Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.
There is a newer version of this record available.

Dataset Open Access

Reliance on Science in Patenting

Marx, Matt; Aaron Fuegi


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5803985</identifier>
  <creators>
    <creator>
      <creatorName>Marx, Matt</creatorName>
      <givenName>Matt</givenName>
      <familyName>Marx</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6173-4142</nameIdentifier>
      <affiliation>Cornell University</affiliation>
    </creator>
    <creator>
      <creatorName>Aaron Fuegi</creatorName>
      <affiliation>Boston University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Reliance on Science in Patenting</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>innovation, patenting, science, citation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-12-24</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5803985</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3236339</relatedIdentifier>
  </relatedIdentifiers>
  <version>v34</version>
  <rightsList>
    <rights rightsURI="https://opendatacommons.org/licenses/by/1.0/">Open Data Commons Attribution License v1.0</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This dataset contains both front-page and in-text citations from patents to scientific articles through 2020. &amp;nbsp;&lt;em&gt;If you use the data, please cite &lt;/em&gt;these two articles:&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;1. M. Marx, &amp;amp; A.&amp;nbsp;Fuegi, &amp;quot;Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles&amp;quot; (2020),&amp;nbsp;&lt;em&gt;Strategic Management Journal 41(9):1572-1594&lt;/em&gt;. (&lt;/strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3145"&gt;https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3145&lt;/a&gt;&lt;strong&gt;)&amp;nbsp;&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;2. M. Marx &amp;amp; A. Fuegi, &amp;quot;Reliance on Science by Inventors: Hybrid Extraction of In-text Patent-to-Article Citations.&amp;quot; &lt;/strong&gt;&amp;nbsp;&lt;em&gt;forthcoming in Journal of Economics and Management Strategy.&amp;nbsp;&lt;/em&gt;(&lt;a href="http://doi.org/10.1111/jems.12455"&gt;http://doi.org/10.1111/jems.12455&lt;/a&gt;)&lt;/p&gt;

&lt;p&gt;The datafile containing the citations is &lt;strong&gt;_pcs_mag_doi_pmid.tsv.&amp;nbsp;&lt;/strong&gt;DOIs and PMIDs provided where available. Each citation has the&amp;nbsp;applicant/examiner flag, confidence score&amp;nbsp;(1-10), and&amp;nbsp;whether the reference was a) only on the front page, b) only in the body text, or c) in both.&amp;nbsp;&lt;strong&gt;_data_description.pdf&lt;/strong&gt;&amp;nbsp;has full details.&amp;nbsp;&lt;strong&gt;bodytextknowngood.tsv&lt;/strong&gt;&amp;nbsp;contains the known-good references for calculating recall.&lt;/p&gt;

&lt;p&gt;The remaining files redistribute much of the *final* edition of the&amp;nbsp;&lt;a href="http://aka.ms/msracad"&gt;Microsoft Academic Graph&lt;/a&gt;&amp;nbsp;(12/20/2021). Please also cite&amp;nbsp;Sinha, A, et al. 2015. Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW &amp;rsquo;15 Companion). ACM, New York, NY, USA, 243-246. Note that jif.zip, jcif.zip, and the OECD/wos-category crosswalks are derivatives of MAG and may not be updated through the end of 2021.&lt;/p&gt;

&lt;p&gt;These data are under an&amp;nbsp;Open Data Commons Attribution license (ODC-By);&amp;nbsp;use them for anything&amp;nbsp;as long as you cite us! Source code for front-page matches is at&amp;nbsp;https://github.com/mattmarx/reliance_on_science&amp;nbsp;and for in-text is at https://github.com/mattmarx/intextcitations. Questions &amp;amp; feedback to &lt;a href="mailto:support@relianceonscience.org"&gt;support@relianceonscience.org&lt;/a&gt;&lt;em&gt;.&lt;/em&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;&lt;em&gt;This work is sponsored by the Alfred P. Sloan Foundation grant #G-2021-16822.&lt;/em&gt;&lt;/strong&gt;&lt;/p&gt;</description>
    <description descriptionType="Other">{"references": ["Marx, Matt and Aaron Fuegi, \"Reliance on Science in Patenting: USPTO Front-Page Citations to Scientific Articles\" (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686)", "Sinha, Arnab, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW '15 Companion). ACM, New York, NY, USA, 243-246"]}</description>
  </descriptions>
</resource>
57,512
66,756
views
downloads
All versions This version
Views 57,5123,961
Downloads 66,7563,349
Data volume 158.8 TB7.0 TB
Unique views 46,9953,561
Unique downloads 27,4631,480

Share

Cite as