Conference paper Open Access

Clinical trajectories estimated from bulk tumoral molecular proles using elastic principal trees

Alexander Chervov; Andrei Zinovyev


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">clinical trajectories,</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">breast cancer</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">transcriptome</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">principal tree</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">survival analysis</subfield>
  </datafield>
  <controlfield tag="005">20211216014841.0</controlfield>
  <controlfield tag="001">5782816</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">18-22 July 2021</subfield>
    <subfield code="g">IJCNN2021</subfield>
    <subfield code="a">International Joint Conference on Neural Networks-2021</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institut Curie</subfield>
    <subfield code="a">Andrei Zinovyev</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1446940</subfield>
    <subfield code="z">md5:6ac1cae2a3b737f64a82ea67c877223a</subfield>
    <subfield code="u">https://zenodo.org/record/5782816/files/ChervovZinovyev_BulkOmics2021.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.ijcnn.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-01-27</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ipc</subfield>
    <subfield code="o">oai:zenodo.org:5782816</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Institut Curie</subfield>
    <subfield code="a">Alexander Chervov</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Clinical trajectories estimated from bulk tumoral molecular proles using elastic principal trees</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ipc</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">826121</subfield>
    <subfield code="a">individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">ANR-19-P3IA-0001</subfield>
    <subfield code="a">PaRis Artificial Intelligence Research InstitutE</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Clinical trajectory is a clinically relevant sequence of ordered patient phenotypes representing consecutive states of a developing disease and leading to some final state. Extracting trajectories from large scale&amp;nbsp;medical data is of great interest for dynamical phenotyping of various diseases but remains a challenge for&amp;nbsp;machine learning methods, especially in the case of synchronic (with short follow up) observations. Here&amp;nbsp;we describe an approach for trajectory-based analysis of cancer data using elastic principal trees and test&amp;nbsp;it on a large collection of molecular tumoral profiles for breast cancer. We show that the disease progress&amp;nbsp;quantified with pseudotime (the geodesic distance from the root) along a particular trajectory can serve&amp;nbsp;as a significant prognostic factor, not redundant with gene expression-based predictors. We conclude that&amp;nbsp;application of the elastic principal trees to transcriptomic data can be of interest for clinical applications.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5782815</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5782816</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
79
34
views
downloads
All versions This version
Views 7979
Downloads 3434
Data volume 49.2 MB49.2 MB
Unique views 7070
Unique downloads 3434

Share

Cite as