Journal article Open Access

Detecting African hoofed animals in aerial imagery using convolutional neural network

Yunfei Fang; Shengzhi Du; Larbi Boubchir; Karim Djouani

Small unmanned aerial vehicles applications had erupted in many fields including conservation management. Automatic object detection methods for such aerial imagery were in high demand to facilitate more efficient and economical wildlife management and research. This paper aimed to detect hoofed animals in aerial images taken from a quad-rotor in Southern Africa. Objects captured in this way were small both in absolute pixels and from an object-to-image ratio point of view, which were not perfectly suit for general purposed object detectors. We proposed a method based on the iconic Faster region-based convolutional neural networks (R-CNN) framework with atrous convolution layers in order to retain the spatial resolution of the feature map to detect small objects. A good choice of anchors was of prime importance in detecting small objects. The performance of the proposed Faster R-CNN with atrous convolutional filters in the backbone network was proven to be outstanding in our scenario by comparing to other object detection architectures.

Files (546.8 kB)
Name Size
6.pdf
md5:ea45c802d2845a6277b6f056e2fb54fe
546.8 kB Download
23
7
views
downloads
Views 23
Downloads 7
Data volume 3.8 MB
Unique views 20
Unique downloads 7

Share

Cite as