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Abstract In this work we describe the implementation of a 3D Center-Vertex-
Face/Edge Discrete Duality Finite Volume (CeVeFE DDFV) scheme using only the
degrees of freedom (DOF) disposed on a Cartesian grid. These DOF are organised
in a three-mesh structure proper to the CeVeFE DDFV setting. Reposing on a dia-
mond structure, the approach presented here greatly simplifies the implementation,
also in the case of grids topologically equivalent to the uniform Cartesian one.
The numerical scheme is then applied to a problem in image processing, where
uniform Cartesian structure of the DOF is naturally imposed by the pixel/voxel
structure. A semi-implicit DDFV scheme is used for solving a nonlinear advection-
diffusion equation, the subjective surfaces equation, in order to reconstruct the vol-
ume of a tumour from noisy 3D SPECT images with signal intensity on the tumour
boundary. The matrix of the linear system has a band structure and the method is
fast and able to successfully reconstruct the tumour volume.

1 Introduction

Discrete Duality Finite Volume (DDFV) schemes, introduced in 2D for the Laplace
problem by Hermeline [10], are a possible discretisation strategy applying to very
general meshes and a large variety of PDE [6, 3]. A dual or “node” mesh is used in
this framework and gradients are defined on a structure called the diamond mesh.
A main feature of the DDFV approach is that discrete gradients and divergence op-
erators are defined in a way that a discrete Green formula holds, called “discrete
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duality”.
In 3D, several methods have been inspired by the 2D DDFV methodology. The
Center-Vertex (CeVe) DDFV schemes have a dual mesh with centers at the vertices
of the primary mesh [11, 2, 1]. A different method, called Center-Vertex-Face-Edge
(CeVeFE) DDFV scheme, features a third mesh with unknowns at the faces and
edges of the primary mesh [5]; this will be our framework.
The DDFV framework can also be used for the discretisation of PDE appearing in
image processing, such as level set methods, which are used for a broad spectrum
of applications [15]. A curvature-driven level set equation called the subjective sur-
faces equation has been introduced by Sarti et al. [14] as a tool for the completion
of missing boundaries. Along with subsequent extensions, it has been successfully
applied to image processing problems [13, 12].
The nonlinearity and the non-divergent form of the curvature-driven level set equa-
tion makes particular space discretisation techniques necessary. Several Finite Vol-
ume methods have been proposed along with numerical analysis [13, 7]. Recently,
stability and convergence of a semi-implicit 2D DDFV scheme was proven [9], but
additional vertex unknowns were introduced.
In this work we will detail the efficient implementation of the 3D CeVeFE DDFV
method for Cartesian grids. The method will then be used for discretising the sub-
jective surfaces equation on a uniform Cartesian grid. As an application, tumour
volume is reconstructed from a 3D SPECT image visualising proliferating cells,
which are located at the tumour boundary.

2 The 3D CeVeFE DDFV scheme with degrees of freedom on
Cartesian grids

Construction of the meshes

In the 3D CeVeFE DDFV scheme, three different decompositions of the compu-
tational domain Ω are used, called the primary mesh M , the dual or node mesh
N associated with the vertices of the primary mesh and the tertiary or “face-edge”
mesh FE associated with the faces and edges of the primary mesh. For the detailed
construction of N and FE from a general primary mesh M , we refer to [5].

There is a canonical way to construct these three meshes if we want each grid-
point of a Cartesian structure T to be associated to exactly one cell of either
M , N or FE . Referring to each point by its three-dimensional index (i, j,k),
1 6 i 6 Nx ∈ N, 1 6 j 6 Ny ∈ N, 1 6 k 6 Nz ∈ N, we have the following bijec-
tions (see Fig. 1):

{(i, j,k) with i, j,k even } 7→M , {(i, j,k) with i, j,k odd } 7→N ,
{(i, j,k) with i jk ≡ 2 mod 4} 7→ E , {(i, j,k) with i jk ≡ 4 mod 8} 7→F .
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(b) Two primary mesh cells together with other cells appearing in the mesh construction. Extreme left:
node cell, middle left: face cell, middle right: edge cell, extreme right: diamond cell.
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(c) Mapping of a uniform Cartesian grid onto M ,N and E F .

Fig. 1: 3D mesh views for uniform Cartesian grids. Primary mesh centers are marked
by circles, nodes by squares, faces by upright and edges by sideward triangles.

We denote the control volumes of the primary mesh M by K or L (with centers xK

or xL), vertices by xA or xB, edges by E and faces by F. Control volumes of the dual
mesh N will be called A or B. To simplify notations, control volumes of the tertiary
mesh FE will also be called E and F as it will be clear from the context whether the
face/edge or the control volume is meant. We also define the center of gravity xF of
a face F and the midpoint xE of an edge E.
Discrete gradients are defined on a fourth decomposition of Ω called the diamond
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mesh D . Each diamond cell D ∈ D corresponds to a face-edge couple (F,E) with
E ∈ ∂ F. In our decomposition of the Cartesian grid T , a diamond cell D will be
defined by listing the indices of six points of T : a face center xF, the midpoint xE

of an edge E ∈ ∂ F, the two vertices xA,xB ∈ ∂ E and the two adjacent primary cell
centers xK and xL . The diamond D is then given by D := hull(xA,xB,xL,xK). The
diamond mesh can be subdevided into twelve classes of diamonds, which are listed
in Table 1. This classification permits an efficient construction of the diamond mesh.
The volume of D is given by |D|= det(xB−xA ,xF−xE ,xL−xK)

6 > 0. For F ∈ ∂Ω , the indices
that exceed the Cartesian grid are projected onto T , creating degenerate diamonds.

Noting xD = 1
2 (xE + xF), a diamond D can be decomposed into eight tetrahedra

DAKE,DALE,DBKE,DBLE,DAKF,DALF,DBKF,DBLF defined by

hull
((

xK

xL

)
,

(
xA

xB

)
,

(
xE

xF

)
,xD

)
. (1)

This decomposition permits to define the control volumes C of any of the three
meshes as the union of all tetrahedra containing the vertex xC, e.g.

K =
⋃

D∈D :xK∈D

(DAKE ∪DBKE ∪DAKF ∪DBKF).

With this definition, some boundary volumes, depending on the parity of Nx,Ny,Nz,
degenerate automatically. The DDFV meshes are coarser than the canonical mesh
associated to the Cartesian grid.

Type xF xE xK xL xA xB

(x,1) (i, j,k) with i odd (i, j+1,k) (i−1, j,k) (i+1, j,k) (i, j+1,k−1) (i, j+1,k+1)
(x,2) (i, j,k) with i odd (i, j,k−1) (i−1, j,k) (i+1, j,k) (i, j−1,k−1) (i, j+1,k−1)
(x,3) (i, j,k) with i odd (i, j−1,k) (i−1, j,k) (i+1, j,k) (i, j−1,k+1) (i, j−1,k−1)
(x,4) (i, j,k) with i odd (i, j,k+1) (i−1, j,k) (i+1, j,k) (i, j+1,k+1) (i, j−1,k+1)
(y,1) (i, j,k) with j odd (i+1, j,k) (i, j−1,k) (i, j+1,k) (i+1, j,k+1) (i+1, j,k−1)
(y,2) (i, j,k) with j odd (i, j,k+1) (i, j−1,k) (i, j+1,k) (i−1, j,k+1) (i+1, j,k+1)
(y,3) (i, j,k) with j odd (i−1, j,k) (i, j−1,k) (i, j+1,k) (i−1, j,k−1) (i−1, j,k+1)
(y,4) (i, j,k) with j odd (i, j,k−1) (i, j−1,k) (i, j+1,k) (i+1, j,k−1) (i−1, j,k−1)
(z,1) (i, j,k) with k odd (i, j+1,k) (i, j,k−1) (i, j,k+1) (i+1, j+1,k) (i−1, j+1,k)
(z,2) (i, j,k) with k odd (i+1, j,k) (i, j,k−1) (i, j,k+1) (i+1, j−1,k) (i+1, j+1,k)
(z,3) (i, j,k) with k odd (i, j−1,k) (i, j,k−1) (i, j,k+1) (i−1, j−1,k) (i+1, j−1,k)
(z,4) (i, j,k) with k odd (i−1, j,k) (i, j,k−1) (i, j,k+1) (i−1, j+1,k) (i−1, j−1,k)

Table 1: Construction of the diamond mesh. Diamond types are defined via their
face/edge representation, noting the orientation of faces (orthogonal to x, y or z
axis) and enumerating the four edges of the face.

Discrete gradient and discrete divergence operators

For u ∈ R|T | and a diamond D ∈ D , set uC as a notation for u(xC) where xC is one
of the six points defining D. The discrete gradient ∇d : R|T | 7→ R|D | is given by
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∇

d(uT )
)

D
=

1
3|D|

(
(uL−uK)

−−→
NKL +(uF−uE)

−→
NEF +(uB−uA)

−−→
NAB

)
for any D ∈D and with the vectors

−−→
NKL =

(xB−xA)×(xF−xE)
2 ,

−−→
NAB = (xF−xE)×(xL−xK)

2 ,
−→
NEF =

(xL−xK)×(xB−xA)
2 .

These definitions and the structure of Table 1 ensure that
−−→
NXY points from X to

Y ((X,Y) ∈ {(K,L),(A,B),(E, F)}). Note that although there are more edges than
faces, uE and F contribute to the gradient similarly. The discrete divergence divd :
R|D | 7→ R|T | is defined by(

divd(ξ )
)

C
=

1
|C| ∑

D:D∩C 6= /0
ξD ·
−→
NC, (2)

with
−→
NC =

−−→
NKL if C = K ∈M ,

−→
NC =

−−→
NAB if C = A ∈N ,

−→
NC =

−→
NEF if C = E ∈ E and−→

NC =−−→NEF if C = F ∈F .
These expressions simplify on uniform Cartesian grids (e.g. |D|= 2

3 h3 for interior
diamonds, with voxel length h), but no acceleration is obtained by implementing
these simplifications, which is why we only present the general case.

3 An application to the subjective surfaces equation

In image processing, uniform Cartesian grids arise naturally because image informa-
tion is given on pixels or voxels. We will illustrate the performance of the numerical
scheme taking an application from this field. The subjective surfaces equation reads

∂tu+ |∇u|div
(

g(|∇I|) ∇u
|∇u|

)
= 0 (3)

with g(x)= 1
1+kx2 , k > 0, I the (given) image intensity and Dirichlet boundary condi-

tions. Numerically, the solution u of Eq. (3) evolves to a piecewise constant function
delimited by regions where |∇I| is large. The support of the initial condition u0 is
chosen in the region of which the boundary should be determined.

Discretisation of the subjective surfaces equation with CeVeFE DDFV

The meshing described in the previous section has the advantage that the unknowns
correspond to the image voxels; we stress that no additional degrees of freedom,
nor interpolated values, are used. Following [4, 9], we choose a semi-implicit time
discretisation of a regularised form of Eq. (3), which yields a linear scheme:

un+1−un

∆ t
+(|∇dun|+ ε)divd

(
g(|∇dI|) ∇dun+1

|∇dun|+ ε

)
= 0, (4)

with ε > 0. A symmetric scheme is obtained by multiplying Eq. (4) by the diagonal
matrix Λn with entries ((|∇dun|C + ε)/|C|)−1:
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Λnun+1 +∆ t|C|divd
(

g(|∇dI|) ∇dun+1

|∇dun|+ ε

)
= Λnun. (5)

Observe that the matrix M with Mu = |C|divd
(

g(|∇dI|) ∇du
|∇dun|+ε

)
is computed in

the following way. Let λD := g(|∇d I|D)
|∇dun|D+ε

, which is known from the previous iteration,
and note that in order to calculate this quantity, an approximation of the norm of
the full gradient is needed (which basic Finite Difference schemes and some Finite
Volume schemes do not yield). Due to the uniform Cartesian grid structure,

−−→
NKL ·

−→
NEF =

−−→
NKL ·

−−→
NAB =

−→
NEF ·

−−→
NAB = 0, (6)

yielding

(Mu)K = ∑
D∈DK

λD
3|D| (uL−uK)||

−−→
NKL||2, (Mu)A = ∑

D∈DA

λD
3|D| (uB−uA)||

−−→
NAB||2,

(Mu)E = ∑
D∈DE

λD
3|D| (uF−uE)||

−→
NEF||2, (Mu)F = ∑

D∈DF

λD
3|D| (uE−uF)||

−→
NEF||2.

(7)

Therefore, the meshes M ,N and FE are not coupled in the resolution of (5), only
to the previous time step by |∇un|, accelerating the numerical resolution.

Iterating over diamonds

We stress that the quantities needed for the resolution of Eq. (5) can be computed
only using the diamond structure. The following information has to be stored for
each diamond: the point references explained in Table 1, the volumes of the diamond
of its eight constituting tetrahedra (see (1)), and the vectors

−−→
NKL,

−−→
NAB and

−→
NEF.

The matrix M can then be assembled efficiently by iterating over D ∈ D and by
computing for each diamond the contributions at the indices corresponding to xK,
xL, xA, xB, xE and xF via the formulas (7). Similarly, the measure of the control vol-
umes can be assembled from the eight tetrahedra constituting the diamonds. These
procedures, including the construction of the diamond mesh, are easily vectorised.

DDFV solution

DDFV solutions, defined on overlapping meshes, naturally give rise to averaged
discrete solutions [3, 2]. In our case, based on the solution u of (5) at the final
time T , on each mesh (M ,N and FE ) a cell-wise piecewise constant function
(uM ,uN ,uFE ) is defined. The DDFV solution is

uDDFV =
1
3
(uM +uN +uFE ) ,

which is constant on each tetrahedron constituting the diamond cells. In order to
visualize the DDFV solution on the Cartesian grid, it is projected on the cells of T :

ucart
DDFV =

(
1
|C|

∫
C

uDDFV

)
C∈T

.



A 3D CeVeDE DDFV scheme on Cartesian grids 7

This averaging is the price we pay for avoiding additional unknowns (as compared
to [9], in 2D); indeed, in 3D it is crucial to reduce the number of degrees of freedom.
It is important to note that the use of ucart

DDFV is generally necessary and cannot be
replaced by the evaluation of u. Indeed, the weak coupling of the three meshes
due to the semi-implicit time discretisation allows u to contain local checkerboard
structures caused by noise whereas uDDFV is smooth.

Numerical results

The numerical scheme is illustrated on 3D SPECT images visualising proliferating
tumour cells. These cells are mainly localised on the tumour boundary but do not
cover the entire surface, notably due to physical constraints such as bones. We want
to obtain the volume and shape of the tumour based on these images. In practice,
tumour diameters are often measured manually and volume is approximated with
an ellipsoid formula. The numerical method described above permits to obtain a
less heuristical estimation of the volume, also indicating the shape. Voxels of the
Nx ×Ny ×Nz-image are numbered in a classical way by N(i, j,k) = i+Nx · ( j−
1)+Ny ·Nx · (k−1), such that Λn +∆ tM is a band matrix. Figure 2 shows the three
different 2D cuts of the original image and the reconstructed tumour volume.
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Fig. 2: 2D cuts of a 3D SPECT image (through then center of the tumour and
parallel to the x, y and z axes, respectively) showing the density of proliferating
tumour cells, which are localised at the boundary. The tumour reconstruction is
marked by the black line.

4 Conclusion

We have presented here the implementation of a 3D CeVeFE DDFV scheme using
a Cartesian structure without introducing artificial unknowns, which is an important
property in view of the high computational complexity in 3D. It comes at the cost
of a mild smoothing by projecting the discrete solution on underlying voxels.

The implementation presented here finds an application in image processing,
where uniform Cartesian grids naturally arise. The fact that DDFV schemes can
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be used on degenerate meshes makes the implementation relevant for non-uniform
Cartesian grids, for example the highly deformed Kershaw meshes appearing in
porous media [8]. Similar band matrix profiles can be obtained in these cases.

We have successfully used a 3D DDFV discretisation of the subjective surfaces
equation for the reconstruction of the tumour shape on an exemplary SPECT image.
A subsequent step would be to test the performance of an automatised version on a
large number of images and to compare it to the ellipsoid formula.

It should also be stressed that the DDFV framework is one out of many possible
discretisation strategies, each with their advantages and shortcomings. It is hoped
that this work permits an easy access to the DDFV approach.
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