Published December 15, 2021 | Version v1
Journal article Open

Fourteen New, Endemic Species Of Shrew (Genus Crocidura) From Sulawesi Reveal A Spectacular Island Radiation

Description

Esselstyn, Jacob A., Achmadi, Anang S., Handika, Heru, Swanson, Mark T., Giarla, Thomas C., Rowe, Kevin C. (2021): Fourteen New, Endemic Species Of Shrew (Genus Crocidura) From Sulawesi Reveal A Spectacular Island Radiation. Bulletin of the American Museum of Natural History 2021 (454): 1-109, DOI: 10.1206/0003-0090.454.1.1, URL: https://bioone.org/journals/bulletin-of-the-american-museum-of-natural-history/volume-454/issue-1/0003-0090.454.1.1/Fourteen-New-Endemic-Species-of-Shrew-Genus-Crocidura-from-Sulawesi/10.1206/0003-0090.454.1.1.full

Files

source.pdf

Files (16.9 MB)

Name Size Download all
md5:a1b3cb600119e90f4f3335829c9db404
16.9 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFB3CB600119E90F4F33FF82FF9DB404
URL
http://publication.plazi.org/id/FFB3CB600119E90F4F33FF82FF9DB404

References

  • Adrion, J.R., P.S. White, and K.L. Montooth. 2015. The roles of compensatory evolution and constraint in aminoacyl tRNA synthetase evolution. Molecular Biology and Evolution 33: 152-161.
  • Allio, R., et al. 2020. MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources 20: 892-905.
  • Alston, C.L., M.C. Rocha, N.Z. Lax, D.M. Turnbull, and R.W. Taylor. 2017. The genetics and pathology of mitochondrial disease. Journal of Pathology 241: 236-250.
  • Baird, A.B., et al. 2017. Molecular systematics and biodiversity of the Cryptotis mexicanus group (Eulipotyphla: Soricidae): two new species from Honduras supported. Systematics and Biodiversity 16: 108-117.
  • Barreto, F.S., and R.S. Burton. 2013a. Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. Molecular Biology and Evolution 30: 310- 314.
  • Barreto, F.S., and R.S. Burton. 2013b. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proceedings of the Royal Society B, Biological Sciences 280: 20131521.
  • Bateson, W. 1909. Heredity and variation in modern lights. In A.C. Seward (editor), Darwin and modern science: 85-101. Cambridge: Cambridge University Press.
  • Berman, J., T. McCay, and P. Scull. 2007. Spatial analysis of species richness of shrews (Soricomorpha: Soricidae) in North America north of Mexico. Acta Theriologica 52: 151-158.
  • Bolger, A.M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
  • Bradley, R.D., and R.J. Baker. 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy 82: 960-973.
  • Brannon, M.P. 2000. Niche relationships of two syntopic species of shrews, Sorex fumeus and S. cinereus, in the southern Appalachian Mountains. Journal of Mammalogy 81: 1053-1061.
  • Brosset, A. 1988. Le peuplement de mammiferes insectivores des forets du nord-est du Gabon. Revue d'Ecologie, La Terre et la Vie 43: 23-46.
  • Burgin, C.J., J.P. Colella, P.L. Kahn, N.S. Upham. 2018. How many species of mammals are there? Journal of Mammalogy 99: 1-11.
  • Cadena, C.D., F. Zapata, and I. Jimenez. 2017. Issues and perspectives in species delimitation using phenotypic data: Atlantean evolution in Darwin's finches. Systematic Biology 67: 181-194.
  • Camacho-Sanchez, M., M.T.R. Hawkins, F.T.Y. Yu, J.E. Maldonado, and J.A. Leonard. 2019. Endemism and diversity of small mammals along two neighboring Bornean mountains. PeerJ 7: e7858.
  • Cao, X., et al. 2016. Rapid dissemination of taxonomic discoveries based on DNA barcoding and morphology. Scientific Reports 6: 37066.
  • Ceballos, G., and P.R. Ehrlich. 2009. Discoveries of new mammal species and their implications for conservation and ecosystem services. Proceedings of the National Academy of Sciences of the United States of America 106: 3841-3846.
  • Chou, J.-Y., and J.-Y. Leu. 2010. Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes. BioEssays 32: 401-411.
  • Clemann, N., et al. 2014. Value and impacts of collecting vertebrate voucher specimens, with guidelines for ethical collection. Memoirs of Museum Victoria 72: 141-151.
  • Demos, T.C., et al. 2016. Local endemism and withinisland diversification of shrews illustrate the importance of speciation in building Sundaland mammal diversity. Molecular Ecology 25: 5158-5173.
  • Demos, T.C., A.S. Achmadi, H. Handika, K.C. Rowe, and J.A. Esselstyn. 2017. A new species of shrew (Soricomorpha: Crocidura) from Java, Indonesia: possible character displacement despite interspecific gene flow. Journal of Mammalogy 98: 183-193.
  • Deng, J., Y. Guo, Z. Cheng, C. Lu, and X. Huang. 2020. The prevalence of single-specimen/locality species in insect taxonomy: an empirical analysis. Diversity 11: 106.
  • de Queiroz, K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-886.
  • Dickman, C.R. 1988. Body size, prey size, and community structure in insectivorous mammals. Ecology 69: 569-580.
  • Dobzhansky, T.G. 1937. Genetics and the origin of species. New York: Columbia University Press.
  • Dubey, S., N. Salamin, S.D. Ohdachi, P. Barriere, and P. Vogel. 2007. Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Molecular Phylogenetics and Evolution 44: 126-137.
  • Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.
  • Eldridge, R.A., A.S. Achmadi, T.C. Giarla, K.C. Rowe, and J.A. Esselstyn. 2018. Geographic isolation and elevational gradients promote diversification in an endemic shrew on Sulawesi. Molecular Phylogenetics and Evolution 118: 306-317.
  • Esselstyn, J.A., and R.M. Brown. 2009. The role of repeated sea-level fluctuations in the generation of shrew (Soricidae: Crocidura) diversity in the Philippine Archipelago. Molecular Phylogenetics and Evolution 53: 171-181.
  • Esselstyn, J.A., R.M. Timm, and R.M. Brown. 2009. Do geological or climatic processes drive speciation in dynamic archipelagos? The tempo and mode of diversification in Southeast Asian shrews. Evolution 63: 2595-2610.
  • Esselstyn, J.A., S.P. Maher, R.M. Brown. 2011. Species interactions during diversification and community assembly in an island radiation of shrews. PLoS ONE 6: e21885.
  • Esselstyn, J.A., B.J. Evans, J.L. Sedlock, F.A.A. Khan, and L.R. Heaney. 2012a. Single-locus species delimitation: a test of the mixed Yule-coalescent model, with an empirical application to Philippine roundleaf bats. Proceedings of the Royal Society B, Biological Sciences 279: 3678-3686.
  • Esselstyn, J.A., A.S. Achmadi, and K.C. Rowe. 2012b. Evolutionary novelty in a rat with no molars. Biology Letters 8: 990-993.
  • Esselstyn, J.A., Maharadatunkamsi, A.S. Achmadi, C.D. Siler, and B.J. Evans. 2013. Carving out turf in a biodiversity hotspot: multiple, previously unrecognized shrew species co-occur on Java Island, Indonesia. Molecular Ecology 22: 4972-4987.
  • Esselstyn, J.A., A.S. Achmadi, and Maharadatunkamsi. 2014. A new species of shrew (Soricomorpha: Crocidura) from West Java, Indonesia. Journal of Mammalogy 95: 216-224.
  • Esselstyn, J.A., A.S. Achmadi, H. Handika, and K.C. Rowe. 2015. A hog-nosed shrew rat (Rodentia: Muridae) from Sulawesi Island, Indonesia. Journal of Mammalogy 96: 895-907.
  • Esselstyn, J.A., C.H. Oliveros, M.T. Swanson, and B.C. Faircloth. 2017. Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biology and Evolution 9: 2308-2321.
  • Esselstyn, J.A., A.S. Achmadi, H. Handika, T.C. Giarla, and K.C. Rowe. 2019. A new climbing shrew from Sulawesi highlights the tangled taxonomy of an endemic radiation. Journal of Mammalogy 100: 1713-1725.
  • Evans, B.J., et al. 2003. Monkeys and toads define areas of endemism on Sulawesi. Evolution 57: 1436-1443.
  • Evans, B.J., J.A. McGuire, R.M. Brown, N. Andayani, and J. Supriatna. 2008. A coalescent framework for comparing alternative models of population structure with genetic data: evolution of Celebes toads. Biology Letters 4: 430-433.
  • Fabre, P.-H., A.H. Reeve, Y.S. Fitriana, K.P. Aplin, and K.M. Helgen. 2018. A new species of Halmaheramys (Rodentia: Muridae) from Bisa and Obi islands (North Maluku Province, Indonesia). Journal of Mammalogy 99: 187-208.
  • Faircloth, B.C. 2013. Illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming. Online resource (http://dx.doi.org/10.6079/J9ILL).
  • Faircloth, B.C. 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32: 786-788.
  • Faircloth, B.C., et al. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology 61: 717-726.
  • Fooden, J. 1969. Taxonomy and evolution of the monkeys of Celebes (Primates: Cercopithecidae). Biobliotheca Primatologica 10: 1-148.
  • Fox, B.J., and G.L. Kirkland, Jr. 1992. An assembly rule for functional groups applied to North American soricid communities. Journal of Mammalogy 73: 491-503.
  • Gause, G.F. 1934. The struggle for existence. Baltimore: Williams and Wilkins.
  • Giam, X., T.H. Ng, V.B. Yap, and H.T.W. Tan. 2010. The extent of undiscovered species in Southeast Asia. Biodiversity and Conservation 19: 943-954.
  • Giarla, T.C., and J.A. Esselstyn. 2015. The challenges of resolving a rapid, recent radiation: empirical and simulated phylogenomics of Philippine shrews. Systematic Biology 64: 727-740.
  • Giarla, T.C., et al. 2018. Isolation by marine barriers and climate explain areas of endemism in an island rodent. Journal of Biogeography 45: 2053-2066.
  • Gloger, C.W. 1833. Das Abandern der Vogel durch Einfluss des Klima's. Breslau: August Shultz.
  • Gorog, A.J., M.H. Sinaga, and M.D. Engstrom. 2004. Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (Maxomys surifer, Leopoldamys sabanus and Maxomys whiteheadi). Biological Journal of the Linnean Society 81: 91-109.
  • Grabherr, M.G., et al. 2011. Trinity: reconstructing a full-length transcriptome without a genome from RNA-seq data. Nature Biotechnology 29: 644-652.
  • Guindon, S., et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321.
  • Hall, R. 1998. The plate tectonics of Cenozoic SE Asia and distribution of land and sea. In R. Hall and J.D. Holloway (editors), Biogeography and geological evolution of SE Asia: 99-132. Leiden: Backhuys Publishers.
  • Handika, H., A.S. Achmadi, J.A. Esselstyn, and K.C. Rowe. 2021. Molecular and morphological systematics of the Bunomys division (Rodentia: Muridae), an endemic radiaton on Sulawesi. Zoologica Scripta 50: 141-154.
  • Hawkins, M.T.R., et al. 2016. Evolutionary history of endemic Sulawesi squirrels constructed from UCEs and mitogenomes sequenced from museum specimens. BMC Ecology and Evolution 16: 80.
  • Heaney, L.R. 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography 10: 15-39.
  • Heaney, L.R., et al. 2011. Seven new species and a new subgenus of forest mice (Rodentia: Muridae: Apomys) from Luzon Island. Fieldiana: Life and Earth Sciences 2: 1-60.
  • Heaney L.R., et al. 2016. Doubling diversity: a cautionary tale of previously unsuspected mammalian diversity on a tropical oceanic island. Frontiers of Biogeography 8: e29667.
  • Hebert, P.D.N., A. Cywinska, S.L. Ball, and J.R. deWaard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, Biological Sciences 270: 313-321.
  • Hickerson, M.J., C.P. Meyer, and C. Moritz. 2006. DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology 55: 729-739.
  • Hickman, G.C. 1979. The mammalian tail: a review of functions. Mammal Review 9: 143-157.
  • Hill, G.E. 2016. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecology and Evolution 6: 5831-5842.
  • Hill, G.E. 2019. Mitonuclear ecology. Oxford: Oxford University Press.
  • Hinckley, A., et al. 2021. Evolutionary history of Sundaland shrews (Eulipotyphla: Soricidae: Crocidura) with a focus on Borneo. Zoological Journal of the Linnean Society. [doi: 10.1093/zoolinnean/zlab045]
  • Hoang, D.T., O. Chernomor, A. von Haeseler, B.Q. Minh, and L.S. Vinh. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518-522.
  • Hoekstra, L.A., M.A. Siddiq, and K.L. Montooth. 2013. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics 195: 1129- 1139.
  • Hope, A.G. 2012. High shrew diversity on Alaska's Seward Peninusla: community assembly and environmental change. Northwestern Naturalist 93: 101-110.
  • Hutterer, R. 2005. Homology of unicuspids and tooth nomenclature in shrews. In J.F. Merritt, S. Churchfield, R. Hutterer, and B. Sheftel (editors), Advances in the biology of shrews II, 379-404. New York: International Society of Shrew Biologists.
  • Hutterer, R., D.S. Balete, T.C. Giarla, L.R. Heaney, and J.A. Esselstyn. 2018. A new genus and species of shrew (Mammalia: Soricidae) from Palawan Island, Philippines. Journal of Mammalogy 99: 518-536.
  • Kalyaanamoorthy, S., B.Q. Minh, T.K.F. Wong, A. von Haeseler, and L.S. Jermiin. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589.
  • Katoh, K., and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
  • Kozlov, A.M., D. Darriba, T. Flouri, B. Morel, and A. Stamatakis. 2019. RaxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453-4455.
  • Lane, N. 2011. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. BioEssays 33: 860-869.
  • Lanfear, R., B. Calcott, D. Kainer, C. Mayer, and A. Stamatakis. 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14: 82.
  • Lanfear, R., P.B. Frandsen, A.M. Wright, T. Senfeld, and B. Calcott. 2017. PartitionFinder2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772-773.
  • Letten, A.D., P.-J. Ke, and T. Fukami. 2016. Linking modern coexistence theory and contemporary niche theory. Ecological Monographs 87: 161-177.
  • Li, Q., et al. 2019. Discovery and description of a mysterious Asian flying squirrel (Rodentia, Sciuridae, Biswamoyopterus) from Mount Gaoligong, southwest China. ZooKeys 864: 147-160.
  • Lim, H.C., et al. 2017. Sundaland's east-west rain forest population structure: variable manifestations in four polytypic bird species examined using RAD-seq and plumage analyses. Journal of Biogeography 44: 2259-2271.
  • Lunde, D.P. 2007. Record of a 17th species of shrew (Soricomorpha: Soricidae) from the Dzanga-Sangha Reserve, Central African Republic. Mammalia 71: 146.
  • Ma, H., et al. 2016. Incompatibility between nuclear and mitochondrial genomes contributes to an interspecies reproductive barrier. Cell Metabolism 24: 283-294.
  • MacArthur, R.H., and E.O. Wilson. 1967. The theory of island biogeography. Princeton: Princeton University Press.
  • Mace, G.M. 2004. The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society B, Biological Sciences 359: 711-719.
  • Maddison, W.P. 1997. Gene trees in species trees. Systematic Biology 46: 523-536.
  • Malaney, J.L., and J.A. Cook. 2018. A perfect storm for mammalogy: declining sample availability in a period of rapid environmental degradation. Journal of Mammalogy 99: 773-778.
  • Malmquist, M.G. 1985. Character displacement and biogeography of the pygmy shrew in northern Europe. Ecology 66: 372-377.
  • Martin, C.H., and E.J. Richards. 2019. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain through an early burst. Annual Review of Ecology, Evolution, and Systematics 50: 569-593.
  • Mayr, E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. Cambridge, MA: Harvard University Press.
  • Mayr, E. 1957. Species concepts and definitions. In E. Mayr (editor,) The species problem: 1-22. Washington, D.C.: American Association for the Advancement of Science.
  • McDowell, S.B., Jr. 1958. The greater Antillean insectivores. Bulletin of the American Museum of Natural History 115 (3): 131-214.
  • Medway, L. 1965. Mammals of Borneo: field keys and an annotated checklist. Journal of the Malayan Branch of the Royal Asiatic Society 203: 1-193.
  • Merker. S., C. Driller, D. Perwitasari-Farajallah, J. Pamungkas, and H. Zischler. 2009. Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers. Proceedings of the National Academy of Sciences of the United States of America 106: 8459-8464.
  • Miller, G.S., and N. Hollister. 1921. Twenty new mammals collected by H.C. Raven in Celebes. Proceedings of the Biological Society of Washington 34: 93-104.
  • Miller, M.A., W. Pfeiffer, and T. Schwartz. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans. Piscataway, NJ: IEEE.
  • Minh, B.Q, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530-1534.
  • Monaghan, M.T., M. Balke, T.R. Gregory, and A.P. Vogler. 2005. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society B, Biological Sciences 360: 1925-1933.
  • Montooth, K.L., C.D. Meiklejohn, D.N. Abt, and D.M. Rand. 2010. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution 64: 3364-3379.
  • Morales, H.E., et al. 2018. Concordant divergence of mitogenomes and mitonuclear gene clusters in bird lineages inhabiting different climates. Nature Ecology and Evolution 2: 1258-1267.
  • Morgan-Richards, M., et al. 2017. Explaining large mitochondrial sequence differences within a population sample. Royal Society Open Science 4: 170730.
  • Mosey, V. 2015. Sejarah Desa Kalait Kecamatan Touluaan Selatan Tahun 1924-2014 [History of Kalait Village, South Touluaan District, 1924-2014]. Jurnal Fakultas Sastra Universitas Sam Ratulangi 3 (1): 1-21.
  • Muller, H.J. 1940. Bearing of the Drosophila work on systematics. In J. Huxley (editor), The new systematics: 185-268. Oxford: Oxford University Press.
  • Musser, G.G. 1982. Results of the Archbold expeditions. No. 110. Crunomys and the small-bodied shrew rats native to the Philippine islands and Sulawesi (Celebes). Bulletin of the American Museum of Natural History 174 (1): 1-95.
  • Musser, G.G. 1987. The mammals of Sulawesi. In T.C. Whitmore (editor), Biogeographical evolution of the Malay archipelago: 73-91. Oxford: Clarendon Press.
  • Musser, G.G. 2014. A systematic review of Sulawesi Bunomys (Muridae, Murinae) with the description of two new species. Bulletin of the American Museum of Natural History 392: 1-313.
  • Nabholz, B., S. Glemin, and N. Galtier. 2008. Strong variations of mitochondrial mutation rate across mammals-the longevity hypothesis. Molecular Biology and Evolution 25: 120-130.
  • Nations, J.A, et al. 2019. A simple skeletal measurement effectively predicts climbing behaviour in a diverse clade of small mammals. Biological Journal of the Linnean Society 128: 323-336.
  • Nugraha, A.M.S., and R. Hall. 2018. Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 490: 191-209.
  • Nurk, S., D. Meleshko, A. Korobeynikov, and P.A. Pevzner. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Research 27: 824-834.
  • Osada, N., and H. Akashi. 2012. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome c oxidase complex. Molecular Biology and Evolution 29: 337-346.
  • Paradis, E., and K. Schliep. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.
  • Patel, M.R., et al., 2016. A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster. eLife 5: e16923.
  • Patterson, D.J., J. Cooper, P.M. Kirk, R.L. Pyle, and D.P. Remsen. 2010. Names are key to the big new biology. Trends in Ecology & Evolution 25: 686-691.
  • Patton, J.L., and M.F. Smith. 1994. Paraphyly, polyphyly, and the nature of species boundaries in pocket gophers (genus Thomomys). Systematic Biology 43: 11-26.
  • Percequillo, A.R., M. Weksler, and L.P. Costa. 2011. A new genus and species of rodent from the Brazilian Atlantic Forest (Rodentia: Cricetidae: Sigmodontinae: Oryzomyini), with comments on oryzomyine biogeography. Zoological Journal of the Linnean Society 161: 357-390.
  • Phillipps, Q., and K. Phillipps. 2016. Phillipps' field guide to the mammals of Borneo and their ecology. Princeton: Princeton University Press.
  • Pichaud, N., et al. 2019. Age dependent dysfunction of mitochondrial and ROS metabolism induced by mitonuclear mismatch. Frontiers in Genetics 10: 130.
  • Preston, F.W. 1960. Time and space and the variation of species. Ecology 41: 612-627.
  • Puillandre, N., A. Lambert, S. Brouillet, and G. Achaz. 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21: 1864-1877.
  • Rannala, B., and Z. Yang. 2013. Improved reversible jump algorithms for Bayesian species delimitation. Genetics 194: 245-253.
  • Ray, J.C., and R. Hutterer. 1995. Structure of a shrew community in the Central African Republic based on the analysis of carnivore scats, with the description of a new Sylvisorex (Mammalia: Soricidae). Ecotropica 1: 85-97.
  • R Core Team. 2019. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Online resource (https://www.Rproject.org/).
  • Rank, N.E., P. Mardulyn, S.J. Heidl, K.T. Roberts, N.A. Zavala, J.T. Smiley, and E.P. Dahloff. 2020. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Evolution 74: 1724-1740.
  • Remsen, J.V. 1995. The importance of continued collecting of bird specimens to ornithology and bird conservation. Bird Conservation International 5: 146-180.
  • Riedel, A., and R.P. Narakusumo. 2019. One hundred and three new species of Trigonopterus weevils from Sulawesi. Zookeys 828: 1-153.
  • Rowe, K.C., A.S. Achmadi, and J.A. Esselstyn. 2014. Convergent evolution of aquatic foraging in a new genus and species (Rodentia: Muridae) from Sulawesi Island, Indonesia. Zootaxa 381: 541-564.
  • Rowe, K.C., A.S. Achmadi, and J.A. Esselstyn. 2016a. Repeated evolution of carnivory among Indo-Australian rodents. Evolution 70: 653-665.
  • Rowe, K.C., A.S. Achmadi, and J.A. Esselstyn. 2016b. A new genus and species of omnivorous rodent (Muridae: Murinae) from Sulawesi, nested within a clade of endemic carnivores. Journal of Mammalogy 97: 978-991.
  • Rowe, K.C., et al. 2019. Oceanic islands of Wallacea as a source for dispersal and diversification of murine rodents. Journal of Biogeography 46: 2752-2768.
  • Ruedi, M. 1995. Taxonomic revision of shrews of the genus Crocidura from the Sunda Shelf and Sulawesi with description of two new species (Mammalia: Soricidae). Zoological Journal of the Linnean Society 115: 211-265.
  • Ruedi, M., M. Auberson, and V. Savolainen. 1998. Biogeography of Sulawesian shrews: testing for their origin with a parametric bootstrap on molecular data. Molecular Phylogenetics and Evolution 9: 567-571.
  • Samuels, J.X., and B. Van Valkenburgh. 2008. Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology 269: 1387- 1411.
  • Setiadi, M.I., et al. 2011. Adaptive radiation and ecological opportunity in Sulawesi and Philippine fanged frog (Limnonectes) communities. American Naturalist 178: 221-240.
  • Sikes, R.S., and the Animal Care and Use Committee of the American Society of Mammalogists. 2016. 2016 guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy 97: 663-688.
  • Simpson, G.G. 1961. Principles of animal taxonomy. New York: Columbia University Press.
  • Sites, J.W., Jr., and J.C. Marshall. 2003. Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology and Evolution 18: 462-470.
  • Sloan, D.B., J.C. Havird, and J. Sharbrough. 2017. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Molecular Ecology 26: 2212-2236.
  • Smith, A.T., and Y. Xie. 2008. A guide to the mammals of China. Princeton: Princeton University Press.
  • Stanley, W.T., and J.A. Esselstyn. 2010. Biogeography and diversity among montane populations of mouse shrew (Soricidae: Myosorex) in Tanzania. Biological Journal of the Linnean Society 100: 669-680.
  • Stanley, W.T., R. Hutterer, T.C. Giarla, and J.A. Esselstyn. 2015. Phylogeny, phylogeography, and geographic variation in the Crocidura monax (Soricidae) species complex from the montane islands of Tanzania, with descriptions of three new species. Zoological Journal of the Linnean Society 174: 185-215.
  • Sukumaran, J., and L.L. Knowles. 2017. Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America 114: 1607-1612.
  • Swanson, M.T., C.H. Oliveros, and J.A. Esselstyn. 2019. A phylogenomic rodent tree reveals the repeated evolution of masseter architectures. Proceedings of the Royal Society B, Biological Sciences 286: 20190672.
  • Thomas, D.C., W.H. Ardi, and M. Hughes. 2011. Nine new species of Begonia (Begoniaceae) from South and West Sulawesi, Indonesia. Edinburgh Journal of Botany 68: 225-255.
  • Thomson, S.A., et al. 2018. Taxonomy based on science is necessary for global conservation. PLoS Biology 16: e2005075.
  • Tobler, M., N. Barts, and R. Greenway. 2019. Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes. Integrative and Comparative Biology 59: 900-911.
  • Tsai, W.L.E., M.E. Schedl, J.M. Maley, and J.E. McCormack. 2020. More than skin and bones: comparing extraction methods and alternative sources of DNA from avian museum specimens. Molecular Ecology Resources 20: 1220-1227.
  • Voris, H.K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1153-1167.
  • Waring, E., et al. 2020. skimr: compact and flexible summaries of data. R package version 2.1.2. Online resource (https://CRAN.R-project.org/ package=skimr).
  • Wayne, R.K., et al. 1990. Large sequence divergence among mitochondrial DNA genotypes within populations of eastern African black-backed jackals. Proceedings of the National Academy of Sciences of the United States of America 87: 1772-1776.
  • Whitmore, T.C. 1984. Tropical rain forests of the Far East. Oxford: Clarendon Press.
  • Whitten, T., G.S. Henderson, and M. Mustafa. 1987. The ecology of Sulawesi. Ecology of Indonesia Series, vol. 4. Sunderland, MA: Sinauer Associates.
  • Wickham, H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.
  • Wickham, H., R. Francois, L. Henry, and K. Muller. 2020. dplyr: a grammar of data manipulation. R package version 1.0.0. Online resource (https:// CRAN.R-project.org/package=dplyr).
  • Wolff, J.N., E.D. Ladoukakis, J.A. Enriquez, and D.K. Dowling. 2014. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philosophical Transactions of the Royal Society B, Biological Sciences 369: 20130443.
  • Woodman, N., and R.M. Timm. 1993. Intraspecific and interspecific variation in the Cryptotis nigrescens species complex of small-eared shrews (Insectivora: Soricidae), with the description of a new species from Colombia. Fieldiana: Zoology (N.S.) 74: 1-30.
  • Wu, B., et al. 2019. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10:127-140.
  • Yang, Z. 2015. The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854-865.
  • Yang, Z., and B. Rannala. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America 107: 9264-9269.
  • Zhang, C., M. Rabiee, E. Sayyari, and S. Mirarab. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19: 153.