Journal article Open Access

Detecting African hoofed animals in aerial imagery using convolutional neural network

Yunfei Fang; Shengzhi Du; Larbi Boubchir; Karim Djouani


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Anchor design</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Animal detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Atrous convolution</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Faster R-CNN</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Small object detection</subfield>
  </datafield>
  <controlfield tag="005">20211218014839.0</controlfield>
  <controlfield tag="001">5787947</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Shengzhi Du</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Larbi Boubchir</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Karim Djouani</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">546796</subfield>
    <subfield code="z">md5:ea45c802d2845a6277b6f056e2fb54fe</subfield>
    <subfield code="u">https://zenodo.org/record/5787947/files/6.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5787947</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">133-143</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">IAES International Journal of Robotics and Automation (IJRA)</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Yunfei Fang</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Detecting African hoofed animals in aerial imagery using  convolutional neural network</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Small unmanned aerial vehicles applications had erupted in many fields including conservation management. Automatic object detection methods for such aerial imagery were in high demand to facilitate more efficient and economical wildlife management and research. This paper aimed to detect hoofed animals in aerial images taken from a quad-rotor in Southern Africa. Objects captured in this way were small both in absolute pixels and from an object-to-image ratio point of view, which were not perfectly suit for general purposed object detectors. We proposed a method based on the iconic Faster region-based convolutional neural networks (R-CNN) framework with atrous convolution layers in order to retain the spatial resolution of the feature map to detect small objects. A good choice of anchors was of prime importance in detecting small objects. The performance of the proposed Faster R-CNN with atrous convolutional filters in the backbone network was proven to be outstanding in our scenario by comparing to other object detection architectures.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.11591/ijra.v10i2.pp133-143</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
27
8
views
downloads
Views 27
Downloads 8
Data volume 4.4 MB
Unique views 24
Unique downloads 8

Share

Cite as