Preprint Open Access

A General Approach for Traffic Classification in Wireless Networks using Deep Learning

Miguel Camelo; Paola Soto; Steven Latré


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep Learning, Intelligent Radios, Radio Spectrum, Traffic Classification, Wireless Networks</subfield>
  </datafield>
  <controlfield tag="005">20211209134845.0</controlfield>
  <controlfield tag="001">5767584</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Antwerp - imec</subfield>
    <subfield code="0">(orcid)0000-0001-5906-6424</subfield>
    <subfield code="a">Paola Soto</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Antwerp - imec</subfield>
    <subfield code="a">Steven Latré</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3196844</subfield>
    <subfield code="z">md5:d10476f9b2b337913b11c69d0cb15b08</subfield>
    <subfield code="u">https://zenodo.org/record/5767584/files/TSNM_mcamelo_A_General_Approach_for_TC_in_Wireless_Networks_using_Deep_Learning_accepted.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-12-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020daemon</subfield>
    <subfield code="o">oai:zenodo.org:5767584</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Antwerp - imec</subfield>
    <subfield code="0">(orcid)0000-0001-8152-7143</subfield>
    <subfield code="a">Miguel Camelo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A General Approach for Traffic Classification in Wireless Networks using Deep Learning</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020daemon</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">101017109</subfield>
    <subfield code="a">Network intelligence for aDAptive and sElf-Learning MObile Networks</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Traffic Classification (TC) systems allow inferring the application that is generating the traffic being analyzed. State-of-the-art TC algorithms are based on Deep Learning (DL) and have outperformed traditional methods in complex and modern scenarios, even if traffic is encrypted. Most of the works on TC assume the traffic flows on a wired network under the same network management domain. This assumption limits the capabilities of TC systems in wireless networks since users&amp;rsquo; traffic on one network domain can be negatively impacted by undetected users&amp;rsquo; traffic from other network domains or detected ones but with no traffic context in a shared spectrum. To solve this problem, we introduce a novel framework to achieve TC at any layer on the radio network stack. We propose a spectrum-based procedure that uses a DL-based classifier to realize this framework. We design two DL-based classifiers, a novel Convolutional Neural Network (CNN) spectrum-based TC and a Recurrent Neural Networks (RNN) as baseline architecture, and benchmark their performance on three TC tasks at different radio stack layers. The datasets were generated by combining packet traces from real transmissions with an 802.11 standard-compliant waveform generator. Performance evaluations show that the best model can achieve an accuracy above 92% in the most demanding TC task, a drop of only 4.37% in accuracy compared to a byte-based DL approach, with micro-second per-packet prediction time, which is very promising for delivering real-time spectrum-based traffic analyzers.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isSupplementedBy</subfield>
    <subfield code="a">10.5281/zenodo.5208200</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isSupplementedBy</subfield>
    <subfield code="a">10.5281/zenodo.5208626</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isPublishedIn</subfield>
    <subfield code="a">10.1109/TNSM.2021.3130382</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5236572</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5767584</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
223
248
views
downloads
All versions This version
Views 22387
Downloads 248145
Data volume 585.9 MB463.5 MB
Unique views 16270
Unique downloads 223131

Share

Cite as