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Quantitative mass-spectrometry-based spatial proteo-
mics involves elaborate, expensive, and time-consuming
experimental procedures, and considerable effort is in-
vested in the generation of such data. Multiple research
groups have described a variety of approaches for estab-
lishing high-quality proteome-wide datasets. However,
data analysis is as critical as data production for reliable
and insightful biological interpretation, and no consistent
and robust solutions have been offered to the community
so far. Here, we introduce the requirements for rigorous
spatial proteomics data analysis, as well as the statistical
machine learning methodologies needed to address
them, including supervised and semi-supervised machine
learning, clustering, and novelty detection. We present
freely available software solutions that implement innova-
tive state-of-the-art analysis pipelines and illustrate the
use of these tools through several case studies involving
multiple organisms, experimental designs, mass spec-
trometry platforms, and quantitation techniques. We also
propose sound analysis strategies for identifying dynamic
changes in subcellular localization by comparing and con-
trasting data describing different biological conditions.
We conclude by discussing future needs and develop-
ments in spatial proteomics data analysis. Molecular &
Cellular Proteomics 13: 10.1074/mcp.M113.036350, 1937–
1952, 2014.

The knowledge of a protein’s subcellular localization is of
paramount biological importance, and the reliable high-
throughput assessment of localization, and as a consequence

mislocalization, of proteins is critical to our understanding of
cellular biology. Indeed, a protein must be localized to its
intended subcellular compartment in order to interact with its
binding partners and substrates and thus be functionally ac-
tive. These subcellular niches are manifold and include organ-
elles, which are physically isolated from the rest of the cell by
lipid bilayers, as well as macro-molecular complexes of pro-
teins and nucleic acids such as the nucleolus, ribosomes, or
centrosomes. These various microenvironments represent
specialized compartments with unique and dedicated func-
tions (1). It has been shown that there is a significant corre-
lation between disease classes and subcellular localizations
(2), and it is well established that loss or gain of function of
proteins in many diseases can be attributed to protein mislo-
calizations (3–5), further highlighting the importance of reli-
able, high-throughput prediction of protein localization to un-
derpin cell biology research and inform the clinical and
associated drug discovery communities. Organelle proteo-
mics, also termed more broadly spatial proteomics, is the sys-
tematic study of proteins and their assignments to distinct
spatial cellular subcompartments and is a field rapidly grow-
ing in importance (6). Current experimental designs and mul-
tivariate data analysis techniques permit a researcher to col-
lectively infer and track the localization of thousands of
proteins and promises to elucidate the coordinated changes
in localization at the whole-proteome level.

Experimental organelle proteomics requires both sophisti-
cated experimental designs in order to obtain accurate data-
sets and elaborate methodologies with which to analyze and
make sense of the data (6). Various experimental designs
have been proposed, from those merely focused on the iden-
tification of proteins in single organelles through biochemical
purification (pure fraction cataloging) to more complex meth-
ods that utilize quantitative mass spectrometry to elucidate
the broad subcellular diversity of cells (fractionation-by-cen-
trifugation approaches). Techniques employing the former
that focus on single or a limited number of organelles suffer
from two major drawbacks: they may give rise to misleading
and/or erroneous associations without revealing a broader,
biologically more meaningful picture, and they suffer from
substantial contamination from incomplete purification/
enrichment.
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Techniques that employ the latter types of experimental
designs to investigate the full complement of subcellular
niches were pioneered in 2006 by several groups. Dunkley et
al. (7) published the localization of organelle proteins by iso-
tope tagging (LOPIT)1 technique, and Foster et al. (8) de-
scribed protein correlation profiling (PCP) using label-free
quantitation. These methods enable measurement of steady-
state protein distributions to provide more realistic insight into
their subcellular localization while overcoming the require-
ment to purify organelles of interest and discriminate between
genuine organelle residents and contaminants. Briefly, these
techniques start with gentle lysis of the cells and separation of
the intact and complete cell content using successive differ-
ential centrifugation steps or gradient-based ultracentrifuga-
tion, which permits continuous separation of the complete cell
content as a function of its density. Several fractions repre-
senting differential subcellular enrichments are then collected,
and their respective protein complements are identified and
quantified by means of high-resolution mass spectrometry.
The relative protein abundances within the fractions represent
unique organelle-specific distributions among partially en-
riched fractions. The resulting datasets are then formatted as
a matrix, representing the protein quantitation patterns along
the fractions, which is then subsequently submitted to further
data analyses. To date, spatial proteomics has relied exten-
sively on reliable organelle markers and supervised machine
learning to infer proteome-wide localization. Pattern recogni-
tion techniques and classification algorithms such as support
vector machines (9), random forest (10), and many others (11)
use marker proteins of known localization to compare and
match the density-related profiles of proteins of unknown
localization. A matching profile permits the assignment of the
protein to the specific marker organelle.

Here, we present a set of contemporary methods adapted
from the fields of statistics and machine learning to form a
robust framework for spatial proteomics data analysis. We
begin in the second section with an introduction of the quan-
titative data structure and the notion of organelle markers, and
we then proceed to present best practices for data process-
ing, data visualization, quality control, and protein localization
prediction. The ad hoc data structures and methodological
advances that we describe have been implemented and fur-
ther developed using a set of flexible software packages for
the R (12) programming language, namely, MSnbase (13) and
pRoloc (11), available under permissive open source licenses
from the Bioconductor (14) project. Methodological aspects,
the understanding of the pipeline, and its critical parameters

are explored through applications to empirical case studies. In
the third section, we proceed with a novel application of the
computational methods presented to the analysis of protein
dual-localization and dynamic spatial proteomics, also termed
comparative organelle proteome profiling (15), in which pro-
tein localization is compared and contrasted under different
conditions.

Material and Methods for Spatial Proteomics Data Analy-
sis—In this section, we present a detailed description of spa-
tial proteomics data and a set of steps leading to trustworthy
results, as summarized in Fig. 1. Guidelines for interpretation
and critical assessment through visualization are described to
guide new and experienced organelle proteomics practitio-
ners toward an in-depth understanding of their data.

Quantitative Data—The data that are generated via the typ-
ical spatial proteomics experimental designs can be repre-
sented in tabular format with features and fractions along
rows and columns, respectively (as illustrated in Fig. 2, left).
The features generally correspond to proteins or protein
groups, although peptides can also be used. A second critical
set of information is required for further data analysis, namely,
organelle markers. These are proteins that are defined as
reliable organelle residents and can be used as reference
points to identify new members of that organelle. These
marker proteins are generally selected by domain experts and
play a central role in data analysis at many different levels, as
highlighted in the next sections.

The nature of the experimental design will characterize the
size and the nature of the quantitative data in multiple ways.
For example, there are technical advantages to multiplexing
strategies such as isobaric labeling quantitation using iTRAQ
(16) or TMT (17) labeling systems, but they directly reduce the
resolution that can be measured along the separation dimen-

1 The abbreviations used are: LOPIT, localization of organelle pro-
teins by isotope tagging; SVM, support vector machine; PCA, princi-
pal component analysis; PCP, protein correlation profiling; GO, Gene
Ontology; CC, cellular compartment; ER, endoplasmic reticulum;
iTRAQ, isobaric tags for relative and absolute quantitation; TMT,
tandem mass tags.

FIG. 1. The steps leading to a sound analysis of spatial proteo-
mics data.
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sion, as one is limited by the number of tags that can be
employed to quantify fractions. This inherently limits the data
cardinality and consequently reduces the discriminative
power of subcellular niches with similar profiles, as illustrated
in Fig. 3. These protein profiles represent well-characterized

mitochondrial and endoplasmic reticulum residents from two
different experiments, namely, a TMT 6-plex (red) and a label-
free experimental (black) design, that have been fully quanti-
fied using 6 and 16 gradient fractions, respectively. The quan-
titation of more fractions using additional independent mass
spectrometry acquisitions must be mitigated by the preva-
lence of incompletely characterized profiles (described in the
section “Data Processing” and Fig. 4) due to missing values,
which are rife in label-free datasets because of the semi-
stochastic nature of data-dependent acquisition mass spec-
trometry approaches.

In the following sections, we use published datasets from
Dunkley et al. (7) and Tan et al. (18), using augmented marker
sets described by Breckels et al. (19), in order to illustrate our
findings. These datasets are also distributed as well-docu-
mented and computer-friendly data structures (13) in the
pRolocdata (11) package and can be used as input to the
software packages used to run the computational experi-
ments described below. Both datasets mentioned above were
derived through use of the LOPIT technique to localize inte-
gral and associated membrane proteins.

Dunkley et al. (7) prepared two independent Arabidopsis
thaliana callus membranes and fractionated them by using
self-generating iodixanol density gradients. For each prepa-
ration, two iTRAQ 4-plex tags (16) were used to quantify
seven different fractions, with one fraction that was the same
in both acquisitions. Firstly, fraction 1 (least dense) was la-
beled with reagent 114, fraction 4 with 115, and fraction 7 with
116, and fractions 11 and 12 were pooled and labeled with
117. Then, fraction 2 was labeled with iTRAQ reagent 114,
fraction 5 with 115, fraction 8 with 116, and fractions 11 and
12 with 117. The total experiment yielded replicated mea-
surements for eight quantitation values along the gradient.
Labeled peptides were separated using strong cation ex-

FIG. 2. Left, representation of a fully described spatial proteomics dataset containing quantitative data for n proteins along m
fractions. Each protein is described by additional metadata, in particular the definition of the known subcellular localization for well-known
residents. Fractions are also decorated with specific metadata. Right, summarization of the quantitative data and annotation of the “markers”
protein metadata using a principal component analysis figure.

FIG. 3. Effect of the number of fractions on the resolution along
the separation gradient for the endoplasmic reticulum (ER) and
mitochondria from a TMT experiment using 6 fractions (red) and
the equivalent label-free experiment quantified along 16 fractions
(black). The profiles are those of carefully selected Drosophila mark-
ers that were quantified in all the fractions. 15 and 11 fully character-
ized mitochondrial and ER markers were identified in the TMT data-
set, whereas the label-free approach identified only 9 and 5 complete
profiles because of missing values.
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change chromatography and analyzed via LC-MS/MS on a
QSTAR XL quadrupole-time-of-flight mass spectrometer (Ap-
plied Biosystems, Foster City, CA). Tan et al. (18) collected
Drosophila melanogaster embryos at 0 to 16 h. The material
was homogenized and centrifuged to collect the supernatant,
thereby removing cell debris and nuclei. Membrane fraction-
ation was performed on an iodixanol gradient, and fractions
were quantified using iTRAQ 4-plex isobaric tags (16) as fol-
lows: fractions 4/5, 114; fractions 12/13, 115; fraction 19, 116;
and fraction 21, 117. Labeled peptides were then separated
using strong cation exchange chromatography and analyzed
via LC-MS/MS on a QSTAR XL quadrupole-time-of-flight
mass spectrometer (Applied Biosystems).

Data Visualization—One can directly visualize the experi-
mental data by plotting the protein intensities, or generally
their relative intensities, along the separation dimension. Al-
though very useful, this representation is limited by the num-
ber of proteins or clusters of proteins that can be represented
in one figure. It is often essential to be able to visualize the full
dataset in one figure, possibly in summarized form, in order to
assess the underlying structure of the data and develop an
intuition of what can reasonably be achieved in light of the
data’s properties. A popular technique for describing multi-
variate data is dimensionality reduction. This allows one to
represent the data in a reduced set of dimensions, generally
two or three, instead of the original higher number corre-
sponding to the individual fractions (the columns of our data
matrix represented in Fig. 2), while maintaining as much of the

initial information as possible. Principal component analysis
(PCA) or nonlinear versions thereof are procedures that trans-
form the original data into a set of orthogonal components
that are ordered according to the amount of variability that
they describe (Fig. 2, right). For a well-structured dataset,
representation as a projection along the two first components
is often an effective means to obtain a simple yet represent-
ative visualization of the data. The first principal component,
representing the most variability in the data, generally equates
to the main separation dimension applied to the cell content.
In addition, if one considers the amount of variability that is
described along each of these first principal components, one
can assess how faithfully this two-dimensional representation
of the data describes the high-dimensional data. Note that
relatively minor variances within the data can also be biolog-
ically relevant, and lower components may also be informa-
tive. Although this representation remains a simplification, it is
often possible to gain notable understanding of a complex
experiment from this single figure.

Data Processing—In this section, we discuss two essential
aspects of data processing, namely, imputation of missing
values and data normalization. Although it is rarely exposed, it
is important to acknowledge the detrimental effect of missing
values that are so prevalent when combining independent
acquisitions. None of the machine learning algorithms that
have been applied to organelle proteomics nor any of the
contemporary machine learning methods can directly deal
with incomplete data; missing values are always explicitly or

FIG. 4. Assessment of data imputation on cluster resolution and protein organelle assignment. Left, the positive relation between
number of imputed values and displacement of the points before (original values) and after imputation. In the PCA plot (right), the numbers of
missing values that were imputed are reported in the protein points, and the effect on the change in position of the proteins in the PCA plot
is highlighted by arrows that show a clear trend toward the origin of the plot.
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implicitly imputed before submission to an algorithm. Missing
data and the impact of imputation have not been thoroughly
addressed in proteomics, let alone in spatial proteomics. Pub-
lished LOPIT studies (7, 18, 20) have excluded proteins that
presented missing values across replicated experiments. PCP
studies (8, 21) have limited the computation of their �2 metric
to pairs of fractions (defined as the squared deviation of the
normalized profile for all peptides divided by the number of
data points), thus increasing the bias by reducing the number
of data points. Other studies have either explicitly (22) or
implicitly (10) applied data imputation without necessarily as-
sessing the biases of the procedure. To illustrate the issues of
imputation of missing data, we assessed the impact of impu-
tation using the specific goals of spatial proteomics (i.e. the
identification of subcellular protein clusters and the assign-
ment of proteins). In Fig. 4, we present data from Ref. 7, which
provides complete profiles for 16 fractions (some being rep-
licates) for nearly 700 proteins. After random assignment of
missing values and data imputation using nearest neighbor
imputation (23), we estimated the effect of the imputation
method by tracking the shift of the imputed value with respect
to the original data points. As expected, we noted an increas-
ing effect of imputation on the data with an increasing number
of missing values (Fig. 4, left). In addition, data imputation
resulted in a translation of data toward the center of the figure,
corresponding to less pronounced protein profiles across the
gradient (Fig. 4, right). This trend is representative of a loss of
signal resulting from imputation, which results in a reduction
in the classification power and a bias toward misclassification

to organelles that are characterized by such average profiles,
such as plasma membrane in the example shown.

Data normalization is a topic that has been frequently ex-
plored in many areas of transcriptomics and proteomics, al-
beit never in the light of organelle proteomics data. In all
subsequent analyses and visualizations we used relative in-
tensities across the fractionation scheme. When absolute in-
tensities are used for visualization, the absolute component
of the signal will overwhelmingly influence the data transfor-
mations and eventually hide the relative signal that is of pri-
mary interest. All published research tends to divide each
intensity by the maximum, or by the sum of intensities in each
row of the data matrix. More work on the benefit of the
application of more sophisticated techniques would be wel-
comed, in particular when multiple experimental conditions
acquired during different runs ought to be compared (see
“Translocalization”). Finally, as illustrated in Fig. 5, the accu-
racy and precision of the underlying quantitation methodology
is an essential parameter for optimal cluster resolution (24),
and advances in mass spectrometry technologies and quan-
titation protocols play a crucial role in the production of reli-
able data.

Importance of Organelle Markers—An organelle marker is a
protein known to be a resident of a specific subcellular niche
in the species and condition of interest. From a computational
point of view, markers allow the mapping of regions in the
multidimensional data space to subcellular localizations (Fig.
2). The validity of markers, and thus the reliable mapping of
biological information to the multivariate data, is generally

FIG. 5. Effect of noise on subcellular cluster resolution. Comparison of original data from Dunkley et al. (7) (left) and data to which
additional quantitation noise has been added (right). The quantitation noise was simulated by adding a normal error term (using the mean of
the data and 1/2 standard deviation as parameters) to the quantitation data. Although the clusters are still visible and well separated in the noisy
data, the original data feature much tighter and better resolved data with better separation boundaries between groups of interest.
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ensured by expert curation of the proteins in the dataset.
Gene Ontology (GO) (25), and in particular the cellular com-
partment (CC) namespace, is an essential starting point for
protein annotation and marker definition. Nevertheless, auto-
matic extraction of GO CC is only a first step, and additional
curation is required to counter unreliable annotation based on
data that are inaccurate or out of context for the biological
question under investigation. Although proteins with genuine
multiple localizations are of particular interest (see below), one
must be careful when assessing multiple GO CC terms and
distinguish proteins present in more than one subcellular
niche (multilocalization) from changes in localization under
different conditions and incorrect annotation. Annotations of-
ten represent a default/consensus state, whereas the infor-
mation required to define a reliable marker is specific to the
system under study and the conditions of interest. In partic-
ular, examples that do not match an annotated localization for
biologically relevant reasons will be of remarkable interest. As
a result, there is an inevitable trade-off that must be consid-
ered when using a very stringent high-confidence list or in-
creasing the number of markers to better characterize the
multivariate data. Both aspects are important, as a minimum
number of markers is required for further data analysis and
misassignment can have a detrimental effect on data analysis
(see sections “Novelty Detection” and “Classification”), and a
good balance can be obtained through careful quality assess-
ment of the markers (next section).

Although marker definition is an important step, it is only the
initial step of the analysis workflow and is often time consum-
ing. To facilitate the identification of markers, we curated
proteins and mined publicly available datasets (7, 8, 18–20,
22, 26, 27) to provide marker sets for Arabidopsis thaliana
(543 markers, 13 organelles), Drosophila melanogaster (220
markers, 11 organelles), Saccharomyces cerevisiae (128
markers, 12 organelles), Gallus gallus (102 markers, 5 organ-
elles), mouse (648 markers, 21 organelles), and human (507
markers, 16 organelles) as part of our software infrastructure
(11) (see details in the supplemental material). These markers
are now available in the pRoloc software and can be directly
added to quantitative datasets. They are provided as a start-
ing point for the generation of reliable sets of organelle mark-
ers but still need to be verified against any new data in light of
the quantitative data and the study conditions.

Quality Control—The quality of the data is often evaluated
using a set of dedicated quality metrics and/or through visu-
alization. The use of unsupervised machine learning methods
(clustering) that represent the quantitative data without addi-
tional external qualitative information is an efficient approach.
Our first quality assessment aims at verifying whether the first
principle behind gradient-based organelle proteomics is met.
Based on De Duve’s principle (28), we expect that proteins
that share the same subcellular localization should co-localize
across a fraction scheme, resulting in well-defined structure in
the data. We routinely apply the PCA representation de-

scribed above, without any additional information (symbols
colored depending on external information such as organelle
residency), to inspect the data and assess whether structure
can be observed. In a first instance, overlaying markers can
be misleading by conferring a false sense of data structure
and should be avoided so that the data can be inspected in a
completely unsupervised way; the first quality assessment
ought to inform on the existence of clusters and structure of
data prior to the mapping on biologically relevant niches. If no
structure is present, even if coherent marker groups can be
identified, one should not expect well-defined classification
boundaries that separate the subcellular clusters, and thus
interpretation of data points located in the continuous cloud of
points separating two clusters will be challenging. A second
assessment laid out by the experimental design can be ex-
plored by overlaying meta-data on the PCA plot, in particular
organelle markers. These should match, to some extent, the
underlying data structure and explain some, but not neces-
sarily all, of the observed protein clusters. An important ques-
tion arises when marker proteins show substantial deviation
from the rest of the group, or more generally when a suppos-
edly well-defined cluster shows a widespread, undefined dis-
tribution. Consistent lack of structure/clusters in the data is
often indicative of poor separation and undermines all subse-
quent analysis and interpretation. When individual outliers are
detected, it is advised to verify the reliability of the data
(identification and quantitation accuracy) and annotation
trustworthiness. When any of these can be questioned, the
annotation or possibly the protein altogether might be re-
moved from the data. If neither misidentification nor unreliable
quantitation can explain the unexpected position of
the marker, it will be the experimenters’ responsibility to
decide whether to unlabel the protein (i.e. not consider it as a
reliable marker despite anticipated localization and reliable
identification/quantitation) or keep it as is and instruct subse-
quent algorithms of a possible extended mapping of the or-
ganelle to the data. It is, however, important to note that a
marker’s localization cannot be (automatically) undone during
the data analysis (it represents a rigidly imposed constraint
that anchors the data space), whereas an unlabeled protein
can be assigned any of the identified localizations. A possible
approach could be to unlabel the unreliable marker and verify
whether it eventually gets assigned to the expected localiza-
tion. The drawback of a systematic application of this ap-
proach is an underrepresentation of the multidimensional data
space: unlabeling markers corresponds to a loss of informa-
tion, and it is, in the end, up to the expert to decide whether
the information is reliable and on what grounds it should or
should not be trusted in light of the data and their quality.

It is important to highlight that it is generally not possible, or
desirable, to identify the complete subcellular diversity using
markers at this stage. In general, reliable markers can easily
be identified for large and well-studied niches. The nature of
supervised machine learning methods that have been used to
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date in organelle proteomics studies (see “Classification”)
constrains assignments of proteins to a set of marker classes.
As a result, there is a need for discovery of new data-specific
and relevant localization clusters using a reduced set of highly
reliable markers and the underlying structure of our quantita-
tive data.

Novelty Detection—The assignment of proteins to organ-
elles in spatial proteomics traditionally relies on supervised
multivariate statistical and machine learning analysis wherein
a set of highly curated organelle markers (labeled training
data) that belong to a finite set of organelles is used to map
gradient profiles of unknown localization to subcellular local-
izations with high accuracy. The application of such methods,
however, is often hindered by failure to extract organelle
markers that cover the whole subcellular diversity in the data;
this leads to prediction errors, as protein profiles of unknown
localization can only be associated with organelles that ap-
pear in the labeled training data. The extraction of all organelle
and organelle-related clusters is a difficult task owing to the
limited number of marker proteins that exist in databases and
elsewhere and the time-consuming nature of obtaining reli-
able markers. To address these issues, Breckels et al. (19)
developed a novelty detection algorithm that is able to identify
subcellular groupings such as organelles and protein com-
plexes in spatial proteomics experiments. The algorithm,
phenoDisco, uses a semi-supervised machine learning
schema that employs iterative cluster merging combined with
Gaussian mixture modeling and outlier detection to identify
putative subcellular compartments. In a semi-supervised sce-
nario, a classifier is learned in the presence of both labeled
(i.e. organelle markers) and unlabeled (i.e. proteins of un-
known localization) data. In order to apply Breckels’s algo-
rithm, one requires an initial set of high-quality input organelle
markers that cover a minimum of two classes, each contain-
ing six or more marker protein profiles, and of course some
unlabeled data that can be mined for new phenotype organ-
elle clusters.

The choice of labeled data (i.e. organelle markers) from
which the applied machine learning system will learn is ex-
tremely important, as it can have a significant effect on the
success or failure of the learner. To illustrate this paradigm,
we investigated the effect that marker choice has upon the
application of the phenoDisco novelty detection algorithm in
mining a Drosophila melanogaster dataset that had been pro-
duced using the LOPIT technology (18). We considered three
sources of markers for use as input for the phenoDisco algo-
rithm: (i) a highly and manually curated set from experts in the
field (20 endoplasmic reticulum (ER), 6 Golgi, 14 mitochon-
drial, and 15 plasma membrane markers from our curated
marker sets, originally obtained from Ref. 18); (ii) unique GO
CC annotations assigned a localization based on experimen-
tal evidence plus those assigned a unique localization as
inferred from structural sequence or similarity in the GO da-
tabase; and (iii) only unique GO CC annotations assigned a

localization based on experimental evidence in the GO data-
base. Reassuringly, it was found that in case i, where a small
set of manually curated markers were used as input, six out of
the seven previously unlabeled phenotype clusters that were
found in the phenoDisco experiments published in Ref. 19
were identified: a cluster of proteins that represented two
ribosomal subunits (40S and 60S), nucleus, proteasome, lys-
osome, and the cytoskeleton. An additional cluster of cyto-
plasmic proteins was also identified (phenotype 7, Fig. 6A,
right). Remarkably, we found that the use of organelle marker
set ii had a detrimental effect on the ability of the algorithm to
identify any new organelle clusters, and we were able to
identify only one new phenotype (Fig. 6B, right). Examination
of the organelle markers in set ii showed a lack of cluster
resolution and overlap of the Golgi apparatus, plasma mem-
brane, and ER (Fig. 6B, left). We also found a mitochondrial
outlier in the dataset that was completely separated from the
other mitochondrion markers and located toward the ER clus-
ter. It was found that the inclusion of this one clear outlier
forced a negative constraint on the phenotype modeling,
which resulted in a lack of new phenotypes detected. In an
attempt to improve marker list ii, we considered marker set iii,
which included unique GO CC annotations assigned based on
experimental evidence only. We identified 6, 0, 11, and 15
markers for the ER, Golgi apparatus, mitochondrion, and
plasma membrane, respectively. These presented minimal
overlap with the curated markers (only three for the mitochon-
drion and plasma membrane). We observed a significant im-
provement in organelle cluster detection (Fig. 6C, right). We
did, however, see more noise in the form of a number of
smaller phenotypes that lay on the edge of the ER cluster.
Interestingly, we also noted that the phenoDisco algorithm
detected the Golgi as an independent phenotype (phenotype
10, Fig. 6C, right). No unique Golgi CC markers were retrieved
from the GO that were assigned from experimental evidence
that could be used as input markers in set ii; thus it is reas-
suring that we were still able to retrieve this organelle using
novelty detection methods. An important step in the applica-
tion of any novelty detection algorithm is the careful exami-
nation of the protein content of any new clusters identified.
Curation and examination by experts in the field is an essen-
tial step in the discovery analysis pipeline. Using such ap-
proaches, a researcher is able to mine MS datasets at a
deeper level and bring to light interesting subcellular compart-
ments for more comprehensive validation for use in a super-
vised machine learning analysis for robust protein localization
assignment.

Classification—In machine learning, the task of classifica-
tion falls under the broad area of supervised learning. In
supervised learning, the aim is to train a classifier to learn a
mapping between a set of observed instances and a set of
associated external attributes that are being predicted (usu-
ally known as the class label or predictor). This set of in-
stances, along with their known class labels, is typically called

Spatial Proteomics Data Analysis

Molecular & Cellular Proteomics 13.8 1943



Spatial Proteomics Data Analysis

1944 Molecular & Cellular Proteomics 13.8



the training data. Once a classifier has been learned from the
training data, the aim is to use this classifier to predict the
class labels on data with unknown attributes. All methods to
date that have been applied to predict protein localization
have used supervised machine learning.

In terms of protein localization prediction using data from
MS-based organelle proteomics experiments, each training
data example consists of a pair of inputs: the actual data,
generally represented as a vector of numbers (such as the
associated normalized ion intensities along a set of fractions
for a given protein), and a class label, representing the mem-
bership to exactly one of multiple possible organelle classes
(this is usually referred to as a multiclass problem). When
there are only two possible classes, this is referred to as
binary classification. Before one can generate a model on the
training data and classify unknown residents, one has to
properly set the model parameters. Wrongly set parameters
can have adverse effects on the classification performance
and success of the learner to the same degree as inappropri-
ate training examples. An important factor to consider in one’s
choice of training examples (i.e. organelle markers) is how well
they represent the multivariate data space (i.e. the distribution
of proteins over which the system’s performance will be
measured). In general, it has been found that learning is most
reliable when the training data follow a distribution similar to
that of the examples to be classified.

Parameter optimization can be conducted in a number of
ways. One of the most common ways to optimize one’s
parameters is to use the convention of a training set (to model)
and a testing set (to predict) that are subsets extracted from
the labeled training data. Observed and expected classifica-
tion results can be compared and then used to assess how
well a given model works by providing an estimate of the
classifier’s ability to achieve a good generalization (that is,
given an unknown example, predict its class label with high
accuracy). A commonly used measure of classifier perfor-

mance is the macro F1 score, F1 � 2
precision � recall
precision � recall

, which is

the harmonic mean of precision �
tp

tp � fp
and

recall �
tp

tp � fn
, where tp � true positives, tn � true nega-

tives, fp � false positives, and fn � false negatives. This
procedure is usually used for a range of possible model
parameter values (this is called a grid search), and the best
performing set of parameters is then used to construct a
model on all markers and predict unlabeled proteins. Estima-
tion of the algorithmic performance can be assessed in many
ways, such as via cross-validation. In the pRoloc package,
algorithmic performance is estimated using stratified 20/80

partitioning in conjunction with 5-fold cross-validation in order
to optimize the free parameters via a grid search. This proce-
dure is usually repeated 100 times, and then the best param-
eters are selected upon investigation of associated macro F1
scores. A high macro F1 score indicates that the marker
proteins in the test dataset are consistently correctly assigned
by the algorithm. Often more than one parameter or set of
parameters gives rise to the best generalization accuracy.
Thus it is always important to investigate the model parame-
ters and critically assess the best choice. The best choice
might not be as simple as the parameter set that gives rise to
the highest macro F1 score, and one must be careful to avoid
overfitting and to choose parameters wisely.

Once the best parameters have been selected, they can be
used to build a classifier from the training data of organelle
markers. The classifier will return a classification result for all
unlabeled instances in the dataset corresponding to their
most likely subcellular compartment. In addition, it is possible
to extract classification accuracy scores that can inform on
the reliability of the assignment. Many supervised machine
learning algorithms have been developed, some of the most
popular being the support vector machine (SVM), k-nearest
neighbor, random forest, neural networks, and naive Bayes,
among others. These methods, along with newer state-of-the-
art algorithms such as the Perturbo (29) classification algo-
rithm, are available in the pRoloc package. With the vast
number of classification methods available, it is often a daunt-
ing task to choose the method that is best suited to the
classification task; however, it is not often the choice of algo-
rithm that underpins robust results. In fact, it is widely ac-
cepted that it is not algorithm choice that matters but the way
in which the algorithm is applied and the availability of good
training data.

As an example of an application of protein localization
prediction using supervised machine learning, we took the
first replicate from Tan et al. (18) and applied a weighted SVM
classifier for protein classification. The labeled training data
(Fig. 7, left) were constructed from manually curated markers
from Ref. 18, which were further refined using Breckels et al.’s
(19) phenotype discovery algorithm. Here, using the pRoloc
package, we employed a weighted SVM with a Gaussian
kernel to learn a nonlinear decision function on the training
data to map proteins of unknown localization to one of the
known organelle classes. Class specific weights were used
when creating the SVM model and were set to be inversely
proportional to the class frequencies to account for class
imbalance. On the training data, the two free SVM param-
eters, cost and sigma, were optimized over 100 rounds of
stratified 5-fold cross-validation via a grid search, and the

FIG. 6. The effect of different organelle marker sets (left) on the application of the novelty discovery algorithm phenoDisco (right)
in mining a Drosophila melanogaster dataset produced using the LOPIT technology (18). A, a set manually curated by experts in the field.
B, unique GO CC annotations from experimental evidence or computational predictions. C, unique GO CC annotations from experimental
evidence.
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best pair of parameters for the classifier were chosen from
evaluation of the macro F1 scores (Fig. 7, middle). The
optimized SVM classifier was then used to predict protein
localization on the unlabeled data (Fig. 7, right). The sizes of
the points in Fig. 7 (right) reflect the classification
probabilities.

Multiple Conditions and Multi-localization—The previous
sections demonstrate a robust protocol allowing one to mine
and understand data, verify its annotation, and explore it to
identify new clusters and classify proteins to subcellular
niches, relying on state-of-the-art algorithms and proven
methodologies. Additional complexity arises when multiple
conditions need to be considered in order to elucidate the
dynamic nature of protein localization or multi-localization of

proteins to multiple subcellular compartments. To illustrate
key concepts and pitfalls of such analyses, we generated a
set of controlled localization changes using the experiments
of Dunkley et al. (7) and relevant curated marker proteins. We
modeled changes in localizations and moved proteins from
one organelle to another by updating their observed quanti-
tative data along the gradient with new meaningful values
inferred from the same dataset.

Multi-localization—The protein databases provide multiple
localization annotations per protein in about 60% of human
UniProt entries (see the supplemental material). Although a
certain number of these annotations are likely to be erroneous
or represent specialization of identical compartments and do
not necessarily imply that proteins multi-localize under iden-

FIG. 7. Application of the support vector machine classifier (SVM) to the data from Tan et al. (18). Left, augmented dataset after novelty
detection. Middle, grid search for the SVM parameter cost and sigma, highlighting optimal pairs of parameters. Right, application of the SVM
classifier. The size of the point reflects the classification probability.

FIG. 8. Application of the SVM classification algorithm to identify dual-localization patterns. Left, ER (blue)–plastid (orange) relative
quantitation mixture. A plasma membrane marker protein is shown in yellow. Right, position of the respective ER–plastid mixtures on the PCA
plot and their respective color-coded classifications.
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tical conditions, dual-localization is an important aspect that
needs to be addressed. We used the complete data from Ref.
7 to create a variable mixture of protein relative abundances
along the gradient to simulate dual-localization. Fig. 8 (left)
shows such an example in which all fractions of ER (blue) and
plastid (orange) marker protein profiles have been combined
to generate a set of ER/plastid mixtures ranging from only ER
to only plastid through 90% ER/10% plastid, 80% ER/20%
plastid, . . ., 10% ER/90% plastid intermediates. The resulting
mixture profiles are represented as points on the global PCA
plot (Fig. 8, right) and are colored according to their classifi-
cation using an SVM classifier and the procedure described in
the section “Classification.” As can be seen, some of the
mixtures travel over the plasma membrane cluster, localized
between the end points on the PCA plot, and are classified
accordingly. The sizes of the points along the mixture gradient
are proportional to the classification probabilities. ER–plastid
mixtures that closely match plasma membrane profiles are
classified as plasma membrane residents. A plasma mem-
brane marker protein is represented in yellow in the mixture
profiles (Fig. 8, left) to illustrate the relevance of the classifi-
cation result. Various mixtures for other dual-localization sce-
narios have been modeled and lead to identical scenarios in
which intermediate mixtures match intermediate organelle
profiles (see the supplemental material).

Despite the fact that the PCA plot is a two-dimensional
projection of the data, the results of the nonlinear classifier are
accurately described for these well-resolved data. These sim-
ulations indicate that proportional mixtures of two well-de-
fined organelle members that mimic dual-localization of pro-
teins at various proportions are easily confounded with other
subcellular compartments. From this result, we deduce that
reliable inference of dual- and more generally multi-localiza-
tion requires additional biological information and cannot rely
only on unique proteins. In particular, we suggest that known
dual-localized examples that form coherent clusters are de-
sired to reliably identify new examples; single evidence pro-
teins can hardly be distinguished from quantitation noise or
from membership in intermediate compartments.

Trans-localization—To simulate multiple conditions, we took
advantage of the availability of biological replicates in Ref. 7.
The two membrane preparations exhibit technical variability that
represents a considerable challenge when investigating genuine
changes in localization, thus making this example a faithful
representation of real use cases, while allowing us to set and
control protein trans-localizations. We chose seven marker
proteins (see the supplemental material for details) and im-
posed changes to different destination organelles. The original
relative quantitation values were replaced by the mean fraction
values of all destination marker proteins. The trans-localizations
are highlighted by arrows in Fig. 9. Below, we demonstrate
important aspects influencing the analysis of dynamic spatial
proteomics data, namely, data normalization, the identification
of trans-localization, and concerted trans-localizations.

Data Normalization—The two replicates displayed both bi-
ological and substantial technical variability, as illustrated in
Fig. 9 (left). The first and second replicates are represented by
circles and diamonds, respectively, and the corresponding
pairs of proteins are linked by dotted segments. The colors
represent all marker proteins for the nine subcellular niches
identified for this dataset. Although the mass spectrometry
processing is becoming more reliable and reproducible, the
density separation gradient is a sensitive operation that is
executed manually. Trotter et al. (9) have demonstrated that
combining different gradients that separate different sets of
organelles from replicated measures from a single condition
achieves a better separation than each gradient taken sepa-
rately, but it is still essential to reduce intracondition variability
to highlight differences between conditions. We transformed
the data using variance stabilization normalization (30), a
technique that has already been successfully applied to
proteomics data (31). The result is represented in the right-
hand panel of Fig. 9 and shows a substantial improved over-
lap of replicates 1 (circles) and 2 (diamonds).

Identifying Trans-localizations—We combined two comple-
mentary procedures to search for the seven trans-localized
proteins. We employed the machine learning tools described
earlier and performed a classification analysis on two replicates

FIG. 9. Application of the variance sta-
bilization normalization of two replicates
(circles and diamonds) of our test data.
The solid red arrows indicate the trans-lo-
calized proteins. Left, original data showing
substantial differences between replicates
1 (circles) and 2 (diamonds). The colors rep-
resent all markers for the nine subcellular
localizations. After application of the nor-
malization procedure (right), we obtained
considerably better overlap between the
replicates.
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with the trans-localized proteins. As shown in Table I, the two
replicates mostly agreed (values along the diagonal). There
were, however, 107 other discrepancies, including the seven
anticipated trans-localized proteins, that were assigned the ex-
pected localizations in each replicate (see the supplemental
material).

We next devised a second selection criterion, based on the
rationale that trans-localizing proteins should be character-
ized by different quantitation profiles along the gradient. For
each pair of proteins in the replicates, we summed the
squared differences of the respective fraction log2 ratios:

�
i�1

n �log2
fracrep1

i

fracrep2
i �2

.

The distribution of these distances is shown in Fig. 10 (left).
The distances corresponding to the seven trans-localized
proteins are shown in blue. Three of these proteins are clear
outliers (above the red dashed line, corresponding to the
largest non-trans-localized protein). If we consider the small-
est trans-localized distance (black dashed line), nine non-
trans-localized proteins display larger distances. These nine
pairs of proteins are highlighted in red on the PCA plot in Fig.

FIG. 10. Identification of changes in localization. Left, distribution of the summed squared log2 ratios between fractions of the two
conditions of interest. Blue points represent genuine trans-localizations. The red and black dashed lines represent the largest non-trans-
localized value and the smallest genuine trans-localized protein. Right, PCA plot illustrating effects of technical variability and trans-
localizations. Non-trans-localized pairs with a sum of squared log2 ratios greater than genuine changes are highlighted in red, and genuine
trans-localizations are represented by thick arrows.

TABLE I
Comparison of the classification results of two replicated experiments including simulated trans-localizations from Dunkley et al. (7). Values
along the diagonal correspond to identical outcomes, and values in the upper and lower parts of the contingency table represent differences,

seven of which were expected based on the imposed subcellular changes

ER lum ER mb GO MT PT PM Ribo TGN VA

ER lum 16 6 0 0 0 0 1 0 1
ER mb 0 175 3 0 0 9 5 1 0
GO 0 1 81 1 0 6 0 10 0
MT 0 0 0 81 9 2 0 0 0
PT 0 1 1 4 47 0 0 0 0
PM 0 4 5 4 0 98 5 1 2
Ribo 0 4 0 0 0 11 38 0 1
TGN 0 0 7 0 0 0 0 14 0
VA 1 0 0 1 0 0 0 0 29
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10; five pairs show differently colored starting circles (repli-
cate 1) and ending diamonds (replicate with trans-
localizations), representing false positives (see details in the
supplemental material).

Although all seven trans-localizations were classified as
expected and displayed considerably greater sums of
squared log2 ratios than most other proteins, a notable
proportion of false positives were present among the top
hits. Only proteins exhibiting extreme trans-localization dis-
tances between subcellular locations that span the full
width of the separation capabilities of the design are likely to
be reliably identified. Such mixed results are likely to be
generalizable because of the high variability during cell con-
tent separation.

Concerted Trans-localizations—Although it is difficult to
identify genuine single trans-localizing proteins, a biologically
relevant scenario could imply a set of proteins exhibiting the
same event of trans-localization, termed concerted trans-
localization. We modeled such a case by trans-locating 15
mitochondrial proteins (purple) to the plastid cluster (orange)

(Fig. 11, left). The new positions were generated by adding
small amounts of normal noise to 15 plastidial residents.
Although the changes in localization are correctly classified
(see the supplemental material), the trans-localization dis-
tances are not large enough to be differentiated from the
technical and biological variability between replicates, as
anticipated from our previous results. However, we predicted
that it should be possible to identify the synchronized dis-
placement of the candidates. To do so, we counted the num-
ber of trans-localizations between all possible pairs or organ-
elles (Fig. 11, top heatmap). We then normalized these
counts by subtracting reciprocal pairs to balance gain and
loss of residents (Fig. 11, bottom heatmap). For example, six
changes are documented from ER membrane to the ribosome
and five from the ribosome to the ER membrane, resulting in
a net change of 1 in favor of the ER membrane. Indeed, gains
and losses should compensate each other in the case of
random fluctuations, whereas consistent movements produce
a systematic decrease and increase of recorded events at the
origin and destination of the concerted trans-localizations.

FIG. 11. A scenario of concerted trans-localization involving 15 proteins moving from the mitochondrial organelle (purple) to the
plastid cluster (orange). Random trans-localizations are connected by red dotted segments. The heatmaps show the absolute (top) and
normalized (bottom) number of observed trans-localization effects. Concerted trans-localization effects are characterized by high net gains and
reciprocal losses of displacements.
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The normalized number of trans-localizations reported our
expected count of mitochondrion to plastid movements. We
also observed that up to eight random net displacements
could be observed and that the appearance of concerted
trans-localization was only apparent when enough proteins
displayed synchronized behavior.

DISCUSSION

We have described a typical pipeline of organelle proteo-
mics data and clarified some central machine learning con-
cepts applied to such data. It is essential to understand the
principles, requirements, weaknesses, and strengths under-
pinning such analyses before confidently interpreting the re-
sults, but the availability of the right tools is also essential. A
recent review by Drissi et al. (32) presents an overview of
proteomics methods for subcellular proteome analysis. In a
section about bioinformatics tools for the analysis of organelle
proteomics data, they do not mention the existence of any
software that will allow the analysis of such data and only refer
to the importance of existing protein subcellular annotations
and the role of GO. It is interesting to look back on past
studies and note which methods have been used and also
whether, with hindsight, improvements could have been
made in the application of approaches and the reporting of
data. This is a useful exercise to undertake, especially in such
an emerging field as spatial proteomics data analysis. The first
applications of large-scale organelle proteomics data analysis
were protein correlation profiling efforts (8, 21) that calculated
the �2 metric using in-house tools and LOPIT (7, 18, 20) that
applied partial least squares discriminant analysis using the
commercial SIMCA software (Umetrics, Umea, Sweden).
Trotter et al. (9) implemented custom R code (12) and used the
SVM algorithm from the kernlab package (33), but no code for
others to repeat this state-of-the-art procedure is provided.
Others have applied other contemporary machine learning
algorithms, including random forests (10), naive Bayes (22),
and neutral networks (34), but did not provide means to apply
their analyses to new data. Although proteomics data are
commonly being disseminated through appropriate reposito-
ries, it is not commonplace to provide reproducibility in terms
of software and data analysis, despite their recognized impor-
tance (35).

Here we have attempted to redress access to code and the
ability to reproduce data analysis by performing the analysis
and creating illustrations using the R language and a set of
well-documented Bioconductor (14) software add-ons
specifically developed for quantitative proteomics data. The
MSnbase package (13) allows the consistent management
and processing of quantitative data and associated metadata,
and the pRoloc package (11) provides a visualization and
statistical machine learning (including all the algorithms men-
tioned above, as well as novel ones (29)) framework to analyze
and interpret spatial proteomics data. The software allows the
implementation of a robust and reproducible analysis pipeline

and is flexible enough to accommodate various designs and
foster the development of innovative analysis strategies. The
software provides extensive documentation and tutorials for a
fully reproducible organelle proteomics framework. Finally,
pRoloc benefits from the Bioconductor infrastructure and its
full integration with various online resources, including,
among many others, the Gene Ontology (the GO.db package
(36)), the UniProt database (the biomaRt package (37)), and
the Human Protein Atlas (38, 39) (the hpar package (40)).

In this study we also sought to develop analysis pipelines
that will be useful to dual-/multi- and trans-localization study
designs. Such approaches build on robust single condition
classification accuracy that relies on good resolution of the
subcellular space to reduce inter-organelle variability (well-
defined clusters) and enable reliable organelle assignments.
Trans-localization studies over additional conditions suffer
from additional levels of variability that can partially be ad-
dressed in multiple ways. First, the use of biological knowl-
edge, including dual-localized or concerted dynamic protein
markers, can be used to direct the supervised components of
the analyses while providing a reliable starting point for un-
covering genuine signal from noise. Second, the reduction of
technical variability through adequate normalization (see the
section “Trans-localization”) or multiplexed designs will be of
paramount importance. The balance between the number of
fractions and the advantage of multiplexing strategies to re-
duce inter-run variability and missing data discussed in the
section “Quantitative Data” becomes even more critical in
multi-condition designs, when relying on three (TMT 6-plex) or
four (iTRAQ 8-plex) fractions per condition makes it challeng-
ing to obtain any well-resolved clusters in the data. The ad-
vent of higher multiplexing solutions, such as TMT 10-plex,
promises to optimize dynamic designs by combining suffi-
cient resolution and reducing technical variability. Finally, rep-
lication can confer more accurate classification in single con-
ditions (9) and will provide an assessment of uncertainty to
support the identification of multi- and trans-localization
events.

CONCLUSION

The path to reliable data analysis results is never written in
stone, in particular for complex experimental designs and
multivariate data. There are, however, certain requirements
that are always applicable. Visualization of the complete da-
taset is essential in order to describe its major features; in the
case of a spatial proteomics experiment, we have highlighted
multiple applications of dimensionality reduction techniques
such as PCA. This is, of course, a simplification of the com-
plete data, but it can provide a first inkling of the extent of
separation and success of classification. It is also important to
set basic assumptions about the data, assess the organelle
markers in light of the data structure, describe how it is
processed, and assess the effects of the treatments it under-
goes. Finally, the extent to which the result of the data clas-
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sification algorithm is reliable must be questioned. Trust in the
results will be gained through the proper usage of algorithms,
quality control of the data, and verification that basic assump-
tions about the data (e.g. appropriate separation of the data,
reliable usage of markers, consideration of biologically rele-
vant diversity) and the algorithms in terms of adequate utili-
zation and parameter selection are met. The methodology
that we have demonstrated brings us a step closer to meeting
the requirements of a trustworthy spatial proteomics data
analysis.
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