Published December 16, 2021 | Version v1
Journal article Open

The first true millipede-1306 legs long

  • 1. Virginia Tech, Blacksburg, USA.
  • 2. Bennelongia Environmental Consultants, Jolimont, Australia & Macquarie University, Sydney, Australia & University of Western Australia, Perth, Australia.
  • 3. Hampden-Sydney College, Hampden Sydney, USA.
  • 4. La Trobe University, Melbourne, Australia.
  • 5. Western Australian Museum, Perth, Australia.
  • 6. Australian National Insect Collection, Canberra, Australia.*email: paulemarek@gmail.com

Description

Marek, Paul E., Buzatto, Bruno A., Shear, William A., Means, Jackson C., Black, Dennis G., Harvey, Mark S., Rodriguez, Juanita (2021): The first true millipede-1306 legs long. Scientific Reports 11 (23126): 1-11, DOI: 10.1038/s41598-021-02447-0

Files

source.pdf

Files (1.4 MB)

Name Size Download all
md5:7b3ce124e2b0e7edf36d3e84e983d88d
1.4 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:7B3CE124FFB0FFEDF36DFF84FF83FF8D
URL
http://publication.plazi.org/id/7B3CE124FFB0FFEDF36DFF84FF83FF8D

References

  • 1. Wilson, H. M. & Anderson, L. I. Morphology and taxonomy of paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. J.Paleontol. 78, 169-184. https://doi.org/10.1666/0022-3360(2004)078%3c0169:MATOPM%3e2.0.CO;2 (2004).
  • 2. Lucas, S. G., Lerner, A. J., Hannibal, J. T., Hunt, A. P. & Schneider, J. W. Trackway of a giant Arthropleura from the Upper Pennsylvanian of El Cobre Canyon, New Mexico. Geology of the Chana Basin. New Mexico Geological Society, 56th Field Conference Guidebook. 279-282 (2005).
  • 3. Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1-9. https://doi. org/10.1038/s42003-020-01392-4 (2020).
  • 4. Rodriguez, J. et al. Step-wise evolution of complex chemical defenses in millipedes: Aphylogenomic approach. Sci. Rep.8, 1-10. https://doi.org/10.1038/s41598-018-19996-6 (2018).
  • 5. Wesener, T. & Moritz, L. Checklist of the Myriapoda in Cretaceous Burmese amber and a correction of the Myriapoda identified by Zhang (2017). Check List. 14, 1131. https://doi.org/10.15560/14.6.1131 (2018).
  • 6. Enghoff, H. Phylogeny of millipedes-a cladistic analysis. J. Zool. Syst. Evol. Res. 22, 8-26. https://doi.org/10.1111/j.1439-0469. 1984.tb00559.x (1984).
  • 7. Wood, W. F., Hanke, F.J., Kubo, I., Carroll, J. A. & Crews, P.Buzonamine, a new alkaloid fromthe defensivesecretion of the millipede, Buzonium crassipes. Biochem. Syst. Ecol. 28, 305-312. https://doi.org/10.1016/S0305-1978(99)00068-X (2000).
  • 8. Saporito, R. A., Donnelly, M. A., Hoffman, R. L., Garraffo, H. M. & Daly, J. W. Asiphonotid millipede (Rhinotus) as the source of spiropyrrolizidineoximes of dendrobatid frogs. J. Chem. Ecol. 29, 2781-2786.https://doi.org/10.1023/B:JOEC.0000008065.28364. a0 (2003).
  • 9. Shear, W. A. Te chemical defenses of millipedes (Diplopoda): biochemistry, physiology and ecology. Biochem. Syst. Ecol. 61, 78-117. https://doi.org/10.1016/j.bse.2015.04.033 (2015).
  • 10. Shear, W.A. Redescription of the South African millipede Cylichnogaster lawrencei Verhoeff, 1937 and notes on the family Siphonotidae (Diplopoda, Polyzoniida). Zootaxa 4079, 119-128. https://doi.org/10.11646/zootaxa.4079.1.8 (2016).
  • 11. Enghoff, H., Dohle, W. & Blower, J. G. Anamorphosis in millipedes (Diplopoda)-the present state of knowledge with some developmental and phylogenetic considerations.Zool. J.Linn.Soc-Lond.109, 103-234. https://doi.org/10.1111/j.1096-3642.1993. tb00305.x (1993).
  • 12. Black, D. G. Diversity and biogeography of Australian millipedes (Diplopoda). Mem. Mus. Vic. 56, 557-561 (1997).
  • 13. Marek, P.E. & Bond, J. E. Rediscovery of the world's leggiest animal. Nature 441, 707. https://doi.org/10.1038/441707a (2006).
  • 14. Marek, P. E., Krejca, J. K. & Shear, W. A. Anew species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626, 1-43. https://doi.org/10.3897/zookeys. 626.9681 (2016).
  • 15. Marek, P. E., Shear, W. A. & Bond, J. E. Aredescription of the leggiest animal, the millipede Illacme plenipes, with notes on its natural history and biogeography (Diplopoda, Siphonophorida, Siphonorhinidae).ZooKeys 241, 77-112. https://doi.org/10.3897/ 2Fzookeys.241.3831 (2012).
  • 16. Halse, S. & Pearson, G. B. Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr. Biol. 13, 17-34. http://www.pensof.net/journals/subtbiol (2014).
  • 17. Guzik, M. T. et al. Is the Australian subterranean fauna uniquely diverse?. Invertebr. Syst. 24, 407-418. https://doi.org/10.1071/ is10038 (2011).
  • 18. Enghoff,H. Te millipede genus Cylindroiulus on Madeira-an insular species swarm (Diplopoda, Julida:Julidae).Entomol.Scand. 18, 1-142 (1982).
  • 19. Liu, W., Golovatch, S. I., Wesener, T. & Tian, M. Convergent evolution of unique morphological adaptations to a subterranean environment in cave millipedes (Diplopoda). PLoS ONE 12, e0170717. https://doi.org/10.1371/journal.pone.0170717 (2017).
  • 20. Hoffman, R. L. On the status of Siphonotus brasiliensis Brandt, and of the diplopod family Siphonotidae (Polyzoniida). Dtsch. entomol. Z. 4, 425-431. https://doi.org/10.1002/mmnd.19770240418 (1977).
  • 21. Michaelsen, W.& Hartmeyer, R.Attems, C. M.T. Graf Von.Myriopoda excl. Scolopendridae.Gustav Fischer, Jena.In. Die Fauna Sudwest-Australiens. 3, 145-204 (1911).
  • 22. Manton, S. M. Teevolution of arthropodan locomotory mechanisms-Part 4 Testructure, habits andevolution of the Diplopoda. Zool. J.Linn. Soc-Lond. 42, 299-368.https://doi.org/10.1111/j.1096-3642.1954.tb02211.x (1954).
  • 23. Garcia, A., Priya, S. & Marek, P. Understanding the locomotion and dynamic controls for millipedes: part 1-kinematic analysis of millipede movements. ASME Smart Mater. Adapt.Struct. Intell. Syst.https://doi.org/10.1115/SMASIS2015-8894 (2015).
  • 24. Macias, A. M.et al. Diversity and function of fungi associated with the fungivorousmillipede Brachycybe lecontii. Fungal Ecol.41, 187-197. https://doi.org/10.1016/j.funeco.2019.06.006 (2019).
  • 25. Black, D. G.Ataxonomic revision of the Australian Siphonotidae (Diplopoda: Polyzoniida).Dissertation, University of California, Davis. (1994).
  • 26. Verhoeff, K. W.Results of Dr. E. Mjoberg's Swedish Scientific Expeditions to Australia 1910-1913 34 Myriapoda:Diplopoda.Ark. zool.16, 1-142 (1924).
  • 27. Shear, W. A., Ferreira, R.L., Iniesta, L.F.M. & Marek, P. Amillipede missing link: Dobrodesmidae, a remarkable new polydesmidan millipede family from Brazil with supernumerary rings (Diplopoda, Polydesmida), and theestablishment of a new suborder Dobrodesmidea.Zootaxa 4178, 371-390. https://doi.org/10.11646/zootaxa.4178.3.4 (2016).
  • 28. Asenjo, A., Pietrobon, T.& Ferreira, R. L.Anew troglobitic species of Metopioxys (Staphylinidae: Pselaphinae) from Brazilianiron ore caves.Zootaxa 4576, 195-200. https://doi.org/10.11646/zootaxa.4576.1.13 (2019).
  • 29. Akkari, N., Gilgado, J. D., Ortuno, V. M. & Enghoff, H. Out of the dark void: Ommatoiulus longicornis n. sp., a new julid from Spain (Diplopoda, Julida) with notes on some troglobiomorphic traits in millipedes. Zootaxa 4420, 415-429. https://doi.org/10. 11646/zootaxa.4420.3.7 (2018).
  • 30. Hedin, M., Derkarabetian, S., Blair, J.& Paquin, P. Sequence capture phylogenomics of eyeless Cicurina spiders from Texas caves, with emphasis on US federally-endangered species from Bexar County (Araneae, Hahniidae). ZooKeys. 769, 49-76. https://doi. org/10.3897/2Fzookeys.769.25814 (2018).
  • 31. Australian Government, Bureau of Meteorology, Kalgoorlie-Boulder Airport Climate Statistics.Retrieved 7 July 2021.http://www. bom.gov.au/climate/averages/tables/cw_012038_All.shtml.
  • 32. Shear, W. A. & Shelley, R.M. Solved afer 140 years: the identity of the millipede Polydesmus cavicola Packard, 1877, and proposal of Packardesmus n gen (Diplopoda:Polydesmida:Macrosternodesmidae).Zootaxa 4559, 384-390.https://doi.org/10.11646/zoota xa.4559.2.11 (2019).
  • 33. Giachino, P. M., Eberhard, S. & Perina, G. Arich fauna of subterranean short-range endemic Anillini (Coleoptera, Carabidae, Trechinae) from semi-arid regions of Western Australia. ZooKeys. 1044, 269-337. https://doi.org/10.3897/zookeys.1044.58844 (2021).
  • 34. Christiansen, K. Morphological adaptations. In Encyclopedia of Caves (eds White, W. B. & Culver, D. C.) 517-528 (Elsevier, Amsterdam, 2012).
  • 35. Williams, I. R. Yilgarn Block. Geological Survey of Western Australia, Te Geology of Western Australia, Western Australia Geological Survey, ISBN 978-0-7244-6084-7, 33-81 (1975).
  • 36. Hyde, J., Cooper, S. J. B., Humphreys, W. F., Austin, A. D. & Munguia, P. Diversity patterns of subterranean invertebrate fauna in calcretes of the Yilgarn Region, Western Australia. Mar. Freshwater Res. 69, 114-121. https://doi.org/10.1071/MF17005 (2018).
  • 37. Watson, A., Judd, S. & Watson, J.Flowering plant and vertebrate diversity of the Great Western Woodlands in the Southern Goldfields. In: Proceedings of the Goldfield Environmental Management Workshop (editors: A.B. Fourie, M. Tibbett), Australian Centre for Geomechanics, Te University of Western Australia. 116-124 (2008).
  • 38. Car, C. A.& Harvey, M. S. Te millipede genus Antichiropus (Diplopoda:Polydesmida:Paradoxosomatidae), part 2: Species of the Great Western Woodlands region of Western Australia.Rec. West.Aust.Mus. 29, 20-77.https://doi.org/10.18195/issn.0312-3162. 29(1).2014.020-077 (2014).
  • 39. Shorter, P. L., Hennen, D. A. & Marek, P. E. Cryptic diversity in Andrognathus corticarius Cope, 1869 and description of a new Andrognathus species from New Mexico (Diplopoda, Platydesmida, Andrognathidae). ZooKeys 786, 19-41. https://doi.org/10. 3897/zookeys.786.27631 (2018).
  • 40. Andrews, S. FastQC:a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/proje cts/fastqc/ (2010).
  • 41. Bolger,A.M., Lohse, M. & Usadel, B. Trimmomatic:Aflexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.http:// www.usadellab.org/cms/?page=trimmomatic (2014).
  • 42. Allen, J.M., Lafrance, R., Folk, R. A., Johnson, K.P.& Guralnick, R.P.ATRAM 2.0: Animproved, flexible locusassembler for NGS data. Evol. Bioinform. https://doi.org/10.1177/1176934318774546 (2018).
  • 43. Zerbino, D. R. & Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829. https://doi.org/10.1101/gr.074492.107 (2008).
  • 44. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6, 1-11. https://doi.org/10.1186/1471-2105-6-31 (2005).
  • 45. Katoh, K. & Standley, D. M. MAFFT multiplesequence alignment sofware version 7: Improvements in performance and usability. Mol. Biol. Evol.30, 772-780. https://doi.org/10.1093/molbev/mst010 (2013).
  • 46. Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534.https://doi.org/10.1093/molbev/msaa015 (2020).
  • 47. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. https://doi.org/10.1093/molbev/msx281 (2018).