Conference paper Open Access

Clinical trajectories estimated from bulk tumoral molecular proles using elastic principal trees

Alexander Chervov; Andrei Zinovyev


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/2d6e79aa-8a27-4efb-ac1c-a40d8bfc8be1/ChervovZinovyev_BulkOmics2021.pdf"
      }, 
      "checksum": "md5:6ac1cae2a3b737f64a82ea67c877223a", 
      "bucket": "2d6e79aa-8a27-4efb-ac1c-a40d8bfc8be1", 
      "key": "ChervovZinovyev_BulkOmics2021.pdf", 
      "type": "pdf", 
      "size": 1446940
    }
  ], 
  "owners": [
    65392
  ], 
  "doi": "10.5281/zenodo.5782816", 
  "stats": {
    "version_unique_downloads": 34.0, 
    "unique_views": 70.0, 
    "views": 79.0, 
    "version_views": 79.0, 
    "unique_downloads": 34.0, 
    "version_unique_views": 70.0, 
    "volume": 49195960.0, 
    "version_downloads": 34.0, 
    "downloads": 34.0, 
    "version_volume": 49195960.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.5782816", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.5782815", 
    "bucket": "https://zenodo.org/api/files/2d6e79aa-8a27-4efb-ac1c-a40d8bfc8be1", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5782815.svg", 
    "html": "https://zenodo.org/record/5782816", 
    "latest_html": "https://zenodo.org/record/5782816", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5782816.svg", 
    "latest": "https://zenodo.org/api/records/5782816"
  }, 
  "conceptdoi": "10.5281/zenodo.5782815", 
  "created": "2021-12-15T15:00:42.792767+00:00", 
  "updated": "2021-12-16T01:48:41.957793+00:00", 
  "conceptrecid": "5782815", 
  "revision": 2, 
  "id": 5782816, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.5782816", 
    "description": "<p>Clinical trajectory is a clinically relevant sequence of ordered patient phenotypes representing consecutive states of a developing disease and leading to some final state. Extracting trajectories from large scale&nbsp;medical data is of great interest for dynamical phenotyping of various diseases but remains a challenge for&nbsp;machine learning methods, especially in the case of synchronic (with short follow up) observations. Here&nbsp;we describe an approach for trajectory-based analysis of cancer data using elastic principal trees and test&nbsp;it on a large collection of molecular tumoral profiles for breast cancer. We show that the disease progress&nbsp;quantified with pseudotime (the geodesic distance from the root) along a particular trajectory can serve&nbsp;as a significant prognostic factor, not redundant with gene expression-based predictors. We conclude that&nbsp;application of the elastic principal trees to transcriptomic data can be of interest for clinical applications.</p>", 
    "language": "eng", 
    "title": "Clinical trajectories estimated from bulk tumoral molecular proles using elastic principal trees", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5782815"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5782816"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "ipc"
      }
    ], 
    "grants": [
      {
        "code": "826121", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::826121"
        }, 
        "title": "individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology", 
        "acronym": "iPC", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "ANR-19-P3IA-0001", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100001665::ANR-19-P3IA-0001"
        }, 
        "title": "PaRis Artificial Intelligence Research InstitutE", 
        "acronym": "PRAIRIE", 
        "program": "", 
        "funder": {
          "doi": "10.13039/501100001665", 
          "acronyms": [
            "Not Available"
          ], 
          "name": "Agence Nationale de la Recherche", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100001665"
          }
        }
      }
    ], 
    "keywords": [
      "clinical trajectories,", 
      "breast cancer", 
      "transcriptome", 
      "principal tree", 
      "survival analysis"
    ], 
    "publication_date": "2021-01-27", 
    "creators": [
      {
        "affiliation": "Institut Curie", 
        "name": "Alexander Chervov"
      }, 
      {
        "affiliation": "Institut Curie", 
        "name": "Andrei Zinovyev"
      }
    ], 
    "meeting": {
      "acronym": "IJCNN2021", 
      "url": "https://www.ijcnn.org/", 
      "dates": "18-22 July 2021", 
      "title": "International Joint Conference on Neural Networks-2021"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.5782815", 
        "relation": "isVersionOf"
      }
    ]
  }
}
79
34
views
downloads
All versions This version
Views 7979
Downloads 3434
Data volume 49.2 MB49.2 MB
Unique views 7070
Unique downloads 3434

Share

Cite as