Poster Open Access

The Swiss Data Science Center on a mission to empower reproducible, traceable and reusable science

Schymanski, Stanislaus Josef; Eric Bouillet; Olivier Verscheure


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Open Science</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Data Science</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Science 2.0</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Digital Science</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Reusable Research</subfield>
  </datafield>
  <controlfield tag="005">20200120154909.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Poster presented at  European Geosciences Union General Assembly 2017, id: EGU2017-12179.</subfield>
  </datafield>
  <controlfield tag="001">581298</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">23-28 April 2017</subfield>
    <subfield code="g">EGU</subfield>
    <subfield code="p">EGU2017-12179</subfield>
    <subfield code="a">European Geosciences Union General Assembly 2017</subfield>
    <subfield code="c">Vienna, Austria</subfield>
    <subfield code="n">IE2.4/ESSI3.10</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Swiss Data Science Center (SDSC), École polytechnique fédérale de Lausanne (EPFL), Switzerland</subfield>
    <subfield code="a">Eric Bouillet</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Swiss Data Science Center (SDSC), École polytechnique fédérale de Lausanne (EPFL), Switzerland</subfield>
    <subfield code="a">Olivier Verscheure</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3206238</subfield>
    <subfield code="z">md5:ba914ff03484f06c97c5d94389aa2cda</subfield>
    <subfield code="u">https://zenodo.org/record/581298/files/SDSC_Poster3a.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://egu2017.eu/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-04-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-osr</subfield>
    <subfield code="o">oai:zenodo.org:581298</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Swiss Data Science Center (SDSC), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland</subfield>
    <subfield code="a">Schymanski, Stanislaus Josef</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">The Swiss Data Science Center on a mission to empower reproducible, traceable and reusable science</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-osr</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Our abilities to collect, store and analyse scientific data have sky-rocketed in the past decades, but at the same time, a disconnect between data scientists, domain experts and data providers has begun to emerge. Data scientists are developing more and more powerful algorithms for data mining and analysis, while data providers are making more and more data publicly available, and yet many, if not most, discoveries are based on specific data and/or algorithms that "are available from the authors upon request".&lt;br&gt;
In the strong belief that scientific progress would be much faster if reproduction and re-use of such data and algorithms was made easier, the Swiss Data Science Center (SDSC) has committed to provide an open framework for the handling and tracking of scientific data and algorithms, from raw data and first principle equations to final data products and visualisations, modular simulation models and benchmark evaluation algorithms. Led jointly by EPFL and ETH Zurich, the SDSC is composed of a distributed multi-disciplinary team of data scientists&lt;br&gt;
and experts in select domains. The center aims to federate data providers, data and computer scientists, and subject-matter experts around a cutting-edge analytics platform offering user-friendly tooling and services to help with the adoption of Open Science, fostering research productivity and excellence.&lt;br&gt;
In this presentation, we will discuss our vision of a high-scalable open but secure community-based platform for sharing, accessing, exploring, and analyzing scientific data in easily reproducible workflows, augmented by automated provenance and impact tracking, knowledge graphs, fine-grained access right and digital right management, and a variety of domain-specific software tools. For maximum interoperability, transparency and ease of use, we plan to utilize notebook interfaces wherever possible, such as Apache Zeppelin and Jupyter.&lt;br&gt;
Feedback and suggestions from the audience will be gratefully considered.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.581298</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
66
81
views
downloads
All versions This version
Views 6666
Downloads 8182
Data volume 259.7 MB262.9 MB
Unique views 6464
Unique downloads 7576

Share

Cite as