Journal article Open Access

Automated hierarchical classification of scanned documents using convolutional neural network and regular expression

Rifiana Arief; Achmad Benny Mutiara; Tubagus Maulana Kusuma; Hustinawaty


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Convolutional neural network hierarchical</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Regular expression</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Scanned documents</subfield>
  </datafield>
  <controlfield tag="005">20211214134842.0</controlfield>
  <controlfield tag="001">5778289</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Gunadarma University</subfield>
    <subfield code="a">Achmad Benny Mutiara</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Gunadarma University</subfield>
    <subfield code="a">Tubagus Maulana Kusuma</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Gunadarma University</subfield>
    <subfield code="a">Hustinawaty</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1288731</subfield>
    <subfield code="z">md5:5b11e35f472d0650c8de5f272bdcdc99</subfield>
    <subfield code="u">https://zenodo.org/record/5778289/files/106 24398 EMr 6aug 5jul 7jan F.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-02-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5778289</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1018-1029</subfield>
    <subfield code="n">1</subfield>
    <subfield code="p">International Journal of Electrical and Computer Engineering (IJECE)</subfield>
    <subfield code="v">12</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Gunadarma University</subfield>
    <subfield code="a">Rifiana Arief</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Automated hierarchical classification of scanned documents using convolutional neural network and regular expression</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This research proposed automated hierarchical classification of scanned documents with characteristics content that have unstructured text and special patterns (specific and short strings) using convolutional neural network (CNN) and regular expression method (REM). The research data using digital correspondence documents with format PDF images from Pusat Data Teknologi dan Informasi (Technology and Information Data Center). The document hierarchy covers type of letter, type of manuscript letter, origin of letter and subject of letter. The research method consists of preprocessing, classification, and storage to database. Preprocessing covers extraction using Tesseract optical character recognition (OCR) and formation of word document vector with Word2Vec. Hierarchical classification uses CNN to classify 5 types of letters and regular expression to classify 4 types of manuscript letter, 15 origins of letter and 25 subjects of letter. The classified documents are stored in the Hive database in Hadoop big data architecture. The amount of data used is 5200 documents, consisting of 4000 for training, 1000 for testing and 200 for classification prediction documents. The trial result of 200 new documents is 188 documents correctly classified and 12 documents incorrectly classified. The accuracy of automated hierarchical classification is 94%. Next, the search of classified scanned documents based on content can be developed.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.11591/ijece.v12i1.pp1018-1029</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
38
26
views
downloads
Views 38
Downloads 26
Data volume 33.5 MB
Unique views 36
Unique downloads 25

Share

Cite as