Conference paper Open Access
Alexander Chervov; Andrei Zinovyev
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5782816</identifier> <creators> <creator> <creatorName>Alexander Chervov</creatorName> <affiliation>Institut Curie</affiliation> </creator> <creator> <creatorName>Andrei Zinovyev</creatorName> <affiliation>Institut Curie</affiliation> </creator> </creators> <titles> <title>Clinical trajectories estimated from bulk tumoral molecular proles using elastic principal trees</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>clinical trajectories,</subject> <subject>breast cancer</subject> <subject>transcriptome</subject> <subject>principal tree</subject> <subject>survival analysis</subject> </subjects> <dates> <date dateType="Issued">2021-01-27</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5782816</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5782815</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ipc</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Clinical trajectory is a clinically relevant sequence of ordered patient phenotypes representing consecutive states of a developing disease and leading to some final state. Extracting trajectories from large scale&nbsp;medical data is of great interest for dynamical phenotyping of various diseases but remains a challenge for&nbsp;machine learning methods, especially in the case of synchronic (with short follow up) observations. Here&nbsp;we describe an approach for trajectory-based analysis of cancer data using elastic principal trees and test&nbsp;it on a large collection of molecular tumoral profiles for breast cancer. We show that the disease progress&nbsp;quantified with pseudotime (the geodesic distance from the root) along a particular trajectory can serve&nbsp;as a significant prognostic factor, not redundant with gene expression-based predictors. We conclude that&nbsp;application of the elastic principal trees to transcriptomic data can be of interest for clinical applications.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/826121/">826121</awardNumber> <awardTitle>individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</awardTitle> </fundingReference> <fundingReference> <funderName>Agence Nationale de la Recherche</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100001665</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/ANR//ANR-19-P3IA-0001/">ANR-19-P3IA-0001</awardNumber> <awardTitle>PaRis Artificial Intelligence Research InstitutE</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 79 | 79 |
Downloads | 34 | 34 |
Data volume | 49.2 MB | 49.2 MB |
Unique views | 70 | 70 |
Unique downloads | 34 | 34 |