. Cortés-Ciriano 

et al., applied the random forest integrating chemical and 

biological information for modelling 50% growth inhibition 

bioassay endpoint of thousands of compounds screened 

against 59 cancer cell lines. The algorithm was able to 

elaborate compound bioactivities in input and output, with 

the possibility to be extended to different cell lines, tissues 

and compounds, predicting drug-pathway associations and 

growth inhibition patterns [97]. Naulaerts et al., created a 

ML model for comparing commonly considered single-gene 

markers with multi-gene markers, exploiting genomic data 

for distinguishing sensitive vs. resistant cancer cell lines. The 

study demonstrated that sensitivity to specific drugs can be 

better predicted by these kinds of models [98]. Interestingly, 

it has been shown that is possible to overcome the “trial and 

error method” while looking for the identification of the best 

drug mixtures for circumventing drug resistance, by using a 

computational ensemble predictive model greatly reducing 

the complexity of combination therapy [99]. Very recently, 

Sharma et al., applied a modified rotation forest from a 

specific ensemble learning framework to Genomics of Drug 

Sensitivity in Cancer (GDSC) and Cancer Cell Line 

Encyclopedia (CCLE) drug screens, and obtained very robust 

drug-response predictions [100]. An artificial neural network 

is a ML network composed by nodes interconnected and 

controlled by a linear combination of weights and its name 

originates from the computational attempts to mimic a 

biological brain. Artificial neural networks can learn by 

training through datasets, allowing to obtain probabilistic 

responses moving through complex and apparently 

unrelated information. Menden et al., exploited an artificial 

neural network for designing ad hoc drug-cell screenings, 

suggesting an in silico massive test both for drug discovery 

and sensitivity evaluation [101]. As studies progress, new 

computational solutions have been gradually introduced to 

improve the efficiency of the process. Deep learning (DL) is a 

particular subclass of ML [90], specifically based on artificial 

neural networks [102,103], where the adjective “deep” 

refers to the multiple layers used in the construction of the 

network architecture. In many studies, DL algorithms have 

shown robust prediction of drug response when applied to 

pharmacological and cell line -omics data [104]. As for ML 

technology, DL can investigate huge amounts of multi factor 

and noisy data while defining nonlinear relations in datasets 

and bypassing the complexity of biological data [105]. Like 

for ML, different strategies can be used for elaborating a DL 

algorithm. The more intuitive is an artificial neural network 

with a large number of fully connected hidden layers, where 

the information flows through the nodes in one direction 

[106]. Regardless of its simplicity, this model has been 

already successfully used in drug response analysis [107]. 

Another type of DL model is the convolutional neural 

network where, in specific points of the network, the 

algorithm applies convolutions and the final layers result to 

be fully connected for a supervised classification or 

regression. Importantly, convolutional neural networks are 

used for drug response prediction based on input data like 

2D compound structures, named “compound images” [108]. 

Finally, the network can present cycles connecting adjacent 

edges. In this case, the DL model is named recurrent neural 

network, whose main application is modeling sequential 

data. For instance, Oskooei et al., developed a prediction 

algorithm for anticancer compound sensitivity (PaccMann), 

integrating molecular structure of drugs, transcriptomic 

profiles of cancer cells and data related to protein-cell 

interactions [109]. DL methods with unsupervised 

architecture have been also described, analyzing both 

chemical structures and -omics data for elaborating a 

predictive model of drug interaction [110–112].
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Conclusions.  

Considering the reported researches on nanomaterials, it is 

possible to infer that further studies will be required before 

a broad diffusion of nanoparticles in the medical context. 

Although the application of nanotechnology for targeted 

drug delivery is clearly a very promising strategy for 

counteracting cancer drug resistance, however more 

knowledge is required concerning the behavior of the 

delivered drugs and the metabolism of nanomaterials inside 

human body, especially in the long-term [113]. Assessment 

of nanotoxicity and nanosafety is a fundamental prerequisite 

for clinical applications and it is at this point that innovative 

multidisciplinary approaches such as computational 

technologies, could help predicting and finely tuning the 

best treatment for achieving the best therapeutic result in 

very much intricate pathologies like tumors [114,115]. 

Although the vast majority of the artificial intelligence 

studies are performed at a preclinical stage, importantly the 

possibility to perform clinical trials aimed at collecting 

radiomics, metabolic, genetic, pathological data for 

establishing multi-omics AI systems for predicting the effect 

of neoadjuvant therapy and better explore drug resistance is 

now becoming reality [116]. Obviously, the success of the 

computational approaches in the clinical field will be 

determined in large part by the efforts to translate 

mathematical abstract models into healthcare strategies. 

Some issues have been already raised, such as i) 

standardization of databases and predictions, ii) difficulties 

in translating diagnostic tasks into Boolean values, and iii) 

necessity to overcome the gap between medical 

professionals and computer scientists [117,118]. 

Furthermore, data collection raises some ethical issues, 

because it determines a potential exposure to hacking 

attacks or illegal access to very sensitive data and 

personalized medicine exposes to the risk of profiling 

patients into their privacy [119]. In conclusion, even though 

surveillance by human specialists (i.e., ethical commissions, 

cyber security experts, bioinformatics and physicians) is still 

indispensable, however researches in the artificial 

intelligence field are exponentially growing, laying 

foundations for future integrations with medicine. 
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