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Abstract—Facing the spectrum supply-demand gap, hetero-
geneous network (HetNet) is a promising approach to achieve
drastic gains in network coverage and capacity compared with
macro-only networks, thus making it especially attractive to
network operators. On the other hand, Software-Defined Net-
working brings a number of advantages along with many
challenges. One particular concern is on the resilience for in-band
fashioned control-plane. Existing approaches mainly rely on a
local rerouting policy when performing the routing protection
for the target sessions in Software-Defined Networks (SDNs).
However, such a policy would potentially bring congestions in
the neighbouring links of the failed one. To this end, we study
a weighted cost-minimization problem, where the traffic load
balancing and control-channel setup cost are jointly considered.
Because this problem is NP-hard, we first propose a near-optimal
Markov approximation based approach for in-band fashioned
software-defined HetNets. We then extend our solution to an
online case that handles a single-link failure. We also conduct
theoretical analysis on the performance fluctuation due to the
single-link failure. We finally carry out experiments by exper-
imental simulation. Extensive numerical results show that the
proposed algorithm has fast convergence and high efficiency in
resource utilization.

Index Terms—Routing Protection, In-Band, Software-Defined
Heterogeneous Networks, Markov approximation.

I. INTRODUCTION

Driven by the drastic growth in wireless data traffic, more
denser, heterogeneous network deployment in the context of
limited spectrum supply are becoming a reality for operators
of carrier networks and Internet of Things. In order to improve
the spectrum usage aiming at eliminating the spectrum supply-
demand gap, the heterogeneous network (HetNet) is a promis-
ing method for achieving substantial gains in coverage and
capacity, compared with macro-only networks, and especially
attractive to network operators. For the example demonstrated
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Fig. 1. The heterogeneous network uses a combination of macrocell and
small-cell base stations to extend network coverage and capacity.

in Fig. 1, in a heterogeneous Long Term Evolution-Advanced
(LTE-A) wireless cellular network, a large number of small-
cells (SCs) such as micro, pico and relay base stations (BSs),
are deployed with macrocells to improve spatial reuse [1]–[3]
via cell splitting, because these small-cell BSs can operate on
the same wireless channel (a certain spectrum band) as the
macro-cellular network.

A. Relaying in HetNets

Relaying is considered as one of the key components for
3GPP releases 10 and 11 of LTE-A in order to improve the
cell-edge user throughput, and to extend coverage to new areas
by flexible and easy deployments [4]. A relay in an LTE-A ac-
cess network is a base station that uses collaborative multi-hop
communications at the cell edges. It can receive a weak signal
and retransmit it with an enhanced quality. With relaying, User
Equipments (UEs) can communicate with the network via a
relay BS that is connected to a macrocell, using the LTE radio
interface technology [4]. The macrocell BS may serve one or
multiple relays in addition to directly serving the macro UEs
[3]. Particularly, the multi-hop relaying has been identified as a
valuable wireless paradigm in future HetNets, particularly for
urban sparse area deployments. The use of multi-hop relaying
can significantly improve the network coverage and capacity,
due to the reduction of path loss by replacing the direct low
quality link between the macrocell BS and UEs with multiple
high-quality links through one or multiple relay BSs.

It has shown that better performance in terms of high-
quality coverage, network capacity and lower expenditures
(CAPEX and OPEX) can be achieved by supporting multi-hop
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relay architecture [5]–[7]. However, using a multi-hop relay
functionality requires more resources to transmit data through
different hops, which may degrade the quality of service
(QoS). Therefore, efficient spectrum management schemes is
crucial to achieving high QoS while improving the network
capacity.

B. Software-Defined Networking

Software-Defined Networking offers programmable features
and functionalities (e.g., OpenFlow [8]) to dynamically man-
age network by shifting the control plane to centralized
controllers. Thus, network operators can perform flexible man-
agement easily and fast realize a number of optimal network
policies, e.g., traffic engineering [9], data security [10], fault
diagnosis [11] and failure recovery (failover) [12].

In Software-Defined Networks (SDNs), the connection be-
tween a forwarding device (such as a switch/router which
connects to a BS in wireless heterogenous networks) and
a controller is used to exchange control-plane traffic, e.g.,
OpenFlow messages and the collected global network statistics
[8]. The global network information is critical for control
policies to make centralized decisions. Network status shall be
collected as much as possible, such as the traffic rate in each
link, the available flow table size in each forwarding switch,
and reported to the controller via secure channels. The con-
troller may respond with new instructions to each forwarding
device. Such bidirectional communications contribute to the
control traffic by a non-negligible fraction [13].

A controller usually interacts with forwarding devices via
out-of-band control [14] connections in a dedicated network
[15], [16]. The advantages of such an out-of-band network are
in two-fold: (i) High security is provided for control signals
because a dedicated network is used for communication; (ii)
The control-to-device connection is still available through the
dedicated network even if failures occur in the data plane.
However, building such an out-of-band dedicated network
could be very expensive in terms of resource-consumptions
under some scenarios such as the widely distributed wireless
access networks. Therefore, in a large-scale network with
hundreds even thousands of forwarding devices, an alternative
economic way is to use the so called in-band connection [17]
for constructing the control plane. In this fashion, a controller
communicates with a target forwarding device through a multi-
hop routing path consisting of multiple intermediate relays.
Using the Transport Layer Security (TLS) or Transmission
Control Protocol (TCP) connections, the control-plane traffic
can be relayed over the in-band controller-to-device channels.
The usage of in-band connection can be found in either wired
networks [18]–[20], or wireless networks [21]–[24].

C. Motivations

In the following, we address the importance of the routing
protection for the in-band fashioned control plane of software-
defined HetNets from three perspectives.

Firstly, although in-band connection is a practical approach,
it poses many challenges. One is how to provide resilient

communications between forwarding devices and the con-
troller in case of link failures. In recent studies, Google
has reported high delays and failures in configuring switches
with a failure rate between 0.1% and 1% [16]. In a large
network, the failures of the data plane occur more frequently.
Each disconnected link can last 30 minutes on average [25].
In an in-band fashioned SDN, where control-plane traffic
shares medium with the data plane traffic, even a single link
failure may disconnect a large number of devices from their
controllers, resulting in much worse damages than those of the
out-of-band fashion [12]. Consequently, packets may not be
forwarded correctly in the control-lost switches, thus leading
to performance degradation, such as packet loss, loop routing,
suboptimal or infeasible routing actions [8], [11]. The damage
is even worse under wireless networks. Therefore, to deal with
routing protection at the control plane for in-band HetNets is
a fundamental issue.

Secondly, we notice that the emphasized control-plane ori-
ented routing protection problem looks very similar to the data
plane routing protection, which has received much attention in
literature primarily utilizing the policy of local rerouting [15],
[18], [20], [26]–[29], such as detour, forward local rerouting
and backward local rerouting. However, this policy potentially
brings congestions to the links near to the failed one, resulting
in a higher control latency to the affected controller-to-device
channels. In contrast, we strive to find a robust end-to-end
global rerouting solution, corresponding to the flow swapping
scenario [30], [31], especially in a dynamic environment where
flows are frequently added or removed in certain groups of
links simultaneously.

Finally, with respect to methodologies to address the routing
recovery problem, there are two major categories: restoration
[19], [32] and protection [20], [33]. In the former scheme,
the recovery paths can be either preplanned or calculated on-
demand, but network resources (such as forwarding rules and
link bandwidth) will not be allocated until a failure is detected.
We can see that such an approach inherently results in a
long recovery time and high packet losses. In contrast, in the
protection scheme, backup resources are always pre-planned
and reserved such that once a failure is detected, recovery
can be made immediately. As a result, when fast recovery
is a major concern, the protection is preferable. In addition,
the experimental studies in literature [19], [32] revealed that
path protection is more qualified than restoration with respect
to the sub-50 ms fast failure recovery requirement [34] of
carrier-grade networks. Therefore, in this paper we adopt the
protection scheme.

D. Goal
In software-defined HetNets [35], [36], when realizing the

efficient spectrum utilization for the wireless backhaul link,
there are two crucial conflicting issues to be addressed when
deploying routing protection to the in-band fashioned control
plane: (i) maximizing the spectrum-usage efficiency for data-
plane traffic, and (ii) improving the resilience on control-plane
traffic.

Since control-plane traffic shares the bandwidth resource
with data plane traffic, network operators should carefully
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utilize the spectrum bandwidth towards control traffic, such
that the network performance (e.g., throughput) can be op-
timized. One to achieve this goal is to balance the control
traffic over all backhaul links. Another is the setup cost of the
control channels when providing the resilience for the control-
plane traffic. Because the establishment and maintenance of
TCP/TLS connections require a number of routing table entries
[37] and message exchanges. Generally, the setup cost is
positively proportional to the length of the control-channel
path. Consequently, the length of a selected path should also be
taken into consideration when launching the control channels.

To this end, in the software-defined heterogeneous networks,
we study a weighted cost minimization problem, in which the
control-plane traffic load balancing and control-channel setup
cost are jointly considered when selecting the protection paths
for control channels. Since the multiple resource constrained
routing is NP-complete [38], [39], we propose a near-optimal
algorithm, using the Markov approximation technique [40].
Particularly, we extend our solution to an online case that
can handle the dynamic single-link failure one a time. The
incurred performance fluctuation is also theoretically analyzed.
Finally, extensive simulations are conducted to show that
the proposed algorithm converges quickly and is efficient on
resource utilization than the existing benchmarks.

Our study leads to the following major contributions:

• We strive to provide an optimal routing protection
for control-plane traffic in in-band fashioned software-
defined HetNets. Our approach can be extended to the
routing protection in data plane.

• To solve the weighted cost-minimization problem, a near-
optimal algorithm has been proposed, using the Markov
approximation techniques. In particular, we design a
Markov chain with a state space of all feasible protection
solutions and a well devised transition rate matrix such
that the analytical performance of the proposed algorithm
can be guaranteed.

• Compared with existing benchmarks, the proposed al-
gorithm can provide more robustness and efficiency by
handling a single-link failure with fast convergence. The
theoretical performance fluctuation of our algorithm due
to a single-link failure is also thoroughly studied with
closed-form expression.

The rest of the paper are organized as follows. Section
II reviews related work. Section III introduces preliminaries
and the system model. Then, the optimization problem is
formulated using integer programming. Our proposed Markov
approximation based algorithm is presented in Section IV. Fur-
ther, Section V extends the proposed algorithm to dynamically
handle the single-link failure. Extensive evaluation results are
shown in Section VI. Finally, Section VII concludes this work
and identifies the future work.

II. RELATED WORK

A. Multi-hop Relay System in HetNets

As a hot research topic with significant application potential,
relay technologies have been actively studied in literature. For

example, in a multi-user, multi-relay Orthogonal Frequency-
Division Multiple Access (OFDMA) based cellular network,
an energy-efficient subcarrier allocation problem is studied in
[41]. BenMimoune et al. [42] demonstrate that multi-hop relay
is one of the most promising technologies to overcome the
coverage and capacity problem in LTE-A networks. To reduce
the inter-cell handoff frequency and handoff failure ratio,
they propose a relay selection strategy that takes handoff into
consideration in LTE-A multi-hop relay networks. The same
authors [43] later propose a new resource allocation framework
for 5G multi-hop relay systems, aiming to overcome the
additional challenges introduced by multi-hop relay stations.
Recently, Sapountzis et al. [44] claim that, the backhaul con-
straints are emerging as a key performance bottleneck in future
HetNets, because of the continuous improvement of the radio
interface and the desire for inexpensive multi-hop backhaul
links that can reduce CAPEX/OPEX. They propose an analyt-
ical framework for user association that jointly considers radio
access and backhaul performance in backhaul-limited HetNets.
Particularly, an SDN-based implementation of the proposed
approach is also presented. The centralized programmable
control framework is described with the consideration of the
operating mechanisms in the application, controller, network
and user planes.

Although the current LTE-A relay standard is restricted
to a single-hop relaying to reduce the system complexity, it
should be noticed that this principle is specifically for the data-
plane, where the traffic data volume is significantly large. In
contrast to the existing studies based on the multi-hop relaying
architecture of a HetNet, we find out that the steering towards
the in-band fashioned control-plane traffic in software-defined
HetNets has not been well studied.

B. Taxonomy of Failure-Recovery Strategies

With respect to the link failure recovery for SDNs, the
proposed strategies from literature can be generally classified
into three categories: restoration [19], [32], cold-backup pro-
tection [19], [32], [45], and hot-backup protection [46]. We
first review the existing studies and then compare them with
our approach.

Restoration. Sharma et al. present restoration mechanisms
in [19], [32] for OpenFlow networks. In case of a link
failure, the controller reacts to the link failure according to
the following steps: (a) remove the affected forwarding rules;
(b) compute backup paths; and (3) install the new required
rules.

Cold-backup protection. In this protection, only the for-
warding rules are allocated in the beginning, but traffic is not
redirected to the backup paths until the failure occurs. For
example, in the same work [19], [32], Sharma et al. also
implement a group table based fast-failover mechanism [8]
for OpenFlow networks. Backup paths are pre-computed and
installed to the group table. Their experimental studies show
that path protection is more qualified than restoration with
respect to the sub-50 ms fast failure recovery requirement [34]
of carrier-grade networks. Moreover, Borokhovich et al. [45]
introduced classic graph search algorithms (depth-first search
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and breadth-first search) to OpenFlow networks. The controller
invokes one of these algorithms to compute backup paths,
along which routing rules are pre-installed into the group-table
of switches.

Hot-backup protection. In this scheme, the bandwidth
resource of backup paths is fully allocated in the initial setting,
such that the backup paths carry the same traffic as the primary
working path to avoid disruption of connection. For example,
authors in [46] apply a ‘1+1’ protection to the data plane of
an OpenFlow network, where backup paths are pre-configured
and carry the duplicated traffic. Thus, the destination-switch
can still receive packets when a link failure occurs. Similarly,
as the most closely related work regarding the protection of
control traffic, to achieve resilient control traffic forwarding,
Hu et al. [20] investigate the protection of control traffic
in SDNs. Particularly, they utilize the local rerouting and
constrained reverse forwarding protection to combine each
device with multiple controllers. This scheme enables a device
to locally react to link failures and redirect the control traffic
to a controller through one of the backup forwarding options.

C. Comparison with Our Work

Compared with the conventional routing-resilience ap-
proaches, we have the following observations: 1) Existing ap-
proaches rarely specifically address the control-plane routing
protection; 2) None of the existing approaches can provide an
optimal fast recovery solution with efficient resource utiliza-
tion, when a single-link failure occurs in large-scale networks.
To fill this gap, we emphasize on the routing protection
mechanism for the control-plane traffic in a software-defined
HetNet. In particular, a Markov approximation based routing
protection scheme for the in-band fashioned control-plane of
SDNs is proposed. Our approach can yield a near-optimal
global rerouting solution, which is suitable for flow swapping
scenarios [30], [31] in a dynamic environment, where traffic
flows are frequently refreshed simultaneously in certain groups
of links.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Preliminary and System Model

1) Relay and Backhaul Link Model of HetNets: We consid-
er a simplified software-defined heterogeneous network where
the sets of deployed BSs are stationary. Without loss of
generality, we only consider macrocell BSs and small-cell BSs
as the target BSs that need the routing protection for the in-
band fashioned control plane. The model can be applied to
scenarios with multiple types of small cells.

A challenge for the deployment of HetNets is to cope
with inter-layer and intra-layer interferences when multi-hop
sharing links are deployed within a specified spectrum band.
By adopting the “frequency division” approach, i.e., allocating
the orthogonal spectrum to the backhaul links in different
layers based on the OFDMA scheme, we assume that there
is no interference between neighbouring cells. OFDMA is
a spectrum-efficient scheme that enables high data rates and
permits multiple users to share a common channel.
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(a) An illustration of software-defined HetNet with multi-hop relay-
ing backhaul links based on the future HetNet topology used in [44].
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Fig. 2. The system model of this paper. Note that, there can be multiple
controllers over network. Here we only illustrate an example with only one
controller.

2) Establishment and Maintenance of Control Channel:
In the perspective of SDN associated system model, one
controller or multiple controllers coordinately manage an
SDN forwarding device remotely over a multi-hop relaying
network. The connecting fashion of this network can be
constructed by intermediate BSs according to the in-band
controller connection [8]. The only requirement is that the in-
termediate BSs should support TCP/IP connectivity. Typically,
every controller-to-device channel (also called a controller-
to-device session) can be established as a single network
connection between the target BS and the controller, using
TLS or plain TCP protocols [8]. Once a control connection is
built, it must be maintained by the underlying TLS or TCP
connection mechanisms, until the connection is terminated by
TCP timeouts or TLS session timeouts [8].

3) Protection for Control Connection: We consider the
Dedicated Backup Path Protection (DBPP) scheme [47], [48],
which belongs to the hot-backup protection category. For
example, one popular DBPP is the ‘1+1’ protection [19], [33],
[49], where a primary path is protected by one dedicated
backup path and traffic is duplicated on both the primary path
and the only backup path. Note that, the proposed approach
is a general framework that can be applied to other recovery
mechanisms as well.

4) System Model: We consider a software-defined HetNet
G = (V,E) with BS set V and link set E. As shown in
Fig. 2(a), V includes the management gateway (GW) node, all
macrocell and small-cell BS nodes, especially the edge relay
BSs. The link set E contains fiber links between the manage-
ment GW and the macrocell BSs, the direct backhaul links
and relay backhaul links. All backhaul links are bidirectional
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with the fixed given spectrum bandwidth. Let cl and dl(l ∈ E)
denote the total capacity of link l and the portion allocated to
all data-plane traffic over the link, respectively. The currently
available link capacity for control-plane traffic is presented
by cl − dl, (l ∈ E). The currently available session-serving
capacity on node v ∈ V is denoted by φv , because each node
v (e.g., a cell BS) can only serve a finite number of sessions
due to limited space of forwarding table and number of TCP
connection ports.

Given a set of controller-to-device sessions S, each
controller-to-device session s ∈ S has to be equipped with
a set of required in-use paths, denoted as Ds, which includes
one primary path and |Ds|−1 hot-backup paths. For example,
in Fig. 2(b), all in-use paths for session s between controller
C and BS Sm at a time are illustrated as (s,1), (s,2), · · · ,
(s,|Ds|). The adopted DBPP scheme belongs to link-sharing
protection [47], and therefore the provided candidate paths
in Js for each session s should not have a high link-shared
degree. This is because both the primary path and backup
paths are not likely to fail at the same time by a single link-
failure when the candidate paths are highly link-shared. Note
that, how to find non link-shared candidate paths for each
session is not a focus of this paper. The major notations used
in this paper are summarized in Table I.

B. Problem Formulation

The Control-Plane Routing Protection (shorten as CPRP)
problem is stated and formulated as follows.

1) Path Selection: The target of CPRP problem is to find
an optimal path set for all controller-to-device sessions. To
denote whether a candidate path p ∈ Js is selected by session
s ∈ S as one of its required in-use paths, we define a binary
variable zps as:

zps =

 1, if candidate path p ∈ Js is selected by
s as one of its required in-use paths;

0, otherwise.

With this definition, the entire decision space of all possible
path-selections can be expressed as:

F = [{zps}|zps ∈ {0, 1},
∑
p∈Js

zps = |Ds|, s ∈ S].

2) Minimization of Joint Weighted System Cost: SDN net-
work operators perform traffic engineering to improve resource
utilization, which is normally measured in terms of two
objectives:

• To ensure load balance by decreasing the aggregated
traffic load on the most severely congested link;

• To reduce the configuration cost in each node.

Consequently, the overall weighted system cost described in
our objective includes two terms: 1) the largest control flow
rate over all links, and 2) the average connection-setup cost
on each device node.

As a result, the CPRP problem can be formulated by the
following integer programming:

TABLE I
SYMBOLS AND VARIABLES

Notations Description
(V,E) software-defined HetNet with node set V and link set E
S a set of controller-to-device sessions
Js a set of candidate paths for session s ∈ S

Ds
a set of required in-use paths for session s ∈ S, including
one working path and |Ds| − 1 (|Ds| ≥ 2) backup paths

Rs demanding traffic rate of session s ∈ S
rl aggregated control-plane traffic load on link l ∈ E
dl aggregated data plane traffic load on link l ∈ E
cl channel capability on link l ∈ E
φv currently available session-serving capacity on node v ∈ V
|.| size of a set or length of a path

zps
a binary variable indicating whether session s ∈ S selects
path p ∈ Js as one of its required in-use paths

f a feasible routing-protection configuration for all sessions
F the set of all feasible configurations for the whole system

us(f) system cost of a session s ∈ S under configuration f ∈ F

uf
overall system cost under a given configuration f ∈ F ,
i.e., uf =

∑
s∈S us(f)

CPRP : Minimize(max
l∈E

(rl) +
ω

|V|
∑
s∈S

∑
p∈Js

zps · |p|) (1a)

s.t.:
∑
p∈Js

zps = |Ds|,∀s ∈ S (1b)

rl =
∑
s∈S

∑
p∈Js,l∈p

zps ·Rs,∀l ∈ E (1c)

rl ≤ cl − dl,∀l ∈ E (1d)∑
s∈S

∑
p∈Js,v∈p

zps ≤ φv,∀v ∈ V (1e)

V ariables : zps ∈ {0, 1},∀p ∈ Js,∀s ∈ S

Objective function (1a) is the proposed overall weighted
system cost that captures both mentioned objectives. Partic-
ularly, the first term maxl∈E(rl) denotes the largest control
traffic rate over all backhaul links while the second term
1
|V|
∑
s∈S
∑
p∈Js z

p
s · |p| calculates the average connection-

setup cost in each node. Note that, the tradeoff between these
two cost terms is allowed to be freely tuned by introducing a
weight factor ω. Furthermore, constraint (1b) claims that for
each session s, exact |Ds| numbers of in-use paths must be
selected from its candidate path set Js. Then, (1c) calculates
the aggregated traffic rate on each link, as the sum of traffic
demand from all passing-through sessions. The capacity con-
straints on links and nodes are specified by constraints (1d)
and (1e), respectively.

IV. DISTRIBUTED NEAR-OPTIMAL PATH SELECTION
ALGORITHM

Path selection under constrained resources is NP-complete
[38], [39]. The CPRP problem is a combinatorial optimiza-
tion, in which the global optimal solution consists of partial
path-selection decision for each session. Since there is no
computationally efficient solution in a centralized manner,
we strive for designing a distributed algorithm by adopting
a framework of Markov approximation technique [40]. In
the following, we detail the two stages in the design of the
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algorithm under the Markov approximation framework: log-
sum-exp approximation and implementation of Markov chains.

A. Log-Sum-Exp Approximation Approach

Let f = {zps ,∀p ∈ Js,∀s ∈ S} denote a configuration for
the CPRP problem, and F the set of all feasible configurations
that are already known. For the convenience of presentation,
we denote by uf the system objective function (1a) corre-
sponding to a given configuration f . To better understand the
log-sum-exp approximation, let each configuration f ∈ F
associate with a probability pf , indicating the percentage
of time that configuration f is in use. Then, CPRP can
be approximated as follows via applying the approximation
technique in [40]:

CPRP(β) : min
∑
f∈F

pfuf +
1

β

∑
f∈F

pf log pf

s.t.:
∑
f∈F

pf = 1
(2)

where β is a large positive constant and related to the
performance of this approximation approach. The motivation
behind is that it potentially leads to distributed solutions. Let
p∗f∈F be an optimal solution of the CPRP(β), λ denotes the
Lagrangian multiplier associated with the equality constraint
in (2) under p∗f . Then, by solving the following Karush-Kuhn-
Tucker (KKT) conditions [50] of the problem in (2):

uf +
1

β
log p∗f +

1

β
+ λ = 0,∀f ∈ F∑

f∈F

p∗f − 1 = 0

λ ≥ 0

(3)

An optimal solution can be derived which is:

p∗f =
exp(−βuf )∑

f ′∈F exp(−βuf ′ )
,∀f ∈ F . (4)

Remark 1: With the log-sum-exp approximation approach
described above, we obtain an approximate version of the
CPRP problem with the assistance of an entropy term
1
β

∑
f∈F pf log pf . If we can time-share among different con-

figurations according to the optimal solution p∗f in (4), then
CPRP can be solved approximately within a bound 1

β log |F|,
which can be small by a proper choice of a large β.

B. Markov Chain Design

Here we design a Markov Chain (MC) with a state space
being the set of all feasible configurations F and a stationary
distribution denoted as p∗f in (4). Since the system operates
under different configurations, the transition between two
states in the designed MC indicates replacing an in-use path
for any session. Therefore, in the implemented MC, if the
transitions among states can be trained to converge to the
desired stationary distribution p∗f , the system can achieve near-
optimal performance.

To construct a time-reversible MC [40] with stationary
distribution p∗f , let f, f

′ ∈ F denote two states of MC, and

Initialization
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start a timer
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trigger RESET

T
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Timer counts 

down to 0.

er t

Set &

s g a
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Fig. 3. State machine for each session in the proposed algorithm.

use qf,f ′ as the nonnegative transition rate from state f to
f

′
. Furthermore, we have to ensure that: (a) in the resulting

MC, any two states are reachable from each other, and (b)
the detailed balance equation p∗fqf,f ′ = p∗

f ′ qf ′ ,f should be
satisfied, ∀f, f ′ ∈ F . Our design is as follows.

1) State-Space-Structure: Recall that a configuration f ∈ F
represents a set of in-use paths for all sessions. Initially, we
set the transition rate between two configurations f and f

′
to

be 0, unless they satisfy the following two conditions:

• C1: |f ∪ f ′ | − |f ∩ f ′ | = 2
• C2: f ∪ f ′ − f ∩ f ′ ∈ Js̄

where s̄ is the session which causes the state transition f → f
′
.

That is, if session s̄ makes a single path swapping, the state
f transits to f

′
.

2) Transition Rate Matrix Training: Both traffic statistics
on links and the number of forwarding rules installed in
devices can be easily pulled by controllers. For example, in
OpenFlow networks [8], the traffic rate in each path can be
measured via meter table entries and inquired through
controller-to-device Echo messages. On the other hand, the
consumption of the flow table size in a device can be ob-
tained by the controller via sending Read-State messages.
Therefore, the cost of the current network configuration can
be acquired by the controller at any time. Particularly, we let
the transition rate qf,f ′ positively correlated to the difference
of system performance under two adjacent configurations f
and f

′
in the state matrix. In detail, the transition rate qf,f ′ is

designed as:
qf,f ′ =

1

exp(τ)
exp(

1

2
β
∑
s∈S

(us(f)− us(f
′
)))

qf ′ ,f =
1

exp(τ)
exp(

1

2
β
∑
s∈S

(us(f
′
)− us(f)))

(5)

where τ is a conditional positive constant that avoids overflow
computing of exp(.). The design of qf,f ′ in (5), in practice, is
likely to make the system jump to a configuration with better
performance. This is because when

∑
s∈S(us(f)−us(f

′
)) > 0

and the performance gap between f and f
′

is greater, the
transition rate qf,f ′ will be bigger, and vice versa.

C. Implementation of MC based Algorithm

The implementation based on our designed Markov chain
is shown in Algorithm 1, in which the controller creates a
dedicated processing-thread for each of its holding sessions.
Therefore, this algorithm can execute on a single controller or
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Algorithm 1 Sojourn-and-Transit Algorithm to Solve CPRP
1: for each s ∈ S do
2: execute Procedure Initialization
3: execute Procedure Set-timer for s
4: end for
5: while system is still running do
6: /*Procedure Transit*/
7: if Ts expires then
8: zpolds ← 0
9: zpnew

s ← 1
10: execute Procedure Set-timer for s
11: broadcast RESET(uf ′ , {s}) signal for other sessions
12: end if
13: /*Procedure RESET*/
14: if session s receives RESET(uf ′ , S̄) message then
15: uf ← uf ′

16: refresh and start timer Ts (s ∈ S− S̄) invoking (6)
17: end if
18: end while

Algorithm 2 Startup for a session (Procedure Initialization)
Input: a session s ∈ S, Js
Output: Ds

1: initializes a dedicated processing-thread for s
2: Ds ← randomly select |Ds| feasible paths from Js

multiple controllers, which can apportion all the processing-
threads. We consider how to assign threads to multiple con-
trollers in our future work. Typically, each dedicated thread
follows a general state machine shown in Fig. 3, using
which we detail the algorithm for the single-controller case
as follows.

• Procedure Initialization: For each session s ∈ S, the
controller creates an associated thread, then randomly
selects |Ds| feasible not-in-use paths that satisfy the
resource requirement from candidate path set Js.

• Procedure Set-timer: Let f and f
′

denote the current
and next targeting configurations, respectively. For each
session s ∈ S, the controller first randomly selects one
feasible path from the not-in-use path set (i.e., Js\Ds),
and one in-use path from Ds. The system cost of the cur-
rent configuration uf can be measured by the controller,
which then estimates the performance of the target con-
figuration, i.e., uf ′ , if swapping these two paths pold and
pnew. Meanwhile the controller triggers an exponentially
distributed timer Ts for session s with a mean value of
exp(τ − 1

2β(uf − uf ′ )) · (|Ds| · (|Js| − |Ds|))−1. The
controller then broadcasts a RESET(uf ′ , s) message for
other sessions to notify them the updated system cost uf ′ .

• Procedure Transit: When a timer Ts∈S expires, the
controller swaps the chosen pair of paths pold and pnew
for s, then the execution thread repeats Procedure Set-
timer for session s.

• Procedure RESET: When a session s ∈ S receives a
RESET(uf ′ , S̄) message, the controller refreshes all the
other timers Ts (∀s ∈ S − S̄), according to (6) with the

Algorithm 3 Set timer for a session (Procedure Set-timer)
Input: session s ∈ S
Output: Ts, pold, pnew

1: pold ← one in-use path randomly selected from Ds

2: pnew ← one feasible not-in-use path randomly selected
from Js\Ds

3: measures the current system cost uf
4: estimates the system cost uf ′ of the target configuration

if replace pold with pnew
5: generates a random exponentially distributed timer Ts for

thread s with mean equal to

exp(τ − 1
2β
∑
s̄∈S(us̄(f)− us̄(f

′
)))

|Ds| · (|Js| − |Ds|)
, (6)

and begins counting down

updated system cost uf ′ .

D. Algorithm Analysis

Now, we have the following theorem.
Theorem 1: Algorithm 1 realizes a time-reversible Markov

chain with the stationary distribution given in (4).
The proof is given in Appendix-A. Furthermore, we make

some notable remarks:
Remark 2: The computation complexities of Algorithm 2,

Algorithm 3 and Algorithm 4 are O(|Js|), O(|Js|+ |Ds|) and
O(
∑
s∈S |Js|), respectively.

Remark 3: The proposed algorithm can be extended to other
traffic engineering problems in SDN systems, e.g., finding the
resilient routing paths for data plane traffic between any pair
of devices.

Remark 4: Because this algorithm executes in a distributed
manner for each session, it can be applied to more practical
scenarios where multiple controllers are deployed over large-
scale networks. This requires the system to know the perfor-
mance under a target configuration f

′
via a probing phase.

It can be achieved by the minimum number of information
exchanges among relevant controllers. For a transition from
f to f

′
, where only one session changes a single path, its

holding controller only has to notify this event to the other
“invariant” controllers. Then, the “next” target system per-
formance

∑
s∈S us(f

′
) can be unveiled immediately in each

controller. In order to embed the proposed algorithm to the
SDN controller module, new OpenFlow messages should be
included to denote the timer expiration and the RESET event.
Furthermore, extra Eastern-Western interfaces [8] should be
developed to enable information exchanges among multiple
controllers.

We then study the convergence property of the proposed
algorithm by estimating its convergence time. In general, the
convergence time of a Markov chain can be examined by the
mixing time. Let Ht(f) denote the probability distribution of
all states in F at time t if the initial state is f . Recall that
p∗ is the stationary distribution of the designed Markov chain.
We define the mixing time:

tmix(ε) := inf{t ≥ 0 : max
f∈F
‖Ht(f)− p∗‖TV ≤ ε}, (7)
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where ε>0 describes the gap between the optimal performance
and that of the converged solutions, and term ‖.‖TV denotes
the total variance distance between the probability distributions
Ht(f) and p∗. Then, letting umax = max

∀f∈F
uf , umin =

min
∀f∈F

uf , $ =
∏
s∈S

( |Js|
|Ds|
)

and ζ =
∑
s∈S
|Ds| · (|Js| − |Ds|), we

have the following results.
Theorem 2: The mixing time tmix(ε) for the constructed

Markov chain in Algorithm 1 is bounded as follows:
for general β ∈ (0,∞),

tmix(ε) ≥
exp[τ − 1

2β(umax − umin)]

2ζ
ln

1

2ε
, (8)

and

tmix(ε) ≤2ζ$2 exp[
3

2
β(umax − umin) + τ ]·

[ln
1

2ε
+

1

2
ln$ +

1

2
β(umax − umin)].

(9)

The proof is given in Appendix-B.
Remark 5: We here discuss the trade-off between the

optimality gap ( 1
β log |F|) and the mixing time under different

β. As β → ∞, the optimality gap approaches zero, but the
upper bound of mixing time scales with exp(Ω(ζ$2)) and
approaches infinity, resulting in slow convergence.

V. ONLINE HANDLING AND THEORETICAL ANALYSIS
UNDER SINGLE-LINK FAILURE

In this section, we extend the proposed Algorithm 1 to the
online case that handles the dynamic single-link failure [12].

A. Operations When A Link Fails

When a single link fails, any candidate paths and in-use
paths which include the failed link become invalid and should
be removed for each session. Since we assume that only a
single link can fail at each time, there is at least one in-use path
working for each session. Therefore, the connection between
the controller and any device will not be disturbed. Then, we
present the additional operations with respect to a single-link
failure in Algorithm 4.

After removing all invalid paths in Step 1, Step 2 fills up
the vacancy of desired in-use paths and ensures control traffic
protection. Finally, other sessions should be notified of the
updated overall system cost via RESET messages to refresh
their timers in Step 3. The controller then continues listening
by invoking Procedure Transit and Procedure RESET of
Algorithm 1. In addition, it is worth noting that the controller
can deploy the required protection paths according to a sub-
optimal solution after a link failure and before achieving the
convergence.

B. Theoretical Performance Fluctuation of Single-Link Failure

When the invalid paths are removed, the configurations
involving those paths should be deleted from the original
Markov chain M . Let M̂ denote the new Markov chain
after removing all invalid configurations based on M , and
G as the survived configuration space in M̂ . Accordingly,

Algorithm 4 Online Dynamic Handling of Single-Link Failure
1: Step 1: Remove all the candidate paths and in-use paths

which involve in the failed link for each session.
2: Step 2:
3: S̄← ∅
4: for s ∈ S do
5: if s lost any in-use path then
6: Ds ← controller randomly picks up feasible not-in-

use paths from the updated Js\Ds

7: S̄← s
8: end if
9: end for

10: Step 3: Controller broadcasts RESET(uf , S̄) signals.
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Fig. 4. An example of operations when a single-link failure occurs.

the disappeared configuration space is F\G. For example,
as shown in Fig. 4, when link (4,5) fails, any configuration
including this link, e.g., f3, will be moved to F\G. The
remaining configurations f1, f2, · · · are moved to G. Note
that, it can be proved that M̂ is still irreducible.

We are interested in the robustness of the proposed Algo-
rithm 1 in the online case. This motivates us to further study
the performance fluctuation from the state when a link failure
occurs to the converged performance in M̂ .

At first, the stationary distribution of the configurations in
M̂ is denoted by q∗ : [q∗g(u), g ∈ G]. Furthermore, we define
another vector q̂ : [q̂g(u), g ∈ G] to indicate the distribution
of configurations g ∈ G in M when a link failure occurs
and before Step 3 of Algorithm 4. We use the total variation
distance [51] dTV (q∗, q̂) to quantify the distribution difference
of all configurations g ∈ G between M̂ and M . We then have
the following lemma.

Lemma 1: (a) The total variation distance between q∗ and
q̂ is bounded by

dTV (q∗, q̂) ,
1

2

∑
g∈G
|q∗g − q̂g| ≤

|F\G|
|F|

. (10)

(b) By denoting S1 ⊆ S as the set of sessions which lost a
candidate path due to the link-failure, and Sim ⊆ S1 as an
imaginary set of sessions which select the disappeared path if
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it still exists, we have

|F\G|
|F|

=

∑
∀Sim⊆S1

{
∏

s∈Sim

( |Js|−1
|Ds|−1

)
×
∏
s∈S⊥

(|Js|−1
|Ds|

)
}∏

s∈S1

( |Js|
|Ds|
) (11)

where Js, Ds are the path sets for session s ∈ S before link
failure, and S⊥ = {S1\Sim}.

The proof is given in Appendix-C.

C. Case Study under ‘1+1’ Protection Scheme

Based on Lemma 1, we now study a special case, which is
named as ‘1+1’ protection with equal numbers of available
candidate paths. We adopt the ‘1+1’ protection mechanism
[19], [33] and provide each session with the same number
of initial candidate paths, i.e., |Js| is same for ∀s ∈ S in
the initial stage of controller connection setup. In addition,
when a single-link failure occurs, to ensure that at least one
candidate path can be chosen for each session, we assume that
(|Js| − 1) − |Ds| ≥ 1, ∀s ∈ S. Consequently, Equation (11)
can be rewritten as

|F\G|
|F|

=

∑
∀Sim⊆S1

{
∏

s∈Sim

(|Js|−1
1

)
×
∏
s∈S⊥

(|Js|−1
2

)
}∏

s∈S1

(|Js|
2

) . (12)

Letting umax = maxg∈G ug , we have the following theoret-
ical bound on the performance perturbation under this special
case when a single-link failure occurs. Note that, umax is the
performance under the worst configuration during F .

Theorem 3: The performance perturbation of a single-link
failure under the special case ‘1+1’ protection with equal
number of available candidate paths is bounded by

‖q∗uT − q̂uT ‖ ≤ min(umax, 2umax[1− (1− 2

|Js|
)|S|]). (13)

The proof is given in Appendix-D. We then have the
following remark.

Remark 6: Suppose that there are a large fixed number
of sessions in a given network, i.e., |S| is a large constant.
We have the following extreme case: when |Js| → ∞,
[1−(1− 2

|Js| )
|S|]→ 0, making the fluctuation bound approach

0. Generally, a larger |Js| makes the term 1 − (1 − 2
|Js| )

|S|

become smaller, leading to a smaller fluctuation bound.

VI. PERFORMANCE EVALUATION

A. Methodology and Simulation Settings

It is worth noting that, the proposed algorithm is to be
embedded to the controller module of SDNs. However, to
our best knowledge, the existing SDN emulator Mininet does
not support the evaluation of control plane traffics in the in-
band SDNs. Therefore, we have implemented a simulator in
Python to emulate an SDN with in-band control and conduct
the evaluation of routing protection for control plane traffics.

Benchmarks: Four benchmarks are used to compare the
performance with the proposed Alg. 1.

As the first, the K-shortest path finding algorithm [39], [52],
[53] is a classical static heuristic, in which each session is

Controller
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0Control GW
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Fig. 5. A 26-node Fattree-like mesh topology for in-band control-plane used
in simulation.

provisioned with the first K shortest paths from the given
candidate path set. Note that, in our simulation K = |Ds∈S|.

The second one is called Alg. Iterative [54], and also based
on the Markov approximation technique. In Alg. Iterative,
although the system is similarly allowed to transit from
one configuration to another by swapping a pair of paths,
the transition rate is designed as qf→f ′ ∝ exp−1(−βuf ′ ).
Furthermore, it keeps tracing the best configuration observed
so far which is used as the final solution.

The third one is Local Rerouting (Alg. LR), which is widely
adopted in literature [15], [18], [20], [26]–[29]. When applying
Alg. LR in our simulation, once a link fails, the affected traffic
is rerouted to neighbouring links in a fashion of detour [28],
[29].

Finally, the Optimal solutions will be obtained by utilizing
the state-of-the-art optimizer Gurobi [55]. The solvers in the
Gurobi Optimizer are designed from the ground up to exploit
modern architectures and multi-core processors, using the
most advanced implementations of the latest algorithms. The
Gurobi Optimizer also supports a variety of programming and
modeling languages including: Object-oriented interfaces for
C++, Java, .NET, and Python. For the comparison with the
proposed Alg. 1, we solve the integer programming CPRP
problem using the Python-oriented application programming
interfaces, under the circumstances both before and after a
link failure.

Other settings and metrics: Simulations are conducted
under the online dynamic case with occurrence of a single-link
failure. The traffic demand of each controller-to-device session
and the link bandwidth capacity are randomly generated within
a given range. Before executing the algorithms, by invoking
a simple depth-first path finding algorithm, we try to provide
each controller-to-device session s ∈ S with a number |Js| of
candidate paths with low link-shared degree under a Fattree-
like mesh topology. Having fixed ω = 1, τ = 1 and β = 10,
we select a number |Ds| = 2 of paths as in-use paths by
executing the proposed algorithm and the other benchmarks.

The weighted Joint system cost is defined as the sum of both
the Largest link overhead measured in traffic rate (Mb/s) and
the Average (Avg) node configure overhead measured in the
average configuration times at each device node.
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Fig. 6. Representative execution of algorithms under the mesh topology
(initial |Js|=5, |Ds|=2, ∀s ∈ S). It can be seen that Alg. 1 converges in
both initial stage and after the link failure. Note that, the numerical Joint
numerical system cost includes both the Largest link overhead measured
by the traffic rate (Mb/s) and the Average (Avg) node configure overhead
measured by the average configuring times in each device node.

B. Representative Execution Case of Algorithms

The first group of simulations is conducted under a Fattree-
like mesh topology with 26 nodes and 50 bidirectional links
(shown in Fig. 5). In this topology, the controller directly
connects to gateway node 0, and indirectly connects to other
device nodes via in-band connections. The control-plane traffic
demand of each session is randomly generated within a range
[1, 15] Mb/s, and the link bandwidth capability for both
control-plane and date-plane traffic in each link is set at 1000
Mb/s.

By fixing |Js|=5 and |Ds|=2 for each session s ∈ S, the
numerical result shown in Fig. 6 illustrates the representative
execution case of algorithms over a logical period in 15
microseconds. A single-link failure occurs in link (0,3) at the
10th microsecond. As link (0,3) is one of the most critical links
under the mesh topology, its failure brings a worst damage that
20% of both the total candidate paths and in-use paths cannot
be used anymore.

Before a link-failure, we observe that the proposed algo-
rithm converges to an optimal solution with a cost 93 in
the initial 0.5 microseconds. In contrast, K-shortest algorithm
keeps a high system cost 141. Although the best solution of
Alg. Iterative is traced around the 5.5th microsecond, this
algorithm shows a fluctuant performance all the time. Thus
it is not clear when the best solution can be obtained. On
contrary, the near-optimal solution can be traced quickly using
the proposed Alg. 1 because of its fast convergence. As shown
in Fig. 6, at 0.8th microsecond in the simulation, we get the
converged near-optimal solution.

When the single-link failure occurs, the cost fluctuation is
observed for all algorithms. The failed link shrinks the candi-
date path set and in-use path set for each session. As a result,

the updated in-use paths are selected by sharing more common
links, making the total system cost grows. Comparing the
fluctuation gaps among the mentioned algorithms, we find that
the proposed algorithm outperforms the other two algorithms.
Moreover, its performance converges to the optimal solution
quickly at 10.5th microsecond. However, the K-shortest still
holds the highest cost 163 and Alg. Iterative shows a more
severe perturbation. On the other hand, right after the link-
failure occurs, the cost of Alg. 1 is shown as 148, and the
converged cost is 117, leading to the fluctuation gap is 31.
According to Theorem 3, the theoretical fluctuation bound is
191.7 using (13). The fluctuation gap is within the theoretical
bound under the failure of link (0,3).

Furthermore, in the same group of simulation shown in
Fig. 6, the middle and bottom figures demonstrate the largest
link overhead (in terms of aggregated control-plane traffic
rate in Mb/s, the average node configuration overhead (in
terms of times of configuration), respectively. Note that, the
joint numerical system cost is calculated by summing the two
overhead terms that are shown in the bottom two sub-figures.
Overall, both the two terms of costs show the similar per-
formance with the joint system cost. However, in the bottom
figure with respect to the average node configure overhead, we
observe that the K-shortest algorithm interestingly maintains
at a quite low level. This is because the K-shortest algorithm
always selects the shortest |Ds| candidate paths for each
session. Consequently, the total length of the selected paths is
very short. After the link failure, because the candidate path
space becomes smaller than before, some longer paths have to
be chosen, making the average node overhead become higher.
For example, we observe that the average node overhead of
K-shortest increases from 11 to 25 when a single link failure
occurs.

C. Case Study of Single Link Failure

With the same single link failure in the critical core link
(0,3) at the 10th microsecond, we compare the link overhead
in terms of the aggregated control-plane traffic rate in other
core links such as (0,1), (0,2), (0,4) and (0,5) of the mesh
topology. Note that the Alg. LR can be evaluated only after
link failure happens. For a fair comparison with our Alg. 1,
we apply Alg. LR based on the converged routing solution
yielded by Alg. 1 just before the link failure. Particularly, when
the core link (0,3) fails, the affected traffic will be rerouted
via its neighboring links (0,2) and (0,4), respectively. In the
following, we show the numerical results of both situations
based on the average performance obtained over 100 instances.

At the first, as shown in Fig. 7(a), the link overhead of the
converged solution obtained by our Alg. 1 is very close to the
optimal solution, before link failure. When link (0,3) fails, we
can observe the performance of Alg. LR from Fig. 7(b) that
the control-plane traffic rate in the core link (0,2) increases
sharply from 80 Mb/s to around 165 Mb/s, if the affected
traffic is rerouted only via link (0,2). In contrast, the average
performance of Alg. 1 is still very close to the Optimal one.
This is because they amortize the affected traffics to the other
4 core links. The similar results can be observed in Fig. 7(c)
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Fig. 7. Link overhead distribution in the core links before/after the critical link (0,3) fails. Alg. 1 always shows near-optimal performance in terms of the
aggregated traffic rates in the core links. Alg. LR exhibits sharp increasing aggregated traffic rate in the neighboring links of the failed one.
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Fig. 8. Convergence property of algorithms. Alg. 1 shows overwhelming
performance over benchmark algorithms.

when the affected traffic is locally rerouted over the core link
(0,4).

D. Performance of Alg. 1 in the Initial Stage

Now, we study the performance of algorithms in the initial
connection-setup stage of control-plane traffic. In this group
of simulation, each parameter setting is evaluated with 100 in-
stances. By fixing |Js| = 5, |Ds| = 2 (∀s ∈ S) and varying the
solution tracing time from 0.1 to 2 microseconds, we record
the cost of the best solution of all algorithms. From Fig. 8(a),
we observe that the performance of all algorithms are similar
when the solution-tracing time is 0.1 microsecond. However,
the proposed Alg. 1 demonstrates the significant advantage
over the two benchmarks Alg. Iterative and Alg. K-Shortest
when the solution-tracing time grows, and it converges to the
optimal solution when tracing time exceeds 1 microsecond.

Since convergence only occurs when using Alg. 1, we
further study the cumulative distribution function (CDF) of
its convergence time, by varying the candidate path scale
|Js| within {3, 4, 5, 6, 7}. The results are shown in Fig.
8(b), from which it can be observed that approximate 45% of
convergence times are within the first microsecond and over
90% of convergence times are less than 5 microseconds when
|Js| ≥ 5. On the other hand, the near-optimal solution yielded
by Alg. 1 is hard to find while |Js| < 5, leading to that the
increase on convergence time accordingly.
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Fig. 9. Performance of Alg. 1 when varying the number of initial candidate
paths for each session in the initial stage (shorten as Init.) and after-link-failure
(shorten as a.l.f.). We find that although a larger candidate path set increases
the cost fluctuation, it reduces the convergence time after the link failure.

E. Performance of Alg. 1 under Single-Link Failure

Next, we study the impact introduced by a single-link failure
while applying Alg. 1. Based on the same settings as the former
group of simulation, we compare the performance of Alg. 1
between the initial convergence stage (Init.) and the stage after-
link-failure (a.l.f.).

The average system costs of Alg. 1 in both stages are
compared in Fig. 9(a). Here |Js| is the number of candidate
paths before a single-link failure, and varies from 4 to 7
due to the adopted ‘1+1’ protection. We see that there is an
increment of approximate 20 units of the system cost with
each |Js| under a.l.f. case. Fig. 9(b) shows the CDF of system
cost fluctuation a.l.f. of Alg. 1. We surprisingly find out that
the fluctuation is proportional to |Js|. For example, 90% of
the cost fluctuation is less than 30 when |Js| = 4, but this
percentage reduces to 75%, 48% and 25% when |Js| =5, 6
and 7, respectively. Here, the probability of having very bad
configurations becomes higher at the time-slot when the link
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Fig. 10. A 60-node HetNet topology for in-band control-plane used in another
group of simulation to examine random link failures. Particularly, we deploy
3 controllers A, B and C, which directly connects to Macrocell BS 2, 5 and
9, respectively.

failure occurs, under the situation that more candidate paths
are being provided. However, all the observed cost fluctuations
are within the theoretical bound described in Theorem 3. Then,
in Fig. 9(c), the convergence time a.l.f. is observed larger than
that in the initial stage. This is because the decreased candidate
paths make the best configuration found in a longer time.
We also see that the average convergence time is less than 5
microseconds when |Js| ≥ 5. Further, Fig. 9(d) illustrates the
CDFs of convergence time a.l.f.. We see that the convergence
times are almost same when |Js| = 5, 6, 7 and better than
that under |Js| = 4. It can be seen that although a larger
candidate path set increases the cost fluctuation, it benefits the
convergence time after link failure.

F. Impact of Multiple Random Single-Link Failures

Another set of simulations is conducted under a HetNet
topology with 10 Macrocell BSs, 50 small-cell BSs and 144
bidirectional links shown in Fig. 10. We deploy 3 controllers
A, B and C, which directly connect to Macrocell BS 2, 5 and
9, respectively. We specify that A, B and C are in charge of
configuring BSs 1-25, 26-45, and 46-60, respectively. Thus,
the number of controller-to-BS sessions is 57. The traffic rate
of each control-plane session is randomly generated within a
range in [10, 100] Mb/s, and the available link bandwidth
capability for control-plane traffic in each link is set to 5
Gb/s. In order to examine the robustness of algorithms under
multiple random single link failures, we then generate a
link failure trace in an interval in 10 microseconds, during
which each link may fail with a probability 0.3 per logical
microsecond.

We still provide |Js|=5 candidate paths for each session,
each of which needs to select |Ds|=2 in-use paths. In particu-
lar, we tune the weight factor ω to 100 to increase the weight of
node overhead. Fig. 11(a) demonstrates the performance of the
three algorithms. We can observe that each single link failure
causes huge fluctuations to all the metrics for each algorithm.
Compared with Alg. Iterative and K-Shortest, Alg. 1 converges
quickly after each link failure and achieves 10%-50% lower
converged cost/overhead than that of the other algorithms.
Meanwhile, Fig. 11(b) and 11(c) present the CDFs of the
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nodes. We observe that Alg. 1 converges quickly after each random link failure
and achieves 10%-50% lower converged cost/overhead than benchmarks.
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Fig. 11. Representative execution of algorithms under a HetNet topology with
57 sessions (|Js|=5, |Ds|=2). Particularly, the single link failure randomly
occurs per microsecond with a certain probability.

traced largest link overhead and node overhead, respectively. It
can be seen that Alg. K-Shortest performs better than the Alg.
Iterative on both overheads, and Alg. 1 yields the most efficient
resource utilization in terms of the lowest link bandwidth
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consumption and node configuration cost.
In summary, from the numerical results shown so far, we

have the following observations: 1) The proposed Sojourn-
and-Transit algorithm (Alg. 1) has a near-optimal performance;
2) Alg. 1 has higher resource utilization efficiency than the
conventional Local Rerouting algorithm; 3) Alg. 1 achieves
10%-50% lower overhead in terms of the link bandwidth
consumption and the connection setup cost, as compared with
the two benchmark algorithms, Alg. Iterative and Alg. K-
Shortest.

VII. CONCLUSION AND FUTURE WORK

In this paper, to ensure fast recovery of the control-plane
traffic in in-band fashioned Software-Defined HetNets, we
studied a joint weighted cost-minimization problem. The traf-
fic load balancing and control-channel setup cost are jointly
considered when performing routing protection for control-
plane traffic. To solve this multiple resource-constrained rout-
ing problem, we proposed a near-optimal solution, using the
Markov approximation technique. We also extend the proposed
approach to the online case that can promptly handle a single-
link failure. The induced performance fluctuation is also stud-
ied with theoretical derivation. Finally, extensive simulations
are conducted to evaluate the performance of the proposed
approach. Compared with existing benchmarks, the proposed
algorithm shows much better performance in terms of both
resource utilization and the robustness on handling a single-
link failure. As part of the future work, we shall apply our
framework to the data plane of SDNs. Some other recovery
mechanisms, such as restoration and cold-backup protection,
will be further studied.
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APPENDIX A
PROOF OF THEOREM 1

Proof: By the two conditions for state space of construct-
ing the designed Markov chain, we see that all configurations
can reach each other within a finite number of transitions,
where a single in-use path is replaced in each transition.
Therefore, the constructed Markov chain is irreducible, i.e.,
an ergodic Markov chain. Now we show that the stationary
distribution of the constructed Markov chain is exactly (4).

In the proposed Sojourn-and-Transit algorithm, the sojourn
time of each configuration is exponentially distributed and
the transition probability between different configurations is
independent of time, so the state process constitutes a homo-
geneous continuous-time Markov chain. Let Prf→f ′ denote
the probability that system will enter state f

′
when it leaves

state f due to expiration of a count-down timer. We also
introduce Nf indicating the set of state which are directly
connected to a state f . In Sojourn-and-Transit algorithm, the
next state of f has equal probability to be any state f

′
,

∀f ′ ∈ Nf . It is not hard to know the size of state space
Nf is |Nf | =

∑
s∈S |Ds|(|Js| − |Ds|), where s is the critical

session which induces the transition from f to f
′
. Then, we

have

Prf→f ′ =
1

|Nf |
=

1

|S||Ds|(|Js| − |Ds|)
,∀f ∈ F ,∀f

′
∈ Nf .

In the following, we show that the state transition rate from
f to f

′
in the implemented Sojourn-and-Transit algorithm

satisfies (5).

• Firstly, all the transition rates of the paths selection
process are finite;

• Secondly, it is straightforward to see that all path con-
figurations can reach each other via a finite number of
transitions. Therefore, the constructed Markov chain is
irreducible.

• Finally, the detailed balance equation holds between any
two adjacent states. Because according to (6), given a
current state f , each session s ∈ S counts down with a
rate

λs =
1

exp(τ)
· |Ds|(|Js| − |Ds|)

exp( 1
2β
∑
s∈S(us(f

′)− us(f)))
,

then, the system leaves state f with a rate
∑
s∈S λs. With

probability Prf→f ′ , system jumps to an adjacent state f
′

when leaving the current state f . Therefore, we calculate
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the transition rate from f to f
′

as follows:

qf,f ′ =
∑
s∈S

λs × Prf→f ′

=
1

exp(τ)
·

∑
s∈S |Ds|(|Js| − |Ds|)

exp( 1
2β
∑
s∈S(us(f

′)− us(f)))

× 1∑
s∈S |Ds|(|Js| − |Ds|)

=
1

exp(τ)
· exp(

1

2
β
∑
s∈S

(us(f)− us(f
′
))).

(14)

Finally, using (14) and (4), we can see that p∗fqf,f ′ =

p∗
f ′ qf ′ ,f ,∀f, f

′ ∈ F , i.e., the detailed balance equations hold.
According to the Theorem 1.3 and Theorem 1.14 in [56], the
constructed Markov chain is time-reversible and its stationary
distribution is (4).

APPENDIX B
PROOF OF THEOREM 2

Proof: Following the framework proposed in [40], and
based on the analysis method [51], [57], we conduct the proof
for the lower bound and upper bound of mixing time.

At the first, the constructed MC is a continuous-time
Markov chain with a stationary distribution given by (4).
Because

∑
f ′∈F

exp(βuf ′) ≤ |F| exp(βumax) and |F| ≤∏
s∈S

( |Js|
|Ds|
)
, the minimal probability in the stationary distribu-

tion should be:

pmin := min
f∈F

p∗f ≥
exp(βumin)

|F| exp(βumax)

≥ 1

$
exp(−β(umax − umin))

(15)

We conduct the remaining proof utilizing the uniformization
technique [40]. Denote Q = {qf,f ′} as the transition rate
matrix of the MC. We then construct a discrete-time Markov
chain Z(n) with a probability transition matrix P = I + Q

θ ,
where I is the unit matrix and θ is the uniform rate parameter.
Then let’s consider a system that the successive states visited
form a Markov chain Z(n), where the times when system
changes its state, constitute an independent Poisson process
N(t) with rate θ. Let Z(N(t)) denote the state of this system
at discrete time t.

Note that, since ∀f, f ′ ∈ F , qf,f ′ ≤ exp( 1
2β(uf ′ − uf ) −

τ) ≤ exp( 1
2β(umax−umin)− τ), and f can at most transit to

ζ =
∑
s∈S
|Ds| · (|Js| − |Ds|) other states, thus

∑
f 6=f ′ qf,f ′ ≤

ζ exp( 1
2β(umax − umin)− τ). Therefore, θ is given as:

θ = ζ exp(
1

2
β(umax − umin)− τ). (16)

Next, due to the uniformization theorem [57], the MC and it-
s discrete-time counterpart Z(N(t)) has the same distribution.
Furthermore, they also share the same stationary distribution.
Let ρ2 denotes the second largest eigenvalue of transition
matrix P for Z(n). Then, applying the spectral gap inequality

[51], [57], we have:

exp(−θ(1− ρ2)t)

2
≤ max

f∈F
‖Ht(f)− p∗‖TV

≤ exp(−θ(1− ρ2)t)

2(pmin)
1
2

.

Therefore,

1

θ(1− ρ2)
ln

1

2ε
≤ tmix(ε)

≤ 1

θ(1− ρ2)
[ln

1

2ε
+

1

2
ln

1

pmin
].

(17)

Particularly, ρ2 can be bounded by Cheeger’s inequality
[51], [57] as:

1− 2Φ ≤ ρ2 ≤ 1− 1

2
Φ2. (18)

where Φ is the “conductance” of P , and defined as follows:

Φ := min
N⊂F,πN∈(0,1/2]

F (N,N c)

πN
. (19)

Here πN =
∑
f∈N

p∗f and F (N,N c) =
∑

f∈N,f ′∈Nc

p∗fP (f, f ′).

The combination of (17) and (18) yields

1

2θΦ
ln

1

2ε
≤ tmix(ε) ≤ 2

θΦ2
[ln

1

2ε
+

1

2
ln

1

pmin
]. (20)

Then, we derive the upper bound of Φ: For any N ′ ⊂
F , π(N ′) ∈ (0, 1/2],

Φ = min
N⊂F,πN∈(0,1/2]

F (N,N c)

πN

≤ 1

πN ′

∑
f∈N,f ′∈N ′c

p∗fP (f, f ′)

=
1

πN ′

∑
f∈N ′

p∗f · (
∑

f ′∈N ′c

P (f, f ′))

≤ 1

πN ′

∑
f∈N ′

p∗f

= 1.

(21)

Now we have the lower bound of tmix(ε) by combining
(16), (20) and (21):

tmix(ε) ≥ 1

2θ
ln

1

2ε

=
exp[τ − 1

2β(umax − umin)]

2ζ
ln

1

2ε
.

(22)

Next, we derive the lower bound of Φ. When qf,f ′ 6=
0,∀f, f ′ ∈ F , via the equation (5) in original manuscript we
know that

qf,f ′ = exp(
1

2
β(uf ′−uf )−τ) ≥ exp(

1

2
β(umin−umax)−τ).

(23)
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The combination of (19) and (23) outputs:

Φ ≥ min
N⊂F,πN∈(0,1/2]

F (N,N c)

≥ min
f 6=f ′,P (f,f ′)>0

F (f, f ′)

= min
f 6=f ′,P (f,f ′)>0

p∗fP (f, f ′)

= min
f 6=f ′,P (f,f ′)>0

p∗f ·
qf,f ′

θ

≥ pmin

θ
· exp(

1

2
β(umin − umax)− τ).

(24)

Finally, through combining (20), (15), (16) and (24), we
have the upper bound of mixing time:

tmix(ε) ≤ 2

θΦ2
[ln

1

2ε
+

1

2
ln

1

pmin
]

≤ 2θ exp(2τ − β(umax − umin))

p2
min

[ln
1

2ε
+

1

2
ln

1

pmin
]

≤ 2ζ$2 exp[
3

2
β(umax − umin) + τ ]·

[ln
1

2ε
+

1

2
ln$ +

1

2
β(umax − umin)].

(25)

This concludes the proof.

APPENDIX C
PROOF OF LEMMA 1

Proof: By referring the derivation of (4), we know the
stationary distribution of the configurations in M̂ is shown as:

q∗g =
exp(−βug)∑

g′∈G exp(−βug′ )
,∀g ∈ G. (26)

Next, we analyze the distribution of configurations g ∈ G in
M when link failure just occurs. As we see in the Step 2 of
the Alg. 4 when link failure occurs, if there is no any session
losing an in-use path, before Step 3 the distribution of g ∈ G
in M is already known as:

p∗g =
exp(−βug)∑

f ′∈F exp(−βuf ′ )
,∀g ∈ G; (27)

otherwise, when any in-use path is replaced, the distribution
of g ∈ G in M will become bigger than p∗g . That is, we have:

q̂g ≥ p∗g,∀g ∈ G. (28)

By (26) and (28), we know:

q∗g − q̂g ≤
exp(−βug)∑

g′∈G exp(−βug′ )
− exp(−βug)∑

f ′∈F exp(−βuf ′ )

=
exp(−βug)∑

g′∈G exp(−βug′ )
− exp(−βug)∑

f ′∈G exp(−βuf ′ ) + σ
,∀g ∈ G,

(29)
where σ =

∑
ǧ∈F\G exp(−βuǧ).

Then, we calculate the dTV (q∗, q̂) as follows.

dTV (q∗, q̂) =
1

2

∑
g∈G
|q∗g − q̂g| =

∑
g∈Ao

(q∗g − q̂g), (30)

where Ao , {g ∈ G : q∗g ≥ q̂g}, and Ao ⊂ G.
On the other hand, the system costs uf∈F are independent

to each other, and follow normal distribution. That is, uf∈F are

independent and identically distributed (i.i.d.) discrete random
values and the expectation of system cost exists within the
finite configuration space F . Letting this expectation denote
by µ, and according to the law of large numbers [58], we have∑
f∈F\G exp(−βuf ) = |F\G| exp(−βµ) with probability 1

and
∑
f∈F exp(−βuf ) = |F| exp(−βµ) with probability 1.

Thus, this yields

dTV (q∗, q̂) =
∑
g∈Ao

(q∗g − q̂g)

≤
∑
g∈Ao exp(−βug)∑
g′∈G exp(−βug′ )

−
∑
g∈Ao exp(−βug)∑

f ′∈G exp(−βuf ′ ) + σ

≤
∑
g∈G exp(−βug)∑
g′∈G exp(−βug′ )

−
∑
g∈G exp(−βug)∑

f ′∈G exp(−βuf ′ ) + σ

= 1−
∑
g∈G exp(−βug)∑

f ′∈G exp(−βuf ′ ) +
∑
f∈F\G exp(−βuf )

=

∑
f∈F\G exp(−βuf )∑
f ′∈F exp(−βuf ′ )

=
|F\G| exp(−βµ)

|F| exp(−βµ)

=
|F\G|
|F|

.

This concludes Lemma 1(a). Now we prove Lemma 1(b).
Since we only consider single-link failure and each session is
provided with non link-shared candidate paths, the number of
disappeared candidate path is at most one. That is, to each
session s ∈ S1, the size of its candidate path space turns from
|Js| to |Js| − 1. Now, we compute the total number of con-
figurations disappeared due to the single-link failure. By the
definition of Sim, we know in the disappeared configurations,
each session in Sim selects the disappeared candidate path and
other |Ds|−1 candidate paths as its in-use paths. Consequently,
the number of the path selection conditions for sessions in Sim
is calculated as c1 =

∏
s∈Sim

( |Js|−1
|Ds|−1

)
. On the other hand, it

is not hard to get the number of path selection conditions for
sessions from S1\Sim is calculated as c2 =

∏
s∈S⊥

(|Js|−1
|Ds|

)
.

Recall that, there is no influence to any session in S\S1,
because their candidate paths are not affected by the failed
link. Similarly, the number of path selection conditions of all
sessions in S\S1 is c3 =

∏
s∈S\S1

( |Js|
|Ds|
)
. In addition, it should

be noticed that any session s ∈ S1 can be a participant of
Sim. Therefore, the Sim should be varied as Sim ⊆ S1 in the
calculation to include all possible solutions.

Finally, we can compute the |F\G||F| as follows.

|F\G|
|F|

=
c3 ×

∑
∀Sim⊆S1

{c1 × c2}∏
s∈S
( |Js|
|Ds|
)

=
c3 ×

∑
∀Sim⊆S1

{c1 × c2}∏
s∈S\S1

( |Js|
|Ds|
)
×
∏
s∈S1

( |Js|
|Ds|
)

=

∏
s∈S\S1

( |Js|
|Ds|
)
×

∑
∀Sim⊆S1

{
∏

s∈Sim

( |Js|−1
|Ds|−1

)
×
∏
s∈S⊥

(|Js|−1
|Ds|

)
}∏

s∈S\S1

( |Js|
|Ds|
)
×
∏
s∈S1

( |Js|
|Ds|
)

=

∑
∀Sim⊆S1

{
∏

s∈Sim

( |Js|−1
|Ds|−1

)
×
∏
s∈S⊥

(|Js|−1
|Ds|

)
}∏

s∈S1

( |Js|
|Ds|
)
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This concludes the proof.

APPENDIX D
PROOF OF THEOREM 3

Proof: In the context of this special case, referring to
Lemma 1 and (12), |F\G||F| can be extracted as:

|F\G|
|F|

=

∑|S1|
k=1{

(|S1|
k

)(|Js|−1
1

)k
×
(|Js|−1

2

)|S1|−k}(|Js|
2

)|S1|

=
[
(|Js|−1

1

)
+
(|Js|−1

2

)
]|S1| −

(|Js|−1
2

)|S1|(|Js|
2

)|S1|

=
[ |Js|(|Js|−1)

2 ]|S1| − [ (|Js|−1)(|Js|−2)
2 ]|S1|

[ |Js|(|Js|−1)
2 ]|S1|

=
|Js||S1| − (|Js| − 2)|S1|

|Js||S1|

= 1− (
|Js| − 2

|Js|
)|S1|

= 1− (1− 2

|Js|
)|S1|

≤ 1− (1− 2

|Js|
)|S|,

where |Js| ≥ 4, and is same for ∀s ∈ S.
Now, we calculate the fluctuation of system cost:

‖q∗uT − q̂uT ‖ = ‖
∑
g∈G

(q∗g − q̂g) · ug‖

≤ umax ·
∑
g∈G
|q∗g − q̂g|

= umax · 2dTV (q∗, q̂)

≤ 2umax[1− (1− 2

|Js|
)|S|].

On the other hand, it is not hard to find that the performance
perturbation should be no greater than the cost of the worst
configuration in G. Thus the upper bound will never expire
umax. Finally, we have the final result shown in (13). This
concludes the proof.


