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ABSTRACT: Label-free quantitation by data independent
methods (for instance MSE) is growing in popularity due to
the high technical reproducibility of mass spectrometry
analysis. The recent introduction of Synapt hybrid instruments
capable of incorporating ion mobility separation within mass
spectrometry analysis now allows acquisition of high definition
MSE data (HDMSE). HDMSE enables deeper proteome
coverage and more confident peptide identifications when
compared to MSE, while the latter offers a higher dynamic
range for quantitation. We have developed synapter as, a
versatile tool to better evaluate the results of data independent
acquisitions on Waters instruments. We demonstrate that
synapter can be used to combine HDMSE and MSE data to
achieve deeper proteome coverage delivered by HDMSE and more accurate quantitation for high intensity peptides, delivered by
MSE. For users who prefer to run samples exclusively in one mode, synapter allows other useful functionality like false discovery
rate estimation, filtering on peptide match type and mass error, and filling missing values. Our software integrates with existing
tools, thus permitting us to easily combine peptide quantitation information into protein quantitation by a range of different
approaches.

KEYWORDS: data independent acquisition, data combination, missing values, false discovery rate, quantitation, identification transfer,
HDMSE

■ INTRODUCTION

The advancement of mass spectrometry over the past decade
has greatly facilitated proteomics research. Initially, the goal of
mass spectrometry based proteomics studies was to define the
‘functional’ genome by identifying as many protein constituents
of a given sample as possible.1 The introduction of stable
isotope labeling strategies either in vivo, or in vitro have enabled
mass spectrometry based quantitative assessments of protein
abundances between samples. The utilization of stable isotope
labels allows the differentiation of samples while permitting
their coanalysis and affords numerous benefits. One of the most
desirable of these benefits is that the proportion of the technical
variation arising from sample preparation or LC−MS can be
accounted for depending on the method employed.2 In recent
years, however, label-free protein quantitation has become
popular alternative.3 Evans et al. estimated that label-free
approaches were the most popular methods of protein
quantitation in 2011.4 This can be attributed principally to
the development of robust LC−MS platforms but may also be
in response to the reported limitations of stable isotope labeling
strategies and their associated cost.4,5

In all label-free methods, samples under comparison are
analyzed during separate runs, typically employing liquid
chromatography coupled to tandem mass spectrometry (LC−
MS/MS) where information is captured for precursor ions

(MS1) and their collision induced dissociation fragments
(MS2). The simplest label-free method involves taking the
number of spectra acquired and assigned to peptides from the
same protein as a measure of abundance. This method,
generally referred to as spectral counting, can be executed in
several ways, including normalization of counts by the total
number of peptides which can theoretically be generated from
the protein.6 In an alternative approach, ion current recorded
for a peptide ion is utilized as a measure of its abundance. It has
been demonstrated that ion amount and signal are linearly
correlated within the dynamic range of a mass spectrometer in
simple and complex mixtures.7−9 Given the stochastic nature of
intensity based tandem mass spectrometry, some peptides are
not identified in some LC−MS/MS runs, giving rise to missing
values.10 In the case of spectral counts, however, label-free
quantitation does not necessarily require the same set of
peptides to be identified across all LC−MS experiments.
Instead, the number of spectra measured is correlated to the
abundance of their protein of origin in each sample
independently.3 Thus, if a protein has been identified in
different samples by a different set of peptides, quantitative
analysis on the protein level is still possible.
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In label-free quantitation involving ion intensity measure-
ments, the most common approach is to perform quantitation
on peptides that have been consistently identified in all LC−
MS/MS runs,11 since direct comparison of integrated signals
between different peptides is not possible given difference in
sequence-specific ionization efficiency of peptides. Although
these differences may be averaged out over multiple peptides
from the same proteins,8 missing values can have significant
impact on this approach reducing the number of ions common
to all experiments which can be taken for quantification.3

Missing values are prevalent in acquisition methods where
selection of a precursor ion is dictated by its intensity such as
data dependent acquisition (DDA).10 DDA enables the
sequential isolation and fragmentation of peptide ions,
providing criteria (set a priori) about the precursors have
been satisfied. Determining the frequency to switch between
MS1 and MS2 modes is typically a trade-off between the
optimal peak shape that is required for accurate quantification
and generation of fragmentation data for identification
purposes.12 Assuming a peptide ion is exclusively isolated, the
resulting spectrum constitutes fragment ions derived only from
the selected parent ion. In reality this is not a trivial exercise,
but a compromise is reached between completely isolating the
ion of choice (selectivity) and transmission of this ion
(sensitivity).13,14 A number of alternative, data independent
acquisition (DIA) approaches have been introduced (parallel
acquisition, MSE,15 SWATH,16 PAcIFIC,17 AIF,18 SWIFT
parallel fragmentation19) that avoid sampling of peptide ions
inherent of DDA experiments and their associated chal-
lenges.10,20

It is also possible to reduce the number of missing values in
DDA or DIA approaches by transferring identifications
between LC−MS/MS runs. This involves matching features
(ions or peptides) from different acquisitions, in one of which
the feature has not been identified and is assigned the sequence
from its matching pair in the other acquisition.21 Initially it was
suggested that features could be matched solely on the basis of
recorded m/z (accurate mass tag).22 However such matching
would require sub ppm resolution23 and later it was suggested
that feature retention time can be used as additional
discriminatory information to match features between
runs24,25 (hence features started to be referred to as accurate
mass retention time tags). The retention time of a peptide is
more prone to systematic variation than its m/z between runs,
hence a large number of retention time alignment algorithms
have been suggested to address systematic retention time
variability.21

The MSE data independent acquisition method (initially
suggested as parallel fragmentation approach for IMS-MS
system26), commercialized by Waters, is composed of alternate
scans of low and high energy.15 In low energy scans, eluting
peptide ions are detected and analyzed intact. In high energy
scans, peptide ions are fragmented by employing a collision
energy ramp and the resulting fragment ions are in turn
detected. Postprocessing software allows the retrospective
pairing of fragments with their precursors. In theory, issues
surrounding the stochastic sampling of precursor ions are
circumvented as fragment ions generated by all eluting peptide
ions are detected. Instead, this approach is limited by the extent
to which correct assignation of fragment ions to precursors is
achieved. Waters have introduced the Synapt suite of hybrid
mass spectrometers with ion mobility separation (IMS)
capability that enables the drift time of a precursor to be

recorded within an MSE experiment (referred to as high
definition MSE experiment, HDMSE).27 Since fragmentation
occurs after IMS, fragments are expected to have the same
mobility profile as their precursors.28,29 This additional
discrimination of ions afforded by HDMSE experiments enables
more accurate assignment of fragments to their precursors and
therefore results in higher number of confident peptide
identifications (see ref 30).
ProteinLynx Global Server (PLGS) is a software developed

by Waters, which is used to process MSE and HDMSE data.15

PLGS employs two algorithms to process the raw data. The
first one, Apex3D, is used to subtract noise and integrate ion
current signals across their chromatographic elution. Its output
is a list of ions with intensities above a user specified threshold.
The second one, Pep3D, collapses ions determined to be
isotopes and charge states of common peptides into EMRTs.
An EMRT (exact mass and retention time) is a peptide of
unknown sequence, which is characterized by mass, retention
time, intensity and mobility (in case of HDMSE). The fragment
ions are then tentatively associated with precursors based on
the similarity of their elution and mobility profiles. In most
cases, the same fragment is associated with multiple precursors
at this stage. Prior to database searching which is performed by
an Ion Accounting algorithm, a decoy database is concatenated
to the forward database. The database search is protein centric
and is performed in three stages, referred to as passes. During
the first pass, PLGS iteratively cycles through the data,
removing EMRTs determined to be peptides derived from
the most confident protein identification. Fragments tentatively
associated with the identified EMRT and corresponding to b
and y fragment ions of the sequence assigned to it are also
removed. The process terminates when the rate of decoy
protein identifications exceeds a user specified FDR threshold.
The FDR reported is therefore calculated at the protein level,
even though peptides are given a score indicative of the
strength of the spectrum:sequence match. Pass two of the
database search continues to deplete data, but this time
peptides are only identified for proteins which have been
identified in the first pass. This time peptides can be subjected
to missed cleavages, variable modifications and in-source
fragmentation. During the third and final pass of the search, a
fragment is allowed to have higher intensity than its precursor,
a situation characteristic of in-source fragmentation of highly
labile peptides. PLGS provides exhaustive output from all three
algorithms (Apex3D, Pep3D and Ion Accounting) as comma-
separated variable (csv) or XML format files.
Previously (see ref 30), we have demonstrated that, despite

the clear advantages of using IMS for identification, there is an
associated truncation of the dynamic range and a reduction in
sensitivity on a Synapt G2 platform, an effect that appears to
change on a peptide-by-peptide basis. We postulate, therefore,
that the combination of data obtained with and without IMS
will allow deeper coverage of the proteome than by MSE alone
and more accurate quantitation for high intensity peptides
delivered by HDMSE alone. The approach, although con-
ceptually simple, requires specialized computational tools to
accurately and efficiently combine experimental outputs.
Here, we present powerful and flexible software, synapter, for

the thorough examination of data generated from DIA
experiments performed on Waters mass spectrometers. Its
central functionality is to transfer identifications between LC−
MS/MS runs by transferring high confidence identifications
between independent acquisitions, for example, from HDMSE
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to equivalent MSE acquisitions. Synapter facilitates the
reduction of missing values across an experimental set and by
doing so maximizes the number of usable quantitative
measurements thereby increasing both proteome coverage
and quantation accuracy. Unlike other packages,9,31,32 which
provide similar functionality, synapter is capable of determining
optimal thresholds for identification transfer and minimizes the
effects of FDR increase that arise when transferring
identifications across multiple runs. Furthermore, synapter
also allows versatile filtering, including removal of non-
proteotypic peptides and the ability to filter upon identification
statistics. Finally, synapter is written as an add-on package for
the statistical programming language R,33 allowing direct
analysis of its output through numerous statistical tools
developed by the R community, including MSnbase,34 a
package specifically developed for the analysis of LC−MS
data .

■ MATERIALS AND METHODS

Sample Preparation

Two standard samples were prepared and used for all analyses.
Preparation of a six protein standard spike series in an E. coli
background is described in the accompanying article (see ref
30). Three commercially available standards were used for
preparation of a UPS1 spike series in E. coli background: UPS1
(Sigma), enolase (Waters) and E. coli (Waters) digest standard.
Two vials of E. coli digest standard from the same lot

(specified digest amount of 100 μg) were each resuspended in
200 μL, 3% acetonitrile (ACN) 0.1% formic acid (FA),
sonicated for 10 min in a water bath and pooled. The
concentration of digest was approximated using a nanodrop-
1000 (Thermo Scientific) according to its absorbance at 280
nm to be 0.45 mg/mL and 0.43 mg/mL for the two
respectively, which is close to theoretical (0.5 mg/mL).
Enolase (specified digest amount of 1 nmol) was

resuspended in 500 μL of 3% acetonitrile (ACN) 0.1% formic
acid (FA) as described for E. coli digest standard. Enolase stock

Table 1. Dilution Series for UPS1 Experiment in E. coli Background

UPS1 amount per 10
μL injection (fmol)

UPS1 amount in
63 μL (fmol)

volume of 10 fmol
UPS1 stock (μL)

volume of 50 fmol
UPS1 stock (μL)

volume of 0.45 μg/μL
E. coli stock (μL)

volume of 100 fmol/
μL enolase (μL)

volume of 3% ACN,
0.1% FA (μL)

10 63 6.3 0 21 6.3 29.4
25 157.5 15.75 0 21 6.3 20
50 315 31.5 0 21 6.3 4.2
100 630 0 12.6 21 6.3 23.1
150 945 0 18.9 21 6.3 16.8
200 1260 0 25.2 21 6.3 10.5

Figure 1. (A) Overview of synapter. (B) Synergize algorithm for identification transfer. Data is represented by white rectangles and computational
procedures by gray boxes with rounded corners. (C) IR selection and identification transfer to create a master IR file.
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concentration was estimated to be 1 pmol/μL (half the
expected) by amino acid analysis performed in duplicate
(PNAC, AAA Service, Dept. Biochemistry, University of
Cambridge).
Proteins were digested to peptides as described in ref 30. The

three components were mixed just prior to LC−MS analysis to
generate 6 different peptide mixtures as described in Table 1;
the concentration of E. coli and enolase digests was invariantly
150 ng/μL and 10 fmol/μL, respectively, and UPS1 either 1,
2.5, 5, 10, 15, or 20 fmol/μL. Sixty-three microliters of every
mixture were prepared to allow six 10 μL injections of every
mixture (three for both modes)

LC−MS Configuration

See ref 30.

Data Processing

ProteinLynx Global Server (PLGS) version 2.5.2 was used to
process .raw files and to perform the database search. Data was
lock-mass corrected post acquisition. Identical background
subtraction parameters were used for acquisitions made in both
modes for consistency. Thresholds for low and high energy
scan ions and peptide intensity combined across charge states
and isotopes were fixed at 150, 10, and 750 counts, respectively.
As shown in the accompanying manuscript,30 HDMSE is
around 30% less sensitive than MSE on a Synapt G2 platform. It
is also expected that HDMSE has lower levels of noise than
MSE. Thus different combinations of processing parameters for
data processing and combination of acquisition made in MSE

and HDMSE may need optimizing for different samples,
although the thresholds described above were found to give
consistently good performance on a variety of different sample
types to date (data not shown). Database searches were
performed at 100% protein FDR to maximize the number of
reported decoy peptides to compute distribution of scores for
decoy peptides. A protein was allowed to be identified by a
single peptide. At least 1 fragment was required per peptide and
three fragment ions required for protein level identification in
accordance with the recommended parameters. The resulting
pep3DAMRT.csv and final_peptide.csv files generated by
PLGS provide a list of all EMRTs and peptide identifications,
respectively.

■ RESULTS
Synapter is a multifunctional software package for post-PLGS
DIA data analysis. We first describe the underlying algorithm in
detail and then present results of its application. Two data sets
of standard proteins, spiked into an E. coli background, are used
to demonstrate ability of synapter to combine data from
independent MSE or HDMSE acquisitions and its integration
into a pipeline for differential protein expression analysis.

Algorithm Development and Applications

Algorithm Overview. The primary function of the
synapter software is to combine quantitation and identification
information from two separate data independent acquisitions,
as demonstrated in Figure 1A. Throughout the article, the
source of identification is referred to “Identification Run” (IR)
and the source of quantitation data is labeled “Quantitation
Run” (QR). The procedure can also be perceived as
transferring identifications from IR to QR; hence, we refer to
it as “identification transfer”.
The process of identification transfer is implemented by a

function called synergise in the synapter package. The synergise

algorithm is summarized in Figure 1B. The default, albeit
customizable pipeline is as follows. First, the PLGS output from
IR and QR is loaded into the R environment and filtered on
match type. Only peptides that are not subject to missed
cleavages, variable modifications and insource fragmentation
from pass 1 (PepFrag1) and 2 (pepFrag2) are retained. Then
data is filtered on peptide FDR (computed by synapter),
protein FDR (computed by PLGS) and only proteotypic
peptides are retained. Then, a group of high confidence
peptides that have been identified in both IR and QR are
selected to model retention time differences between the two
acquisitions. Optimal retention time and precursor mass
tolerances for best identification transfer are estimated by a
grid search and used during identification transfer. The
synergise algorithm thus results in a composite data set
composed of quantitation information from QR and identi-
fication information from IR.
When dealing with large data sets, the procedure of

transferring identifications from each run to all others may be
time-consuming and suboptimal. In addition, transferring
identifications from multiple acquisitions in series will
accumulate false identifications and result in an increased and
unknown final FDR, as opposed to the FDR controlled for
individual runs. synapter controls for this effect by choosing an
optimal combination of acquisitions to transfer identifications
from. These acquisitions are used to generate a new, composite
in silico IR35 (Figure 1C). This composite or “master” IR is then
used as the sole identification source when transferring
identification to individual QRs.

The Synergise Algorithm. Data Filtering. Synapter
requires three types of files produced by PLGS: two
final_peptide.csv files (one for IR and one for QR) and a
pep3DEMRT.csv file from the QR. The final_peptide files
contain peptide identifications as determined from the PLGS
database search, the pep3DEMRT file contains all recorded
EMRTs from QR regardless of whether these EMRTs were
identified by PLGS. Additionally, the fasta protein sequence
database, as used in PLGS, is required in order to filter upon
proteotypic peptides. After loading the data, synapter filters
peptides based upon user specified preferences. Synapter allows
a series of flexible filtering strategies which retain only
confidently identified peptides prior to proceeding with the
retention time alignment, identification transfer parameter
estimation and the identification transfer.
Peptides identified from both regular and decoy databases

that are subject to variable modifications, missed cleavages or
in-source fragmentation are removed, since they are perceived
as being unsuitable for label-free quantitation. Using the
peptide scores determined during the PLGS database search,
identification statistics are computed for fully tryptic,
unmodified peptides identified in pass one (PepFrag1) and
pass two (PepFrag2) database searches (peptides identified by
pass three are in-source fragments and thus not used).
Individual peptide p-values are computed as described in Kal̈l
et al.36 Each p-value is empirically estimated by computing the
percentage of decoy peptide scores that receive a score equal or
higher that the target peptide. The respective regular and decoy
(random) score distributions can be plotted (Figure 2) for
quality assessment. The p-values are then adjusted by one of
the following procedures: Bonferroni single-step adjustment for
strong control of the family wise error rate, the Benjamini and
Hochberg (BH, default) step-up FDR-controlling procedure37

and Storey and Tibshirani’s q-value metric.36,38 The identi-

Journal of Proteome Research Article

dx.doi.org/10.1021/pr300776t | J. Proteome Res. 2013, 12, 2340−23532343



fication statistics are calculated for pass one and pass two
peptides independently allowing user to perform filtering based
on these statistics (Figure 3).
In addition to filtering upon the peptide identification

reliability, it is recommended to filter the input on peptide mass
tolerance (in ppm), and protein level false discovery rate (as
computed during PLGS database search). Synapter also allows
filtering on peptide uniqueness, removing any peptides that are
not tryptic or proteotypic. When performing in silico digestion
synapter uses generally accepted rules for trypsin specificity:
cleavage at C-terminus of K and R, but not if these amino acids
are followed by P.39 It has been reported that miscleavages also
occur where K, R, D or E follow a tryptic site and such peptides
are used by PLGS for quantitation.40 Thus synapter removes
these peptides where filtering for database uniqueness is applied
as the validity of using these peptides for label-free quantitation
is questionable, and the reproducibility of these miscleavages
has yet to be determined.
Retention Time Alignment. LC−MS is prone to variation in

peptide retention time. Deviation in peptide retention time
between runs has been characterized previously and shown to
adopt either a common behavior whereby modest fluctuations
in temperature cause the retention time of coeluting peptides to
drift collectively, or to a lesser extent, peptide-specific
deviations where by retention times for individual peptides
change stochastically between runs. synapter uses locally
weighted scatterplot smoothing41 (LOESS) to model collective
retention time deviation behavior (Figure 4). LOESS
application for this purpose has been described previously.9,42

Grid Search. The identification transfer process involves
finding EMRTs in QR which correspond to identified peptides
in IR based on the expected similarity of their retention time
and mass. In practice, retention time and the measured mass of
a peptide do not replicate precisely between LC−MS runs.
Thus, in order to transfer identifications, synapter needs to
estimate the variability in retention time and mass measure-

ments between QR and IR. This variability is expressed as mass
and retention time tolerances during identification transfer. If
two EMRTs in QR and IR differ in mass and retention time no
more than the tolerances, they are assumed to represent the
same peptide.
Synapter uses the number of standard deviations (nsd) to

express the retention time tolerances during identification
transfer. The mass tolerance is defined as the absolute deviation
between the mass of the QR EMRT and the theoretical mass of
the IR EMRT given its assigned peptide sequence. Thus the
mass tolerance during identification transfer is based solely on
the distribution of mass measurement errors in the QR.
The distributions of deviations from the retention time

model and mass measurement errors can be visualized to assess
their overall variability between runs. Although it is possible to
manually select a specific tolerance, to achieve optimal
identification transfer it is recommended to allow synapter to
perform a grid search, during which a set of mass and retention
time tolerance combinations are tested (Figure 5) on the full
data set or a subset of data. For each pair of parameters, the
percentage of total unique EMRT assignments is calculated and
the combination that maximized this value is used for
identification transfer.
Using a set of confidently identified peptides during the grid

search allows synapter to compute the false positive and
negative rate of identification transfer for all tolerance
combinations tested. This is done by comparing which
sequence a QR EMRT has been assigned during the database

Figure 2. Distribution of PLGS scores for pass one (PepFrag1) and
pass two (PepFrag2) unmodified fully tryptic peptides. Blue, decoy
peptides; red, regular peptides. The scores for HDMSE peptides from
the regular database are on average higher than for MSE peptides.

Figure 3. Cumulative plot of FDR for HDMSE and MSE data. The plot
shows the number of identified peptides (y axis) should a user choose
to accept a given FDR (x axis). The dashed line is the suggested FDR
default of 0.01. Red and blue are fully tryptic unmodified peptides
from database search pass one and two, respectively.
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search and which sequence has been assigned to it during
identification transfer. The best case scenario (a true positive)
occurs when there is a single QR EMRT within the retention
time and mass tolerance of the IR peptide and the QR EMRT
has been assigned the same sequence during the PLGS
database. In practice, however, there are several reasons why
this may not happen, as illustrated in Figure 6. First, unique
assignments can be either true positives (Figure 6A) or false
positives (Figure 6C). Alternatively, no assignment might be
possible within the defined tolerances (Figure 6B). False
positives are possible if the QR EMRT of the peptide, whose
identification is being transferred, has a higher deviation in
retention time and/or mass measurement than the tolerances
and a different QR EMRT falls within the defined tolerance
window. A false positive assignment, can also be explained
when a peptide was originally mis-identified in IR or QR. This
situation seems to be prevalent among false positive assign-
ments, due to the high proportion of PepFrag2 instances
among the unique false assignment, especially for MSE runs
(Figure 2), which are known to be less reliable than PepFrag1.
Finally, multiple assignments can include the true EMRT
(Figure 6D) or not (Figure 6E). These situations highlight the
importance of retention time and mass tolerance settings for
optimal assignment. The distribution of assignment outcomes
(Figure 6) varies depending on the combination of grid search
tolerances. Small tolerances will result in less multiple QR
EMRT assignments, but also in an increase of zero assignments.
Using the set of common high confidence IR and QR peptides
defined earlier, synapter systematically counts the number of
unique, multiple, correct and incorrect assignments, to provide
detailed figures of the identification transfer accuracy. Another
scenario must be considered, in which more than one peptide
sequence could be assigned to one QR EMRT. Such a situation
is possible when two EMRTs are resolved and identified in the

IR but are not resolved (and hence recorded as a single EMRT)
in the QR (Figure 6F). If the two IR identifications were
independently transferred to the QR EMRT, the latter would
be assigned two sequences. This can only occur when the IR
has higher peak capacity than QR, for example when the IR and
QR are acquired in HDMSE and MSE mode respectively. We
estimated that, in our experiments, 0.6% of all MSE EMRTs
identified by identification transfer from HDMSE were assigned
two sequences. It is worth reinforcing that even when a
recorded MSE EMRT has been assigned a single sequence by
identification transfer, this does not necessarily imply that it
could not be composite of several EMRTs. Indeed, it has been
estimated that at 25000 fwhm mass spectrometry resolution,
around 35 and 20% of the EMRTs are composite in MSE and
HDMSE, respectively.43

Identification Transfer. Identification transfer is the process
of assigning QR EMRTs with a sequence by pairing it with an
IR peptide in order to retrieve quantitative measurement from
QR. This process, automated by synapter, is controlled by
retention time and mass error tolerances that were optimized in
the grid search. Quantitative data is retrieved when a single QR

Figure 4. Retention time deviation and its model by synapter between
IR (10 fmol of UPS1 in 1.5 μg of E. coli background analyzed in
HDMSE mode, replicate 1) and QR (10 fmol of UPS1 in E. coli
background analyzed in MSE mode, replicate 1). Each point represents
a single peptide identified in both QR and IR. Deviation in retention
time between runs is plotted against peptide retention time in IR run.
The red curve represents the LOESS fitted retention time model with
span parameter of 0.05. Dark blue and light blue are areas of one and
two standard deviations around the fitted model.

Figure 5. Graphical representation of a grid search result. Each
combination of retention time (nsd) and mass tolerance (ppm) is
represented by a cell in the table. Here, IR is 10 fmol of UPS1 in 1.5
μg of E. coli background analyzed in HDMSE mode, replicate 1 and
QR is 10 fmol of UPS1 in E. coli background analyzed in MSE mode,
replicate 1. The color of each cell represents the proportion of
successfully transferred IR identifications at particular tolerances. To
the right is the conversion scale between color and proportion of
successful identification transfers. Dark blue squares correspond to the
best performing tolerance parameter pairs (in this case 12 ppm and 3
nsd).
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EMRT falls within the defined mass and retention time
tolerance limits (Figure 6B), in other cases (Figure 6A, C−E)
NA is assigned.
Master Files. Choosing Runs to Transfer Identification

From. Missing values is one of the primary limitations of label-
free proteomics. Currently, a number of algorithms are available
that simply transfer identifications between LC−MS runs under
comparison. Since incorrect identifications are less likely to
replicate between runs, the number of correct identifications

will accumulate to a lesser degree than the total number of

incorrect identifications upon transfer between LC−MS runs.

Thus the FDR for the whole analysis is always expected to be

higher than the FDR for separate runs if identifications are

transferred between runs. Assuming that incorrect identifica-

tions never replicate the total FDR for the analysis can be

calculated using eq 1:

Figure 6. Potential outcomes of identification transfer. Each dot is a QR EMRT with a corresponding mass (y-axis) and retention time (x-axis).
Green dots represent the correct QR EMRT identified during the database search for the given IR peptide under consideration, while red dots are
other EMRTs. The rectangle height and width are mass and retention time tolerances respectively. Rectangle centers, represented by crosses,
correspond to the theoretical mass and corrected retention time of the IR peptide. (A) Unique correct transfer (true positive). (B) No transfer. (C)
Unique incorrect assignment (false positive). (D) Multiple assignment with the true result. (E) Multiple incorrect assignments. (F) Applicable only if
IR has higher peak capacity and/or dimensionality than QR (e.g., MSE and HDMSE). A number of EMRTs can co-occupy the same m/z and
retention time space, and hence will be recorded as a single EMRTs in MSE (purple). They may however be resolved by IMS and hence be recorded
as separate EMRTs (blue and red) in HDMSE. If these EMRTs will then get identified in HDMSE and their identification transferred to MSE, the
same MSE EMRT can be assigned several sequences.
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Where FDRtotal is the false discovery rate of the analysis after
identification transfer, FDR is the peptide level false discovery
rate in individual runs, ITi is the total number of identifications
in run i, IUi is the number of identifications unique to run i and
INU is the number of (nonunique) identifications seen in more
than one run. The numerator of the equation estimates the
total number of incorrect identifications across all LC−MS
acquisitions identifications are transferred from and the
denominator represents the total number of peptide identi-
fications in those acquisitions. This experiment-wide FDR
calculation is based upon the premise that incorrect
identifications never replicate and thus provides a stringent
assessment of FDR, and as such reflects the maximal FDR
within an experiment. As additional acquisitions are used as a
source of identification there is a diminishing return of IU,
while the numerator of eq 1 rises proportionally and hence
increases the FDRtotal. There is thus a compromise between
increasing the number of identifications and increasing FDR.
Synapter enables a compromise by computing the total

number of identifications and the new total FDR for every
possible combination of runs using eq 1 (Figure 7). A user can
then specify the total FDR for the analysis they are willing to
accept, and synapter will return the optimal combination of
runs that has the highest number of identifications at or below
the specified total FDR.
Master File Construction. Synapter enables the construction

of a master IR and subsequent identification transfer between
the master IR and each QR. The master IR can be a composite
of IRs that represents the maximal experiment-wide identi-
fication rate for a given FDR as described above, or be
constructed from any relevant set of IRs.

The master IR is constructed by iteratively incorporating
identifications from successive runs using a variation on the
identification transfer protocol discussed above. The runs
chosen for identification transfer are first ranked in order of the
number of identifications. The identifications from the run with
the highest number of peptides are used to initiate the master
IR. Construction of the master IR then becomes an iterative
process whereby successive runs are selected one at a time in
order of their rank and new identifications are added to the
master IR. Each time a new run is added, synapter models the
new peptides’ retention times against those in the first master
IR data. Thus when a peptide is added to master its retention
time is not taken from the run of its origin, but is modeled
using LOESS.
Applications

Despite DIA approaches such as MSE and HSMSE that do not
employ precursor selection, not all recorded EMRTs are
assigned a sequence, which results in different, but comple-
mentary sets of peptides being identified between related
samples. The approach described above and automated by
synapter exploits this complementarity by using an identi-
fication transfer protocol that maximizes the number of
identifications within an experimental design while controlling
for the FDR. This approach benefits both MSE and HSMSE and
depending upon the goals of the analysis can be used to
increase the number of IDs, quantifiable measurements and
quantitative accuracy of the analysis.

Increasing the Number of Identifications. Transferring
identifications between runs allows for an increase in the
number of peptide identifications in each sample. To
demonstrate this, we mixed two commercially available
complex samples: UPS1, an equimolar standard of 48 human
proteins was spiked into an E. coli whole cell lysate background
at increasing amounts to allow injection of 10, 25, 50, 100, 150,
200 fmols of standard in 1.5 μg of E. coli lysate. For each UPS1

Figure 7. Visualization of synapter’s output for the selection of runs to combine into a MSE (A) and HDMSE (B) master for UPS1 spiked in E. coli
background data set. Since there were 18 runs in MSE and 18 runs in HDMSE, 262125 combinations are possible for both modes. Each point
represents a separate combination, that is characterized by the total FDR (x axis), the number of unique peptides (y axis) and the number of runs in
the combination (from 2 runs on the left of the graph to 18 runs in the upper right corner). Light diamonds represent the best performing
combination with FDR under 2%.
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loading, triplicate acquisitions in both HDMSE and MSE were
made in order to compare differences in their identification rate
and the improvement when used in conjunction with synapter.
We used this data set to demonstrate the three types of analysis
possible as follows: MSE only (for instruments with no IMS
capability), HDMSE only (when accurate quantitative measure-
ments of higher abundance proteins are not crucial) and a
combination of both modes.
Data from acquisitions in both modes were first processed by

PLGS and then by synapter using default peptide identification
statistics (BH, 0.01), precursor mass tolerance (20 ppm),
protein false discovery rates (0.01) and retaining unique
proteotypic peptides only. As expected, HDMSE yielded, on
average, more peptide identifications at all UPS1 loadings both
for UPS1 proteins and the E. coli background (Table 2).

Although the total number of peptides identified appeared to
be more or less consistent across all UPS1 loadings, the number
of UPS1 peptides gradually increased at the expense of E. coli
background identifications indicative of ion suppression effects.
Two master files were created from MSE runs and from

HDMSE runs respectively. Specific acquisitions were chosen by
synapter, as described above, to provide the maximum number
of identifications with total FDR for analysis less than 0.02
(Figure 7). It is noteworthy to highlight that if identifications
from all of HDMSE or MSE runs were combined the FDRtotal
would increase to almost 0.1. Synapter selected acquisitions
with the following UPS1 loadings to combine into the master:
25 fmol (3rd replicate) and 100 fmol (2nd replicate) for the
MSE master and 10 fmol UPS1 (3rd replicate), 50 fmol UPS1
(2nd replicate) and 200 fmol UPS1 (2nd replicate) for HDMSE

master. As predicted by eq 1, acquisitions selected for
construction of the master IRs exhibit the most dissimilar
sets of peptide identifications so to maximize overall peptide
diversity. MSE and HDMSE masters contained 4433 and 5912
peptide identifications respectively.
Identifications were then transferred in turn from MSE

master to MSE runs, HDMSE master to HDMSE runs and
HDMSE master to MSE runs to simulate MSE only, HDMSE

only and combined analysis types respectively. Optimal
parameters for identification transfer were determined by grid
search: mass tolerance from 5 to 25 ppm, retention time
tolerance from 1 to 5 nsd, proportion of data 25%. Transferring
identifications from MSE master to MSE runs increased
identification rate by 12% on average and from HDMSE master
to HDMSE by 5% on average. The most substantial increase of

36% was observed when HDMSE master was used against MSE

runs (Table 3).

Reducing the Number of Missing Values. A primary
limitation of quantitative label-free proteomics is the accumu-
lation of missing values that hinder downstream analysis.
Implicit to using a master IR for identification is the reduction
of missing values. MSE and HDMSE acquisitions at 25 and 50
fmol UPS1 loading were used to demonstrate the beneficial
effect of identification transfer on missing data through a typical
analysis for differential protein expression.
The master was created from 50 fmol first and second

replicate HDMSE runs, as suggested by synapter, and had 5612
peptides with a total FDR of under 0.02. The master
identifications were then transferred to the MSE acquisitions
of 25 and 50 fmol UPS1 in E.coli background (three replicates
for both loadings, six samples in total) and the quantitative
measurements extracted were further analyzed within R. Figure
8 compares missing data distribution for the 6 samples utilized
in the statistical analysis described below. Absence and presence
of quantitative data are shown as white and black blocks
respectively at the peptide (top) and protein (bottom) level for
synapter (left) and MSE (right) data. For peptide and protein
levels respectively, MSE data exhibits 33 and 22% of missing
values, which are reduced to 14 and 2% with using the HDMSE

master IR. More striking than the reduction in percentage of
missing values, however, is the positive impact this procedure
has on the final complete, analyzable data set. Table 4 illustrates
the number of features with 0, 1, ... to 5 missing values. If we
consider that a peptide or a protein must have at least 2 out of 3
possible quantitation values for both 25 fmol and 50 fmol UPS1
sample groups to be deemed usable in the subsequent statistical
test, the percentage of usable peptides increases from 55 to 87%
and usable proteins from 71 to 98%.

Statistical Analysis of Differential Protein Expression.
Using MSnbase, peptide level quantitation for the 25 fmol and
50 fmol UPS1 samples described above was combined in order
to perform protein level quantitation by the top 3 method8 and
protein quantitative data was normalized using the E. coli
background proteins as a common reference across samples.
Forty-seven out of 48 UPS1 proteins were included in the final
data set composed of a total of 705 proteins quantified in at
least 2 out of 3 replicates in each group. A parametric t test
assuming unequal variances was applied to find differentially
expressed proteins. At a false discovery rate of 10%, 31 spiked
in proteins were identified as differentially expressed, with no
false positives (E. coli background protein).

Table 2. Summary of UPS1 Spiked into E. coli Background
Experimenta

total number of peptides
identified UPS1 peptides identified

UPS1
loading
(fmol) MSE HDMSE MSE UPS1

HDMSE

UPS1

10 3210 (±150) 4288 (±55) 32 (±3) 84 (±8)
25 3246 (±512) 4449 (±225) 141 (±48) 246 (±22)
50 3659 (±143) 4982 (±87) 313 (±5) 377 (±16)
100 3486 (±87) 4266 (±383) 443 (±9) 455 (±15)
150 3198 (±175) 3652 (±516) 470 (±13) 472 (±2)
200 3054 (±156) 4124 (±207) 495 (±5) 512 (±4)

aColumns 2−3 represent total number of peptides identified, columns
4−5 UPS1 peptides that have passed synapter filtering. All entries are
arithmetic means of three replicates injections.

Table 3. Number of EMRTs that Have Been Assigned a
Sequence by Identification Transfera

UPS1 loading
(fmol)

MSE data MSE

master
MSE data HDMSE

master
HDMSE data
HDMSE master

10 3578 (±121) 4341 (±36) 4193 (±181)
25 3425 (±557) 4296 (±656) 4816 (±30)
50 3981 (±21) 4696 (±92) 4441 (±590)
100 3787 (±234) 4421 (±138) 4379 (±15)
150 3739 (±55) 4523 (±66) 4450 (±44)
200 3681 (±214) 4379 (±204) 4373 (±345)

aThe mode of data acquisition and the master file used are described
in the column label. All entries are arithmetic means of three replicate
injections.
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Figure 9 summarizes the results, showing that the majority of
UPS1 proteins exhibit the expected fold-change and show
significant q-values. The detailed description of the statistical
analysis, including data and R code, is provided in the package
documentation to allow other users to reproduce our findings
or replicate this pipeline on their own data.
Increasing Quantitation Accuracy for High Intensity

Peptides. Careful inspection of peptides quantified in MSE and
HDMSE reveals that IMS, albeit beneficial to the identification

process, can lead to a combination of transmission loss and
detector saturation, both of which occur in a peptide specific
manner. To improve quantitative accuracy of higher intensity
peptides, while maximizing the proteome coverage, it is
beneficial to combine MSE and HDMSE data sets, using
HDMSE acquisitions as a source of peptide identifications (IR)
and retrieve quantitative measurements from MSE acquisitions
(QR). To demonstrate the advantage of combining MSE and
HDMSE data we spiked a six protein digest standard in E. coli

Figure 8. Illustration of missing data (white stripes) across an experiment containing 2 groups (25 and 50 fmols of spikes respectively) of 3 samples.
The top and bottom figures represent peptide and protein data respectively. Synapter, on the left, substantially reduces the proportion of missing
quantitation data compared to MSE (right).
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lysate background at increasing amounts to allow injection of
25, 50, 75, 100, 250 fmol of standards and 1.5 μg of E. coli lysate
on column. Each spike loading was analyzed in triplicate in
both modes. All acquisitions, from both modes were analyzed
in PLGS and the resultant peptide identifications subjected to
synapter filtering (peptide FDR = 0.01, protein FDR = 0.01,
database uniqueness filter applied). Identifications were trans-
ferred to all MSE QRs from the second replicate of 250 fmol
loading HDMSE acquisition, since this was the HDMSE run
that contained most (72) spike peptides suitable for
quantitation.
Seventeen spike peptides were observed in at least two of

three replicates at all loadings under all three experimental
setups (MSE, HDMSE, HDMSE identifications transferred to
MSE). In order to assess the linearity of response, peptide
intensities were plotted against their loadings. Then a linear
regression was extrapolated from the first four points (25, 50,
75, 100 fmol). If the 250 fmol measurement deviated from the
value predicted by the regression model by more than 2
standard errors of the mean and at least 10% of the predicted
value, the peptide was considered to exhibit a nonlinear
response, characteristic of saturation with IMS. In total, 13 out

of 17 peptides exhibited saturation in HDMSE mode and one
peptide in MSE mode. Figure 10 demonstrates two of such
peptides chosen at random. Similar plots are provide in
Supplementary Figure 1, Supporting Information, for all
peptides. Although MSE provides a higher dynamic range, its
peak capacity is lower than that in HDMSE.43,44 Thus, while
MSE is more accurate at high intensities, HDMSE quantitation
is more precise, especially for lower abundance peptides (see ref
30 for a detailed discussion of respective benefits).

■ DISCUSSION
Label-free approaches are becoming one of the most popular
methods of quantitative proteomics.4 Although improvements
in mass spectrometry and their DIA methods serve to improve
both qualitative and quantitative analysis, large gains can be
achieved by experimental design and careful treatment of data,
postacquisition. To this end, we have developed software that
serves to reduce the data to a set of confident peptide
identifications and transfer these between acquisitions to
maximize protein coverage and subsequent quantitation
accuracy. Synapter seeks to optimize a number of key
parameters during this process that have profound influence
on data analysis, while it also provides comprehensive graphical
representations of the data to provide the opportunity for the
user to dictate these parameters. Development of the synapter
package has allowed us to highlight some label-free quantitation
subtleties. Several commercial and noncommercial software is
available for label-free area under the curve quantitation on
other platforms (for review see Vandenbogaert et al.21). Since
synapter is designed for DIA acquisitions performed on Waters
instruments, below we specifically compare its functionality
with similarly targeted software.
First, synapter allows versatile filtering of the data. As

mentioned earlier, PLGS performs the database search in a total
of three stages. Only high confidence, unmodified fully tryptic
peptides from stage one and two are used for label-free
quantitation. Additional peptide identifications reinforce the
confidence of protein identifications, playing no role in
quantitation. Thus different criteria of stringency are applied
to peptides identified during different stages of the database
search.15 Figure 2 demonstrates that peptide identifications
made in the second stage of the database search tend to have an
overall lower score than identifications from first stage of
database search. Synapter removes peptide types which cannot
be used in quantitation (missed cleavage, in source fragment,
etc.) and treats peptides from stages one and two of the
database search separately when computing identification
statistics. In comparison, Scaffold, a proprietary third party
software that uses the Peptide Prophet45 algorithm to estimate
peptide FDR, splits peptides into four groups depending on
their charge (from +1 to +4) and normal distributions are fitted
through scores distribution of decoy and regular identifications.
Thus Scaffold mixes peptides identified at different stages of
PLGS’s database search, which, given that different criteria of
stringency is applied to different peptide identifications, can
have an adverse effect on computing scores distributions.
Second, synapter, similarly to other software (Expression,9

Rosetta Elucidator,31 Progenesis32) allows transferring identi-
fications between data independent acquisitions performed on
Waters instruments. A number of published algorithms were
validated by comparing identifications of peptide ions acquired
by MS/MS and identifications for the same EMRTs transferred
from other acquisitions. In addition Prakash et al. demonstrated

Table 4. Influence of the Identification Transfer on the
Number of Missing Values at the Peptide and Protein Level
for the Six Samples, Three for 25 fmol UPS1 Samples, Three
for 50 fmol UPS1 Samplesa

number of missing values out of a total of 6

0 1 2 3 4 5 total

Peptide MSE 2047 574 505 459 547 1039 5171
Peptide
synapter

2850 1519 267 184 167 249 5236

Protein MSE 378 47 40 40 46 79 630
Protein
synapter

674 26 6 5 3 8 722

Usable features Nonusable features
aNote that one of the 6 usable synapter proteins with 2 missing values
(last row), bears the two missing values in the same group (25 fmol
UPS1 loading), effectively resulting in 705 usable proteins instead of
706.

Figure 9. Volcano plot of the analysis for differentially expressed
proteins at 25 and 50 fmol UPS1 loading. The quantitative
information was acquired in MSE mode and identifications were
transferred from HDMSE master. Blue and gray dots represent UPS1
and E. coli background proteins respectively. There are 31 UPS1 and 1
E. coli proteins that were found to be differentially expressed (q-value
lower than 0.1).
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how implementing different tolerances affects the number of
correct and incorrect identifications transferred.46 Synapter
models retention time and selects retention time and mass
tolerances using peptides identified by MS/MS in both IR and
QR, which allows it to compute the number and proportion of
correct identification transfers at different tolerances during
synapter analysis in an automated fashion. Other methods have
been proposed to compute the proportion of incorrectly
transferred identifications that do not rely on a set of
commonly identified peptides.47

As shown in Figure 5 and in Supplementary Tables 1−3,
Supporting Information, selecting optimal tolerances has a
profound effect on the success of identification transfer. The
grid search employed by synapter provides an automated way
to assess and select optimal tolerance values while simplifying
the task for the user. Other packages compatible with Waters
.raw data or PLGS output mostly require either a user to specify
tolerances a priori, or simply use a set of common tolerances for
every analysis. Rosetta Elucidator requires a priori specifications
of tolerance parameters and Expression does not allow a user to
specify tolerances through the graphical user interface, it
initially uses 20 ppm mass and 5 min retention time tolerances
and then iteratively refines LOESS retention time model.
Furthermore, transferring identifications from multiple runs

in the analysis will cause a proportional increase of incorrect
identifications (FDR) within the analysis and none of the
software that we are aware of attempt to estimate the extent or
minimize this effect. Synapter, however, enables a balance
between increasing the number of successfully quantified
peptides and increasing FDR, allowing the user to decide
which is preferable within a large scale experiment.
One of the potential applications of identification transfer is

combining qualitative and quantitative information acquired
with and without IMS to benefit from deeper proteome
coverage and higher dynamic range. Necessity to run samples in
both modes, only marginally increases the instrument time

required for analysis, since replication is needed in MSE for
accurate quantitation. Indeed, replicating identical HDMSE

acquisitions leads to a marginal increase of identifications,
and consecutively a high FDR increase (eq 1). For typical
analyses we would recommend to run a number of biological
replicates for each condition as QR MSE acquisitions and a
single pool of replicates for each condition as IR HDMSE

acquisition. Thus if analysis was performed in triplicate in MSE,
an additional 33% of instrument time would be required for a
substantially improved proteome coverage and reduction in
missing data by transferring identifications from IR HDMSE.
The proportion of HDMSE IR acquisitions will subsequently
decrease as the number of QR replication increases.
Third, synapter is developed for the R programming

environment, which is specifically designed for robust statistical
data analysis and allows efficient results visualization. While
other commercial software (including those mentioned above),
provide their own statistical tools, none can provide the
flexibility and quality of R and the many packages that provide
ready to use functionality highly relevant to sound high
throughput data analysis. In our case, we have used the
MSnbase package for downstream data manipulations, built-in
statistical functionality to perform the statistical test and the q-
value package48 for FDR control. All these packages are directly
interoperable and constitute a concise and consistent data
analysis pipeline. Additional biologically relevant gene ontology
and pathway analysis are readily available from the
Bioconductor project49

Finally, synapter comes with extensive documentation. It is
distributed through the Bioconductor project (http://www.
bioconductor.org/packages/release/bioc/html/synapter.html),
benefitting of a facile installation framework and community
support. It can be operated at different levels allowing maximal
flexibility. A simple graphical user interface allows a new user to
utilize the package with minimal R knowledge. A single and
flexible function allows one to complete the synergise algorithm

Figure 10. The intensity of two spike peptides at different loadings in HDMSE (red dots), MSE (blue dots) and MSE for which identifications are
transferred from HDMSE (purple dots). Error bars represent 2 standard errors of the mean. The lines (red, HDMSE; blue, MSE; dashed purple, MSE

for which identifications are transferred from HDMSE) are regressions through the first four points to approximate expected peptide intensity at 250
fmol. The intensity of peptides is normalized to a group of E. coli background proteins (sum of top three most intense peptides for each protein). As
expected, no saturation is observed in MSE runs or when identifications are transferred to MSE runs from HDMSE.
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for easy and reproducible batch processing. Experienced users
and developers have access to low-level functionality to control
every aspect of the pipeline. Supplementary File 1, Supporting
Information, provides a brief practical overview of synapter to
demonstrate its ease of use. Although a complete synapter
pipeline can be executed without user intervention, we provide
detailed logs and numerous quality and summary plots and
tables as a comprehensive html report for careful inspection.
While automated data analyses is essential in any contemporary
high-throughput experiment, it is crucial that users are given the
possibility to keep track of the processing and transformation
applied to the data and the decisions that are made for them.
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