Conference paper Open Access
Alexander Chervov; Andrei Zinovyev
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/2d6e79aa-8a27-4efb-ac1c-a40d8bfc8be1/ChervovZinovyev_BulkOmics2021.pdf" }, "checksum": "md5:6ac1cae2a3b737f64a82ea67c877223a", "bucket": "2d6e79aa-8a27-4efb-ac1c-a40d8bfc8be1", "key": "ChervovZinovyev_BulkOmics2021.pdf", "type": "pdf", "size": 1446940 } ], "owners": [ 65392 ], "doi": "10.5281/zenodo.5782816", "stats": { "version_unique_downloads": 34.0, "unique_views": 70.0, "views": 79.0, "version_views": 79.0, "unique_downloads": 34.0, "version_unique_views": 70.0, "volume": 49195960.0, "version_downloads": 34.0, "downloads": 34.0, "version_volume": 49195960.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.5782816", "conceptdoi": "https://doi.org/10.5281/zenodo.5782815", "bucket": "https://zenodo.org/api/files/2d6e79aa-8a27-4efb-ac1c-a40d8bfc8be1", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5782815.svg", "html": "https://zenodo.org/record/5782816", "latest_html": "https://zenodo.org/record/5782816", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5782816.svg", "latest": "https://zenodo.org/api/records/5782816" }, "conceptdoi": "10.5281/zenodo.5782815", "created": "2021-12-15T15:00:42.792767+00:00", "updated": "2021-12-16T01:48:41.957793+00:00", "conceptrecid": "5782815", "revision": 2, "id": 5782816, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.5782816", "description": "<p>Clinical trajectory is a clinically relevant sequence of ordered patient phenotypes representing consecutive states of a developing disease and leading to some final state. Extracting trajectories from large scale medical data is of great interest for dynamical phenotyping of various diseases but remains a challenge for machine learning methods, especially in the case of synchronic (with short follow up) observations. Here we describe an approach for trajectory-based analysis of cancer data using elastic principal trees and test it on a large collection of molecular tumoral profiles for breast cancer. We show that the disease progress quantified with pseudotime (the geodesic distance from the root) along a particular trajectory can serve as a significant prognostic factor, not redundant with gene expression-based predictors. We conclude that application of the elastic principal trees to transcriptomic data can be of interest for clinical applications.</p>", "language": "eng", "title": "Clinical trajectories estimated from bulk tumoral molecular proles using elastic principal trees", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "5782815" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "5782816" } } ] }, "communities": [ { "id": "ipc" } ], "grants": [ { "code": "826121", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::826121" }, "title": "individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology", "acronym": "iPC", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } }, { "code": "ANR-19-P3IA-0001", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100001665::ANR-19-P3IA-0001" }, "title": "PaRis Artificial Intelligence Research InstitutE", "acronym": "PRAIRIE", "program": "", "funder": { "doi": "10.13039/501100001665", "acronyms": [ "Not Available" ], "name": "Agence Nationale de la Recherche", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100001665" } } } ], "keywords": [ "clinical trajectories,", "breast cancer", "transcriptome", "principal tree", "survival analysis" ], "publication_date": "2021-01-27", "creators": [ { "affiliation": "Institut Curie", "name": "Alexander Chervov" }, { "affiliation": "Institut Curie", "name": "Andrei Zinovyev" } ], "meeting": { "acronym": "IJCNN2021", "url": "https://www.ijcnn.org/", "dates": "18-22 July 2021", "title": "International Joint Conference on Neural Networks-2021" }, "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.5782815", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 79 | 79 |
Downloads | 34 | 34 |
Data volume | 49.2 MB | 49.2 MB |
Unique views | 70 | 70 |
Unique downloads | 34 | 34 |