
Somewhat/Fully Homomorphic Encryption: implementation
progresses and challenges

Guillaume Bonnoron1,2, Caroline Fontaine2, Guy Gogniat3, Vincent Herbert2,4, Vianney
Lapôtre3, Vincent Migliore3, and Adeline Roux-Langlois5

1 Chair of Naval Cyber Defense, Ecole Navale - CC600, F-29240 Brest Cedex 9, France,
guillaume.bonnoron@ecole-navale.fr,

2 CNRS and IMT Atlantique, UMR 6285, Lab-STICC, CS 83818, F-29238 Brest cedex 3, France,
caroline.fontaine@imt-atlantique.fr,

3 Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France,
firstname.lastname@univ-ubs.fr,

4 CEA LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France,
vincent.herbert@cea.fr,

5 CNRS - IRISA, Campus universitaire de Beaulieu 35042 Rennes, France,
adeline.roux-langlois@irisa.fr

Abstract. The proposed article aims, for readers, to learn about the existing efforts to
secure and implement Somewhat/Fully Homomorphic Encryption ( (S/F)HE ) schemes and
the problems to be tackled in order to progress toward their adoption. For that purpose, the
article provides, at first, a brief introduction regarding (S/F)HE. Then, it focuses on some
practical issues related to the adoption of (S/F)HE schemes, i.e. the security parameters, the
existing implementations and their limitations, and the management of the huge complexity
caused by homomorphic calculation. These issues are analyzed with the help of recent related
work published in the literature, and with the experience gained by the authors through their
experiments.

Keywords: Homomorphic Encryption, Data Privacy, Confidentiality, Security, Real World.

1 Introduction

Homomorphic Encryption (HE) is a recent promising tool in modern cryptography, that allows
to carry out operations on encrypted data. The key idea is that performing some operations on
encrypted data will provide the same result after decryption as if the computation would have
been performed on the original plain data. Then, with such a tool one could outsource storage
and/or computation without endangering data’s privacy. Figure 1 illustrates different client/server
scenarii benefiting from homomorphic encryption. Some examples of applications can be found in
the literature, e.g. [NLV11,GLN12,LLN14,BPB09,CGGI16b]. While usual cryptographic schemes
sometimes have homomorphic properties, for addition [Pai99] or multiplication [ElG85] operations
(see also [FG07] for a survey on such partially homomorphic schemes), an important breakthrough
has been made in 2009 according to the work of Gentry [Gen09b,Gen09a]. Based on hard lattice
problems, he proposed the first Fully Homomorphic Encryption (FHE) scheme, enabling to perform
an unlimited number of additions and multiplications secretly. Unfortunately, this scheme was
too complex to be used in practice. Nevertheless, it introduced an interesting structure as well
as a nice trick called bootstrapping to reduce the inherent noise that accompany the running of
additions and multiplications. Following this seminal work, several FHE have been proposed, but
none of them were usable in practice. It is interesting to notice that some FHE are related to
more practical schemes called Somewhat Homomorphic Encryption (SHE) schemes, that enable
an arbitrary number of additions but a bounded number of multiplications. In fact, with the help of
bootstrapping, one can design FHE schemes from SHE schemes. Nevertheless, this bootstrapping
step adds an extra cost to an already quite heavy process.

To address a particular use case, one must have in mind several constraints that will be crucial
for choosing the right homomorphic encryption solution. First, using (S/F)HE schemes will lead
to a huge ciphertext expansion (say from 2.000 to 500.000 or even 1.000.000 according to the



Fig. 1. A need for processing encrypted data, to ensure privacy in outsourced computation, outsourced
storage and databases requests. Green areas show what is encrypted.

scheme and the targeted security level). This is due to the fact that homomorphic schemes must be
probabilistic to ensure semantic security, and to the particular underlying mathematical structures.
Second, as we will see later in this paper, we will need to consider only worse case complexity
for the algorithms that will bu run on the encrypted data; also considering that the underlying
operations are intrinsically expansive, this will drastically penalize the global running time. These
are the most important constraints we have to address. The underlying common point behind
these remarks concerns the targeted security level, as it determines the parameters used to use
the mathematical appropriate structure that will enable a coherent computation, and then the
ciphertext expansion and the running time. Another important parameter concerns the strategy
of the developer in terms of flexibility.

Hence, two strategies can be followed to drive the choice. On one hand one can fix a maximum
multiplicative depth for the Boolean circuit to be evaluated on the encrypted data. This may take
into account a small or at least bounded flexibility for future modifications of the circuit to be
evaluated. In this case, SHE is the best choice. On the other hand one may want to be able to use
any Boolean circuit and then to handle an unbounded multiplicative depth. In this case, FHE is
the only choice.

In this paper, we will focus on SHE schemes because they are the most promising today, and
we will discuss their implementations issues. We will also provide some information on the state-
of-the-art concerning the use of bootstrapping to modify these schemes intro FHE ones. Our goal
is to provide the reader the best starting points to handle the complexity of the issues to address
and the efforts made to make these schemes become sufficiently efficient to be used in practice.

2 Existing (F/S)HE solutions

Due to lack of space, we do not provide any precise description and let the reader refer to the
mentioned papers to get all the mathematical details related to the schemes.

2.1 SHE from classical crypto world

The first scheme that enabled to perform both additions and multiplications is due to Boneh et
al. [BGN05]. This pairing-based SHE enables to perform as many additions as wanted, but only
one multiplication. Hence, it is not really flexible.

We have worked recently [HF17] on the design of a variant of this scheme that allows to handle
multiplicative depth 2 (instead of 1). Our solution employs together two improvements of the
original scheme, based on [Fre10,CF15]. We will refer to it as BGN2 in the rest of the document.



2.2 Lattice-based (S/F)HE

Whereas the first FHE scheme has been proposed by Gentry in [Gen09a], the first SHE based
on lattices has been propose by Aguilar et al. in [AMGH10]. These schemes have been followed
by many others. First generation encompass the older ones, like [vDGHV10,SV10,GHS12a,GH11].
Second generation [BGV12,CNT12,BGV12,Bra12,FV12] started with leveled SHE schemes based
on modulus switching, which have then been improved to remain scale invariant, etc. They were
followed by third generation schemes like [GSW13,BLLN13,BV14,KGV15,DS16]. In fact several
of these schemes consist of improvement of previous ones, and the genealogy in rich of cross-
fertilization. For example, SHIELD [GSW13] and F-NTRU [DS16] are the third generation schemes
equivalent to, respectively, FV [FV12] and YASHE’ [BLLN13]. With larger costs for the first
homomorphic multiplications, these schemes have a much better asymptotic behavior.

3 Customization and optimization of both program and data

The issues discussed in this section have been addressed in few papers only [AMFF+13,FSF+13,CDS15]
for the moment, but they are really important to handle real deployment of this technology.

3.1 Program management

To establish a proper link between the program we want to run and (S/F)HE schemes, one must
rely on the fact that any program can be expressed as a Boolean circuit involving XOR and AND

gates, and that XOR and AND are precisely the addition and multiplication operators over bits. This
being said, the game is to express the program through such a Boolean circuit, and to optimize it.
The last step will then be to evaluate this optimized Boolean circuit over the encrypted data while
replacing XOR and AND gates by the corresponding encrypted operators provided by a (S/F)HE
library.

The optimization step of the Boolean circuit is crucial, as it will give us the multiplicative depth
we will have to handle with the (S/F)HE scheme. This will have an impact on the parameters of
this scheme (e.g. size of the lattice, modulus, etc), and then on the ciphertexts size and on the
resulting computation time. Usally, we focus on this multiplicative depth, but we also have to be
careful that a very large amount of additions may also lead to heavy computations. Also, sometimes
additions following multiplications may have a different impact than additions occurring at lower
multiplicative depth. Also, when using leveled (S/F)HE using modulus switching techniques like
[BGV12], one has to optimize at which level each ciphertext stands, to avoid any extra and costly
modulus switching. At last, the noise growth is usually symmetric between the left and right
operands, but for some particular recent schemes like [GSW13] the noise growth is asymmetric over
the multiplications. In this case, it is important to optimize which operand will be left or right.
All these aspects should be taken into account. This optimization issue has not been sufficiently
addressed in the literature, and a lot of work remains to be done to set theoretical bounds and
practical strategies to handle such an optimality.

Another issue related with the customization of the Boolean circuit is that it may contain
if-then-else or repeat. . . until expressions leading to branches with dynamic size depending
on the processed data. To handle such statements properly, on must have in mind that the processed
data they are depending on are encrypted. Moreover, it is crucial that during the running process
no information about the real value of the underlying data may leak. To handle this is easy but
costly. In fact, the best approach is to rewrite such parts of the program with the help of Boolean
expressions. If we look at the if-then-else example, one can rewrite if c then x=a else x=b

as x = (c AND a) XOR ((NOT c) AND b). The whole expression will then be evaluated over the
encrypted data, and the final encrypted result will be the good one without revealing anything on
the plain value of c. Unfortunately the price to be paid is high, as we always have to evaluated the
whole expression, meaning that we always need to evaluate the deepest branch of the tree. Hence,
computing over encrypted data always requires the worse-case complexity. This means that when
choosing an algorithm to perform a particular computation over encrypted data, one must choose
the algorithm that provides the best worse-case complexity (whereas usually we look for the best
average-case complexity).



Finally, as (S/F)HE remain costly today, on must be really careful not to perform non necessary
heavy computations. According to a particular applicative scenario, one must try to perform as
much classical encryption as possible, and to think of some pre-processing over the plaintexts that
may help to enlight the computation over the ciphertexts.

3.2 Data management

Some schemes work only over integers, and some over bits. And some can manage both. If the
application scenario does not require data depend behavior, then working over integers is usually
the best choice. But if the application scenario requires some if-then-else or repeat. . . until
like statements, then we need to work at the bit level to be able to perform <, > and = operators. In
this case, we have to provide home maid basic operators for integers additions and multiplications,
floats management,. . . but this is the price to pay to handle such dynamic behaviors properly.

Some schemes may also be compliant with batching ability, then enabling to group several
pieces of data on the same plaintext, typically a polynomial, and to process all these pieces of data
at the same time. This drastically reduces the costs in terms of space (memory) and running time,
as several plaintexts (resp. ciphertexts) are processed in one shot . In the literature, batching is
usually addressed through SIMD and RNS, see for example [SV14,BEHZ16].

4 Flexibility of (S/F)HE schemes in terms of multiplicative depth
management

4.1 SHE from classical crypto world

SHE schemes coming from classical crypto world are not flexible. Boneh-Goh-Nissim [BGN05]
scheme only enables the evaluation only of degree 2 polynomials, whereas our extension BGN2
enables the evaluation of degree 4 polynomials [HF17].

4.2 Lattice-based (S/F)HE schemes

SHE schemes based on these lattice problems are generally much more flexible and can be turned
into fully homomorphic schemes allowing computation with arbitrary depth. The downside for
this flexibility is the increased size of ciphertexts and keys, leading to heavier computations. For
these schemes, one have to choose the maximum multiplicative depth we want to be able to
handle before deployment, as this multiplicative depth will drive the parameters determining the
underlying lattice. Once the scheme is deployed, it cannot be modified. Moreover, as we have to
handle ”the higher the multiplicative depth, the higher the memory and time costs” the parameters
much be chosen very carefully to maintain an acceptable cost while ensuring sufficient flexibility
for future process.

FHE schemes are generally heavier to deploy, as they need the bootstrapping step to be sure to
enhance the noise growth properly whatever the multiplicative depth. Hence, they should be used
only if one does not know in advance the multiplicative depth we would like to handle in the future
in the targeted application scenario. Good recent works to better understand the limits of this
solution are [PV15], which provides a way to optimize the bootstraps management (for any FHE),
and [CGGI16a] that proposes the more efficient current way to execute bootstrapping (especially
for FHE based on [GSW13]).

5 Security of (S/F)HE schemes

By nature, these schemes have been designed to enhance privacy and security. Hence, the analysis of
their security is crucial. The best security level that has been achieved for such schemes is IND-CPA.
We know that IND-CCA2 in not achievable, and the design of efficient schemes achieving IND-
CCA1 is still open. Now, we will split the security study according to the underlying mathematical
rationales.



5.1 SHE from classical crypto world

Schemes which are based on mathematical objects which have already been deeply studied by the
cryptographic community are better understood, and their security is easier to manage. Among
such schemes, one can mention partially homomorphic schemes as ElGamal, Paillier, and their
variants, which are out of the scope of this article as they cannot handle at the same time additions
and multiplications. As mentioned in Section 2.2, one can also mention Boneh-Goh-Nissim scheme
[BGN05], a pairing-based SHE scheme which enables to perform as many additions as wanted, but
only one multiplication, and our scheme called BGN2 which can handle one more multiplication
depth [HF17].

The security of BGN2 is based on the generalized subgroup decision assumption6. This problem
is derived from the decision Diffie-Hellman assumption [Bon98]. Two possible choices to instan-
tiate groups are to select either an elliptic curve or an hyperelliptic curve. We place ourselves
in the first case, where the security assumption reduces to the elliptic curve discrete logarithm
problem. The recommended group size is given by different academic and private organizations
at www.keylength.com according standard security levels. The order of ciphertext expansion in
BGN2 is thousands.

5.2 Lattice-based (S/F)HE

The Learning With Errors problem is about solving a system of several noisy linear equations.
Its ring variant, Ring-LWE, allows to design more efficient schemes with faster computations and
smaller keys and ciphertexts. These problems attract large attention, beyond HE, because they are
believed to be quantum resistant: no known quantum algorithms perform better than the classical
ones against them.

These schemes were introduced in the previous decade, i.e. quite recently in the time scale of
cryptography, and one must tell that there is still a gap between the theoretical hardness proofs
and the practical behavior of the known attacks.

Formal proofs The first FHE scheme of Gentry [Gen09b] was based on two assumptions, the
Bounded Distance Decoding problem and the Sparse Subset Sum problem which are not standard
in lattice-based cryptography. The first scheme proven secure under the LWE assumption is pro-
posed by Brakerski and Vaikuntanathan in 2011 [BV11]. This result was followed by numerous
constructions based on LWE and Ring-LWE (as [Bra12,BGV12]. . . ).

The LWE and Ring-LWE problem are proven to be at least as hard as well-known hard problems
(in their worst-case) on lattices (respectively on ideal-lattices). Another advantage of recent lattice-
based schemes is that their security is proven under those assumptions.

Experimental security evaluation Even at this point, concrete security behind homomorphic
encryption is still moving. Thus, extracting realistic parameters for a given security level is a
main challenge of (S/F)HE scenario. The standard approach so far is to focus on concrete attack
means. Building on surveys about existing attacks against LWE [APS15] and Ring-LWE [Pei16],
experiments must be pushed further to provide experimental results of secured parameters for most
promising homomorphic schemes.

Among these most promising schemes one can mention YASHE’ [BLLN13], FV [FV12] and
SHIELD [GSW13]. YASHE’ and FV have been published almost at the same time, but YASHE’
took benefit from a strong lobby and became more popular in the proposed implementations.
However, confidence in this scheme has been recently damaged by the subfield/sublattice attack
[ABD16,KF16]. Making YASHE’ immune to these attacks would lead to oversize its parameters, far
too much for practical use [DGBL+15]. This is why among second generation schemes FV is now the
real challenger, and has received a lot of attention during the past months [LCP16,Cry16,BEHZ16].

6 We choose to employ asymetric pairings to compute homomomorphic product of fresh ciphertexts. The
use of symmetric pairings would change the computational hardness assumption[Fre10, page 46].

https://www.keylength.com


6 Existing implementations of (S/F)HE schemes

6.1 Software implementations

We implemented BGN2, which have been presented and briefly discussed above. In this cryptosys-
tem, the homomorphic multiplication asks to compute pairings. We chose to compute an optimal
Ate pairing over an elliptic curve in the Barreto-Naehrig curve family [BN05] using a program
called DCLXVI [NNS10]. This work is not yet published, but will be available soon both as an
article and as a software.

Concerning lattice-based (S/F)HE schemes, several implementations have emerged since their
introduction in 2009. Due to the pace of evolution in the theoretical field, some are now outdated
but served as good proof of concept in the early days of (S/F)HE ([Bre,Cor,Lep]). Other libraries
([DGBL+15,Hal,Cry16,LCP16]) implement the latest techniques described in
[SV10,FV12,BGV12,BLLN13]. There are also private implementations like those used in
[AMFF+13,FSF+13,CDS15,BEHZ16]. Most of the libraries aim at providing tools for experiments
to the academic community, except [DGBL+15,LCP16,CDS15] which can be used as building
blocks for more industrialized developments.

Today, no complete benchmark is available to provide a fair and complete overviews of the
efficiency of all these schemes. The reader can refer to [LN14] for a comparison of FV and YASHE’,
and to [MBF16] for a first discussion and comparison of FV, SHIELD and F-NTRU in terms of
pros and cons, and parameters setting.

6.2 Hardware implementations

Hardware implementation is one of the two principal ways to accelerate FHE/SHE schemes with
dedicated components. The second one is the GPU acceleration. Even if performances using GPU
are very scheme-dependent, it can be a good alternative to set up an homomorphic server quickly
with acceptable performances [KGV15].
Hardware accelerators focus on accelerating the most complex operation of Homomorphic En-
cryption Schemes, the multiplication of homomorphic operands. Depending on the scheme, a
million-bit integer multiplier or a polynomial of degree n ∈ [4096, 32768] with coefficients of size
log2 q ∈ [125, 1228] is required. In [DOS13], an ASIC implementation of million-bits multiplier
performs the multiplication operation in 7.74 ms using NTT algorithm. This computation time
corresponds to the computation time on a Xeon, but can be implemented as a co-processor and
thus requiring a much smaller area. For polynomial based homomorphic encryption, due to the fact
that one must address various size of polynomials, different architectures have been investigated.
To our knowledge, all implementations are based on NTT algorithm too, except in [MMRL+17]
for small size polynomials which implements Karatsuba algorithm instead. In [PNPM], a usual
but optimized NTT implementation is presented for two parameter sets. The proposed accelerator
performs an homomorphic multiplication in 6.5 ms for n = 4096 and log2 q = 125 bits, and 48 ms
for parameters n = 16384 and log2 q = 512 bits. Authors of [PNPM] implemented 512× 512 bits
multipliers with a small modular reduction by selecting a Solinas prime modulus [Sol11]. Due to
the size of polynomials and coefficients, a cache is implemented to connect the external memory
used to store intermediate coefficients. They also reported a bottleneck due to the divide and
rounding required by YASHE’ scheme, especially for large integers. That is why in [SRJV+] a pre-
computation is performed on polynomials to reduce the size of coefficients. They split a ciphertext
into a few polynomials by using the Chinese Reminder Theorem (CRT) on each coefficient. The
overall architecture is based on an array of crypto-units, which gives some flexibility to process
several residue polynomials in parallel. For parameters n = 32768 and log2 q = 1228 bits, their
accelerator performs an homomorphic multiplication in 121 ms including 25 ms spent for CRT.
Table 1 summarize the different hardware implementations available for both integer based and
polynomial based Homomorphic Encryption Schemes.

7 How to handle such a huge complexity and expansion?

(S/F)HE schemes defined on Elliptic Curves and Pairing present a smaller complexity and expan-
sion, and their security level is quite clear, but are very limited in terms of multiplicative depth.



Table 1. Timing results for the hardware implementation of Homomorphic Encryption.

Integer based Homomorphic encryption

Scheme Algorithm Size
Homomorphic

Encryption
Homomorphic
Multiplication

Work

Gentry-Halevy
NTT

1 M bits 2.09 s 7.74 ms [DOS13]
DHGV 19 M bits 3.9 s no results [CMO+]

Polynomial based Homomorphic encryption

Scheme Algorithm n log2 q
Homomorphic

Encryption
Homomorphic
Multiplication

Work

YASHE’

Karatsuba 2560 124 bits

not implemented

4.73 ms [MMRL+17]

NTT
4096 125 bits 6.5 ms

[PNPM]
16384 512 bits 48 ms
32768 1228 bits 121 ms [SRJV+]

For some applications this may be sufficient, and particularly interesting, this is why we discussed
them here.

Nevertheless, the biggest hope for the future comes from lattice-based schemes, which promise
to handle larger multiplicative depths processing. Once their security will be better understood,
their main drawbacks are their algorithmic complexity and the related ciphertext expansion. This
is why it is important to pursue designing new schemes and to look for lighter solutions. Current
ciphertext expansions can go from 10, 000 up to 1, 000, 000, depending on the schemes and on the
parameters that have been chosen (and which are directly related with the targeted security level).
The encrypted data must be uploaded from the client device to the server, then processed on the
server, and finally the encrypted result must be downloaded from the server to the client device.
Hence, its size is critical.

To reduce the size of the uploaded data on the first step, [NLV11] proposed to combine the
(S/F)HE scheme with symmetric encryption schemes. The main idea is that the data to be uploaded
will be encrypted by the symmetric encryption scheme, and then sent to the server without any size
expansion. Hence, the server will trans-crypt this encrypted data to produce a new ciphertext which
corresponds to the encryption of the same data with the (S/F)HE that will be used on the server
to perform the desired computation. This trans-cryption step will require the decryption circuit of
the underlying symmetric encryption scheme to be evaluated by the (S/F)HE scheme. This step’s
complexity is critical, and will lead the choice of the symmetric cipher to use. Following this idea,
several symmetric encryption schemes have been investigated. We will first mention on-the-shelf
block ciphers like AES [GHS12b,CCK+13,DHS14], and the lightweight block ciphers Simon [LN14]
and Prince [DSES14]. But the evaluation of these ciphers by the (S/F)HE remains too complex,
and recent papers proposed new ciphers designed specifically for this purpose (i.e. with a low
multiplicative depth): the block cipher Low-MC [ARS+15], which has been broken [DLMW15] and
patched [Rec16]; the stream cipher Kreyvium [CCF+16], whose security is the same as the well-
studied stream cipher Trivium; and a more recent stream cipher proposal called FLIP [MJSC16],
which should be used carefully [DLR16]. These papers include experimental material and results.
More exotic solutions are discussed in [FHK16], but without experimental data in the paper.

The second way to reduce ciphertexts weight is to pack several inputs on the same plaintext
structure through batching. This has been briefly discussed in Section 3.2

8 Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 643964.

9 Conclusion

There is still a lot of work to be done, but everything is moving fast and recent progress are quite
impressive. Hence, for some applications which are not too critical in terms of memory and time



costs it is time to adopt a practical approach to make dream become reality. How to choose the
good (S/F)HE scheme for a given application scenario, and how to set it up in the best way? The
answer is not trivial at all, and this article provides some hints concerning the implementation
issues of these promising but still tricky and heavy schemes. Our goal was to share our discussions
and reflections about all the identified issues, and to provide ad-hoc references to help the reader
in his exploration of a very prolific and dense literature. It is clear that more comparisons should
be performed between the most promising schemes. A few papers compared two schemes at a time,
like [LN14], and a first attempt to provide a wider analysis can be found in [MBF16]. But it is clear
that it should be pushed further, and that fair benchmarks based on available implementations have
to be driven. Moreover, a fair and precise comparison should also be driven to properly compare
SHE schemes coming from classical crypto world with lattice-based ones when targeting a small
multiplicative depth, in terms of time and space complexity. At the same time, open issues remain
concerning a precise evaluation of the practical security of lattice-based schemes, as well as on the
optimization of the Boolean circuits we want to evaluate over the encrypted data.

References

ABD16. M. Albrecht, S. Bai, and L. Ducas. A subfield lattice attack on overstretched ntru assumptions:
Cryptanalysis of some fhe and graded encoding schemes. Cryptology ePrint Archive, Report
2016/127, 2016.

AMFF+13. Carlos Aguilar-Melchor, Simon Fau, Caroline Fontaine, Guy Gogniat, and Renaud Sirdey.
Recent advances in homomorphic encryption: A possible future for signal processing in the
encrypted domain. IEEE Signal Processing Magazine, 30(2):108–117, 2013.

AMGH10. C. Aguilar Melchor, P. Gaborit, and J. Herranz. Additively homomorphic encryption with
d-operand multiplications. In Annual Cryptology Conference, pages 138–154. Springer, 2010.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

ARS+15. Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael
Zohner. Ciphers for MPC and FHE. In EUROCRYPT, Part I, volume 9056 of LNCS,
pages 430–454. Springer, 2015.

BEHZ16. Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A Full RNS Variant
of FV like Somewhat Homomorphic Encryption Schemes. Cryptology ePrint Archive, Report
2016/510, 2016. http://eprint.iacr.org/2016/510.

BGN05. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ciphertexts.
In Joe Kilian, editor, Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture
Notes in Computer Science, pages 325–341. Springer, 2005.

BGV12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. In Proc. of the 3rd Innovations in Theoretical Computer Science
Conference – ITCS 2012, pages 309–325. ACM, 2012.

BLLN13. J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-based fully ho-
momorphic encryption scheme. In Proc. of Cryptography and Coding: 14th IMA International
Conference – IMACC 2013, pages 45–64. Springer, 2013.

BN05. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime
Order. In Bart Preneel and Stafford E. Tavares, editors, Selected Areas in Cryptography, 12th
International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised
Selected Papers, volume 3897 of Lecture Notes in Computer Science, pages 319–331. Springer,
2005.

Bon98. Dan Boneh. The Decision Diffie-Hellman Problem. In Proceedings of the Third International
Symposium on Algorithmic Number Theory, ANTS-III, pages 48–63, London, UK, UK, 1998.
Springer-Verlag.

BPB09. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. On the implementation of the discrete
Fourier transform in the encrypted domain. IEEE Transactions on Information Forensics
and Security, 4(1):86–97, 2009.

Bra12. Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. In Proc. of CRYPTO, volume 7417 of LNCS, pages 868–886. Springer, 2012.

Bre. Michael Brenner. Hcrypt project. Available at http://www.hcrypt.com.
BV11. Z. Brakerski and V. Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Stan-

dard) LWE. In Proc. of FOCS, pages 97–106, 2011.

http://eprint.iacr.org/2016/510
http://www.hcrypt.com


BV14. Z. Brakerski and V. Vaikuntanathan. Lattice-based fhe as secure as pke. In Proc. of the 5th
Conference on Innovations in Theoretical Computer Science – ITCS 2014, pages 1–12. ACM,
2014.

CCF+16. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrede Lepoint, Maŕıa Naya-Plasencia,
Pascal Paillier, and Renaud Sirdey. Stream ciphers: A Practical Solution for Efficient
Homomorphic-Ciphertext Compression. In Fast Software Encryption 2016, Fast Software
Encryption 2016, Bochum, Germany, March 2016. Springer Verlag.

CCK+13. Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi
Tibouchi, and Aaram Yun. Batch Fully Homomorphic Encryption over the Integers. In
EUROCRYPT, volume 7881 of LNCS, pages 315–335. Springer, 2013.

CDS15. Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: a compilation chain for privacy
preserving applications. In Proceedings of the 3rd International Workshop on Security in Cloud
Computing, pages 13–19. ACM, 2015.

CF15. Dario Catalano and Dario Fiore. Using Linearly-Homomorphic Encryption to Evaluate
Degree-2 Functions on Encrypted Data. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015, pages 1518–1529. ACM, 2015.

CGGI16a. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster Fully Ho-
momorphic Encryption: Bootstrapping in Less Than 0.1 Seconds, pages 3–33. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

CGGI16b. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. A homomorphic
LWE based e-voting scheme. In Post-Quantum Cryptography - 7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, pages 245–265, 2016.

CMO+. Xiaolin Cao, Ciara Moore, Maire O’Neill, Neil Hanley, and Elizabeth O’Sullivan. High-Speed
Fully Homomorphic Encryption over the Integers. In Proc. of the Workshop on Encrypted
Computing and Applied Homomorphic Cryptography – WAHC 2014.

CNT12. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and
modulus switching for fully homomorphic encryption over the integers. In Advances in
Cryptology–EUROCRYPT 2012, pages 446–464. Springer, 2012.

Cor. Coron, Jean-Sébastien. An implementation of the DGHV fully homomorphic scheme. Avail-
able at https://github.com/coron/fhe.

Cry16. CryptoExperts. FV-NFLlib. Available at https://github.com/CryptoExperts/FV-NFLlib,
2016.

DGBL+15. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Manual for Using Homomorphic Encryption for Bioinformatics. Technical Report
MSR-TR-2015-87, November 2015.

DHS14. Yarkin Doröz, Yin Hu, and Berk Sunar. Homomorphic AES Evaluation using NTRU. IACR
Cryptology ePrint Archive, 2014:39, 2014.

DLMW15. Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized Interpolation Attacks on
LowMC. IACR Cryptology ePrint Archive, 2015:418, 2015.

DLR16. Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the FLIP Family
of Stream Ciphers. IACR Cryptology ePrint Archive, (271), 2016.

DOS13. Yakin Doroz, E Ozturk, and Berk Sunar. Evaluating the Hardware Performance of a Million-
Bit Multiplier. In Proc. of Euromicro Conference on Digital System Design – DSD 2013,
2013.

DS16. Y. Doröz and B. Sunar. Flattening ntru for evaluation key free homomorphic encryption.
Cryptology ePrint Archive, Report 2016/315, 2016.

DSES14. Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward Practical Homo-
morphic Evaluation of Block Ciphers Using Prince. In WAHC, volume 8438 of LNCS, pages
208–220. Springer, 2014.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

FG07. C. Fontaine and F. Galand. A survey of homomorphic encryption for nonspecialists. EURASIP
J. Inf. Secur., 2007(1):1–15, 2007.

FHK16. Pierre-Alain Fouque, Benjamin Hadjibeyli, and Paul Kirchner. Homomorphic Evaluation of
Lattice-Based Symmetric Encryption Schemes, pages 269–280. Springer International Pub-
lishing, Cham, 2016.

Fre10. David Mandell Freeman. Converting Pairing-Based Cryptosystems from Composite-Order
Groups to Prime-Order Groups. In Henri Gilbert, editor, Advances in Cryptology - EU-
ROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110
of Lecture Notes in Computer Science, pages 44–61. Springer, 2010.

https://github.com/coron/fhe
https://github.com/CryptoExperts/FV-NFLlib


FSF+13. Simon Fau, Renaud Sirdey, Caroline Fontaine, Carlos Aguilar-Melchor, and Guy Gogniat.
Towards practical program execution over fully homomorphic encryption schemes. In P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth International Confer-
ence on, pages 284–290. IEEE, 2013.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

Gen09a. C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University, 2009.
Gen09b. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, volume 9, pages

169–178, 2009.
GH11. Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-

3 arithmetic circuits. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 107–109. IEEE, 2011.

GHS12a. Craig Gentry, Shai Halevi, and Nigel P Smart. Fully homomorphic encryption with polylog
overhead. In Advances in Cryptology–EUROCRYPT 2012, pages 465–482. Springer, 2012.

GHS12b. Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the AES circuit.
In Advances in Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

GLN12. Thore Graepel, Kristin E. Lauter, and Michael Naehrig. ML Confidential: Machine Learning
on Encrypted Data. In ICISC, volume 7839 of LNCS, pages 1–21. Springer, 2012.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in
Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

Hal. Shai Halevi. HElib. Available at https://github.com/shaih/HElib.
HF17. Vincent Herbert and Caroline Fontaine. Software implementation of 2-depth pairing-based

homomorphic encryption scheme. Cryptology ePrint Archive, Report 2017/091, 2017. http:

//eprint.iacr.org/2017/091.
KF16. Paul Kirchner and Pierre-Alain Fouque. Comparison between Subfield and Straightforward

Attacks on NTRU. Cryptology ePrint Archive, 2016/717, 2016.
KGV15. Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: Scalable Homomorphic

Implementation of Encrypted Data-Classifiers. IEEE Transactions on Computers, PP(99):1–
1, 2015.

LCP16. Kim Laine, Hao Chen, and Rachel Player. Simple encrypted arithmetic library - seal (v2.1).
Technical report, September 2016.

Lep. Lepoint, Tancrède. A proof-of-concept implementation of the homomorphic evalua-
tion of SIMON using FV and YASHE. Available at https://github.com/tlepoint/

homomorphic-simon.
LLN14. Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private Computation on Encrypted

Genomic Data. In LATINCRYPT, LNCS, 2014.
LN14. Tancrède Lepoint and Michael Naehrig. A Comparison of the Homomorphic Encryption

Schemes FV and YASHE. In AFRICACRYPT, volume 8469 of LNCS, pages 318–335.
Springer, 2014.

MBF16. Vincent Migliore, Guillaume Bonnoron, and Caroline Fontaine. Determination and Explo-
ration of Practical Parameters for the Latest Somewhat Homomorphic Encryption (SHE)
Schemes. working paper or preprint, October 2016.

MJSC16. Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. Towards
Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts, pages 311–343. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

MMRL+17. Vincent Migliore, Maria Mendez Real, Vianney Lapotre, Arnaud Tisserand, Caroline
Fontaine, and Guy Gogniat. Hardware/Software co-Design of an Accelerator for FV Ho-
momorphic Encryption Scheme using Karatsuba Algorithm. Accepted to IEEE Transactions
on Computers, 2017.

NLV11. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can homomorphic encryp-
tion be practical? In ACM CCSW, pages 113–124. ACM, 2011.

NNS10. Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New Software Speed Records for
Cryptographic Pairings. In Michel Abdalla and Paulo S. L. M. Barreto, editors, Progress in
Cryptology - LATINCRYPT 2010, First International Conference on Cryptology and Infor-
mation Security in Latin America, Puebla, Mexico, August 8-11, 2010, Proceedings, volume
6212 of Lecture Notes in Computer Science, pages 109–123. Springer, 2010.

Pai99. Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.
In Proc. of Advances in Cryptology — EUROCRYPT 1999, number 1592 in LNCS, pages
223–238, 1999.

Pei16. Chris Peikert. How (not) to instantiate Ring-LWE. In International Conference on Security
and Cryptography for Networks. Springer, 2016.

https://github.com/shaih/HElib
http://eprint.iacr.org/2017/091
http://eprint.iacr.org/2017/091
https://github.com/tlepoint/homomorphic-simon
https://github.com/tlepoint/homomorphic-simon


PNPM. Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Macias. Accelerating
Homomorphic Evaluation on Reconfigurable Hardware. In Proc. of Cryptographic Hardware
and Embedded Systems – CHES 2015, pages 143–163. Springer.

PV15. Marie Paindavoine and Bastien Vialla. Minimizing the number of bootstrappings in fully
homomorphic encryption. In Selected Areas in Cryptography - SAC 2015 - 22nd International
Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, pages 25–
43, 2015.

Rec16. Christian Rechberger. The FHEMPCZK-Cipher Zoo. Presented at the FSE 2016 rump
session, 2016.

Sol11. Jerome A. Solinas. Generalized Mersenne Prime. In Encyclopedia of Cryptography and Secu-
rity, pages 509–510. Springer, 2011.

SRJV+. Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov, and Ingrid Ver-
bauwhede. Modular Hardware Architecture for Somewhat Homomorphic Function Evalua-
tion. In Proc. of Cryptographic Hardware and Embedded Systems – CHES 2015, pages 164–184.
Springer.

SV10. Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. In International Workshop on Public Key Cryptography, pages 420–
443. Springer, 2010.

SV14. N. P. Smart and F. Vercauteren. Fully homomorphic simd operations. Designs, Codes and
Cryptography, 71(1):57–81, 2014.

vDGHV10. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in cryptology–EUROCRYPT 2010, pages 24–43.
Springer, 2010.


	Somewhat/Fully Homomorphic Encryption: implementation progresses and challenges

