
Experience Report of Industrial Adoption of Model Driven

Development in the Financial Sector

Marco Craveiro <marco.craveiro@gmail.com>

Abstract

This paper is an experience report that analyses
the use of Model Driven Development (MDD) tech-
niques to create and maintain a new software sys-
tem for a large �nancial company. At the time
of writing, the system has been in production for
over nine years, providing a platform to investigate
the long term e�ects of the approach. Software de-
velopment was performed by a team of engineers
lacking a theoretical background on MDD, which
we termed unorthodox practitioners. Using a mix
of qualitative methods, an exploration is performed
on their experiences in developing production soft-
ware with MDD via practical experimentation.
The paper has two main contributions. First, it

provides more data on how MDD is used in indus-
try, in particular by non-experts. Second, it em-
ploys prior analytical frameworks to analyse gath-
ered data and extract insights on MDD adoption.

1 Introduction

MDD is an approach to software development that
places the emphasis on modeling and models: it re-
gards models as a primary artefact of the develop-
ment process rather than an ancillary by-product.
MDD enables the automatic generation of part or
the entirety of a target system via the use of gen-
erators, which, through a process of re�nement,
"[..] systematically, and automatically transform
abstract models to concrete code." [RR15].
Model Driven Engineering (MDE) is considered

to be a superset of MDD since, in addition to tak-
ing on all of MDDs responsibilities, it also aims
to tackle the broader scope of software engineering
activities.1

1Several authors accept this distinction between MDE
and MDD, including Brambilla [BCW12] and Ameller [Ame]

MDE � and, by extension, MDD � is be-
lieved to have many bene�ts, including increased
productivity and maintainability2, and empirical
studies have produced varying degrees of support-
ing evidence for these claims [Hut+11; And+14;
SKSG07]. However, as Mohagheghi and Dehlen re-
port [MD08], there is still no conclusive evidence
that the promise of MDE holds for the general
case. Furthermore, even though Whittle et al.
demonstrated its widespread use across industry
[WHR14], "MDE is arguably still a niche tech-
nology" [Mus+14] � particularly when compared
to technologies of a similar lifespan such as Java,
C# or, closer to home, the Uni�ed Modeling Lan-
guage (UML). Where it is practised, adherence to
MDEs theoretical foundations varies widely, rang-
ing from "orthodox" application to independent re-
discovery.3 The latter are of special interest to this
paper, where they are termed unorthodox practi-
tioners: these are developers working in the prob-
lem domain of MDE � modeling and transforma-
tions � but with little to no awareness of the exis-
tence of the discipline.

Clearly, it is important to continue to gather evi-
dence of MDE's successes and failures, in academia
as well as in industry, and to improve on prior expe-
rience in order to better understand what is ham-
pering adoption. The objective of this paper is,
then, threefold:

� subsequently re-enforced by Whittle et al. [WHR14].
Völter's groups them (and others) under the umbrella term
MD* [Völ09]. However, an authoritative taxonomy of mod-
eling approaches, with rigorous de�nitions, could not be lo-
cated. If indeed no such taxonomy exists, it would, perhaps,
present a fruitful avenue for research.

2For one such claim, see Völter and Stahl in [Völ+13]
� though, there, it is referred to as Model Driven Software
Development (MDSD).

3Here, orthodox application is understood to mean MDE
application according to the discipline's state of the art and
best practices.

1



� Supply More Evidence: to accumulate ad-
ditional empirical evidence of MDD adoption
by presenting a description of an industrial
product in the �nancial sector, used in pro-
duction by a signi�cant number of users.

� Study Unorthodox Practitioners: to pro-
vide details of MDD adoption by software de-
velopers that have not been exposed to MDD
/ MDE theory; to understand why no recourse
was made to it; and to analyse what parts of
the theory were rediscovered by the team.

� Learn Lessons: to deploy analytical frame-
works de�ned in prior empirical studies in or-
der to extract additional insights from gath-
ered data; to identify a set of "lessons learned"
and of barriers to entry obstructing MDE
adoption.

The remainder of the paper is structured as fol-
lows. Section 2 presents a literature review of
related empirical studies, highlighting where the
present paper reuses or di�ers on the approach.
Section 3 summarises the methods used to obtain
and analyse data. Section 4 provides an overview of
The Financial Company and of the problem space
tackled by the new system, as well as a historical
review of the project. Section 5 provides a map-
ping between internal concepts and MDD litera-
ture. Section 6 abridges the most salient points
made by project personnel on the semi-structured
interviews and is followed by Section 7, where an
impact analysis is performed. Finally, Section 8
summarises the paper and proposes areas for fu-
ture work.

2 Related Work

Mohagheghi and Dehlen provide a comprehen-
sive meta-analysis of MDE adoption literature in
[MD08]. Spanning 25 papers, their work sheds light
on where and why MDE is applied, the maturity
level of MDE � including the level of automation,
software processes and tooling � and attempts to
�nd evidence of the impact of MDE on productiv-
ity and software quality. Unfortunately, few of the
underlying papers had clear impact evidence, lead-
ing them to state that "[f]uture work for evaluation

of MDE should focus on performing more empiri-
cal studies, improving data collection and analyzing
MDE practices so that success and failure factors
and appropriate contexts for MDE can be better
identi�ed." The present paper was structured to
address these concerns.
With [HRW11; Hut+11], Hutchinson et al. re-

portedly created the �rst systematic and multi-
disciplinary empirical study on industrial practices
and e�ectiveness of MDE, where they make use
of a methodological mix that included question-
naire surveys, observational methods and semi-
structured in-depth interviewing. Data obtained
by semi-structured interviewing was employed to
contextualise MDE adoption. Their study was in-
strumental in shaping the present work. Firstly,
this paper makes use of a subset of their multi-
disciplinary methods for data gathering, as well as
reusing their approach of presenting both an or-
ganisational context and a personal context, as it
paints a broader picture by taking into account
non-technical issues. The organisational context is
analysed using their organisational aspects frame-
work. Secondly, this paper considers � and at-
tempts to address � the key gaps they have iden-
ti�ed, namely: "a lack of knowledge on how MDE is
used in industry; a lack of understanding of how so-
cial factors a�ect MDE use; and a failure to assess
aspects of MDE beyond UML, such as the bene-
�ts of code generation, domain-speci�c abstractions
and model transformations."
Another very important factor in MDE adoption

is tooling. In [Whi+13] � and, subsequently in
[Whi+17] � Whittle et al. address this crucial is-
sue. Their papers provide an insightful analysis of
the state of tooling across a large sample popula-
tion, but, more signi�cantly, it de�nes a generalised
taxonomy of tool-related considerations. Their tax-
onomy is applied to the MDD tooling of the project
under study, forming the core of the impact analy-
sis.
Additional papers were reviewed but lacked di-

rect relevance to the present work. In [Mus+14],
Mussbacher et al. point out a set of broad problems
with MDE but then go on to tackle a much larger
subject area, making their analysis less suitable for
an empirical study such as the present. Andolfato
et al. illustrate the application of MDE to Tele-
scopes and Instrument Control Systems [And+14]
but do not provide any analytical tooling we could

2



reuse. Similarly, Shirtz et al. produced a very de-
tailed experience report on the well-structured and
disciplined process of MDE adoption by a large �-
nancial organisation [SKSG07]. Unfortunately, the
paper not was not relevant to our work given that
we are speci�cally interested in studying the un-
structured approaches of unorthodox practitioners.
Both papers provide methodologies to measure im-
provement � an area of vital importance � but
neither methodology was directly applicable to our
case study.
In summary, the present paper is a direct re-

sponse to �ndings on our literature review. On one
hand, the review points out that there is a obvi-
ous need for additional studies that can be used
to form a generalised argument about bene�ts and
problems with MDE adoption, and for those studies
to avoid previously identi�ed de�ciencies. On the
other hand, a general pattern emerged from the lit-
erature: there is a focus on the usage of MDE in the
context of its theoretical foundations.4 Given the
"niche" status of MDE in industry, it seems rel-
evant to report on the experiences of unorthodox
practitioners.

3 Study Method

This paper employs three di�erent qualitative
methods for data collection, described below.

Observational Methods The author was a
member of the development team of the project
under study, for three years, starting at its incep-
tion. Thus, the paper makes use of personal notes
and recollections at this initial stage, via partici-
patory observation. Moreover, the author was on
site for another two years at the latter stages of
the project, allowing a non-participatory observa-
tion of the evolution of personnel, processes and
organisational structure.
To counter the limitations of these methods �

such as personal bias, incorrect or missing recollec-
tions and so forth � developers present at the time
were asked to review the paper.

Semi-Structured Interviewing A number of
one-to-one interviews was carried out with relevant

4For instance, in [Hut+11], Hutchinson et al. speci�cally
focus on sampling MDE practitioners for their study.

personnel. This approach was chosen for the rea-
sons outlined by Hutchinson et al. in [Hut+11]:
a) it encouraged interviewees to re�ect on their
expertise and experiences; b) it allowed exploring
in greater detail aspects of interest regarding their
MDD experiences; and c) it captured the practical
realities of MDD deployment.
The interview data was sourced from recorded

audio, subsequently transcribed, lasting between
twenty to forty minutes. A total of three interviews
was made. In order to bene�t from a wider range
of views, interviewees were picked from both the
early and latter stages of the project, and spanned
di�erent levels of the organisational hierarchy. The
questions followed a core structure, but intervie-
wees were allowed to deviate according to their in-
terests and recollections.

Internal Documentation The company under
study allowed access to documents detailing some
of the earlier design decisions, which provided use-
ful insights to the motivations of the participants
at the time the decisions were made.

4 The Financial Company

This section introduces the requirements of The Fi-
nancial Company for a new software system, de-
scribes its architecture, explains how models and
code generation were used and provides a brief his-
torical overview of the system's development. Local
terminology is employed throughout this section in
the interest of accuracy, but Section 5 subsequently
maps it to MDD.

4.1 Requirements

Around 2010 (year zero), The Financial Company
made a business-driven decision to rewrite Old Sys-
tem, one of its real-time systems. Several strategic
objectives were to be attained in New System; we
shall focus only on those which are deemed to be
connected with the adoption of MDD.

Architectural Cleanup Whilst Old System had
a good separation between Client and Service tiers,
its code base was monolithic and demanded a full
redeploy with each release. In addition, services
were stateful, communicated over a bespoke binary

3



protocol and were tightly coupled to each other, as
well as to the client. The client was very large � a
fat client � and contained functionality which was
now understood to belong to the service tier.
These architectural de�ciencies were to be ad-

dressed by New System.

New Product Support Old System had served
the company well in terms of the range of supported
�nancial products, but it was now evident that aug-
menting it had become very di�cult. Of course,
such an undertaking has inherent complexity in any
�nancial system, regardless of its design, as changes
ripple across architectural layers � from UI to im-
pacted services, to storage layer, to dependent in-
ternal and external systems. Nonetheless, due to
its age and evolution, Old System imposed a great
deal of accidental complexity5, which made the pro-
cess time consuming and demanding of both tech-
nical skill and experience with the code base. The
manual coding required for type representation, se-
rialisation, UI changes and the like was identi�ed
as a key bottleneck.
New System was to be designed with the explicit

goal of allowing the business to add new products
quickly, across all architectural layers.

Modern Technology Moving away from vendor
legacy technology, which had reached its End-Of-
Life, was a priority.
New System was to be designed with modern

technology from the ground up.

Rapid and Iterative Delivery An Agile
[Bec+01] based methodology was the chosen as the
development process. The key objective was to en-
able a quick response to business requirements and
to user feedback.
Where Old System required long release cycles,

New System was to be released to production every
two weeks, at the end of every Agile iteration.

Polyglot Programming New System was de-
veloped from the ground up but it did not exist in
a vacuum; it inherited developers and technology
from Old System, and was required to �t into the

5Whittle et al. de�ne accidental complexity as
"[. . . ] where the tools introduce complexity unnecessarily."
[Whi+17]

broader technological space of The Financial Com-
pany. As a result, some technology decisions were
bounded by extraneous forces.

Signi�cantly, New System had to support poly-
glot programming : "the activity of using several
programming languages in a software system."
[Fje08]. The external constraints that dictated this
requirement can be summarised as follows. New
System had to use an in-memory caching layer in
Java as it was the prevalent caching technology
within The Financial Company. In addition, given
that the background of most available developers
was in C#, the core part of the code base was to be
written in C#. Finally, performance sensitive code
from external teams had to be integrated with the
system. Due to its nature, it was written in C++.

For these reasons, New System had to simultane-
ously support development in Java, C# and C++.

4.2 Architecture

The Architect anchored New System's architec-
ture on two key pillars: service-oriented, as under-
stood by the Service Oriented Architecture (SOA)
principles [PL03]; and document-centric, following
Representational State Transfer (REST) principles
[FT00] (Chapter 5).

The choice of SOA was a direct response to the
monolithic nature of Old System, and it was ex-
pected to help make the system easier to under-
stand and maintain, and thus faster to release.
REST was chosen because of its use of standard
protocols � such as HTTP [Fie+99] � and open,
standard document formats � such as XML and
JSON � but also because it promoted the creation
of stateless services, deemed to be easier to create
and evolve, as well as more suitable for caching. All
service interaction was to take place via documents,
for requests as well as responses.

A similar approach was to be employed to make
services self documentable: end users could target
a well-de�ned Application Programming Interface
(API) and metadata about the system would be
made available via the very same open, standard
document formats.

In New System, "everything was a document"
� regardless of whether the content was data or
metadata � and all interactions were to be request-
response.

4



4.3 The Model

After a period of prototyping, The Architect pro-
posed placing a single document at the core of New
System, called The Model, which would be respon-
sible for describing all domain data types and their
relationships. The Model only concerned itself with
structural relationships, deliberately excluding any
behavioural aspects.

Because The Model was itself a document, it too
could be evolved and versioned, or even be supplied
to end users. The Model would give transparency
to developers, as they could consult it in order to
understand the domain and its vocabulary � at
least as far as data types were concerned � and
they were to extend it as new use cases arrived.
The Model was to be the single source of truth to
describe the data types of the domain.

Additionally, The Model was also to be instru-
mental in addressing two core requirements: sup-
porting polyglot programming and avoiding man-
ual coding of trivial data types. This was to be
achieved by using code generation to create pro-
gramming language representations of The Model.

4.4 The Code Generator

The Code Generation Team was created and tasked
with the implementing The Code Generator. The
Code Generator's remit was con�ned to just The
Model, with all other code in New System to be
developed manually by the wider team.

The Code Generator had several important re-
quirements. Firstly, it had to emit type represen-
tation, including arbitrary associations. Secondly,
it had to support a well-de�ned set of serialisa-
tion formats, for all model types, across all sup-
ported programming languages � C#, C++ and
Java. Thirdly, APIs were to be as symmetric as
possible across languages, including for types such
as collections and primitives as well as for re�ec-
tion � needed, for example, to implement meta-
data APIs. Symmetry was believed to increase pro-
ductivity when programming against The Model,
as developers switched between programming lan-
guages. Lastly, The Code Generator's output was
to be compiled into independent components that
could be consumed by the rest of the system � e.g.
an Assembly in C#, a JAR in Java and a DLL in
C++. No further manual modi�cation was allowed.

Like most New System code, The Code Genera-
tor was written in C# and used a template-based
approach for text transformation. Microsoft's Text
Template Transformation Toolkit (T4) was chosen
as the templating language6 due to its good integra-
tion with the existing tooling, active development
by Microsoft and adequate feature set given the re-
quirements.
The Model was represented by a XML document

and described by a XML Schema De�nition Lan-
guage (XSD), and both were created and main-
tained manually, using Microsoft's Visual Studio
Integrated Development Environment (IDE). The
schema was code-generated into C#, using Mi-
crosoft's XSD Tool.7 Code that was model in-
dependent was factored out into a manually de-
veloped helper library, which was referenced by
the generated code. As a result of this approach,
the metamodel was considered as a special kind of
model and was not generated by the code generator
itself � i.e. no dog-fooding was performed.
The Code Generation Team created a reference

model to implement and document all of The Code
Generator's features. The reference model was
placed at the centre of a large test suite that veri�ed
the behaviour of the Code Generator, both in terms
of the generated code as well as its performance and
compatibility across supported languages.
Model versioning was handled by the team's

Version Control System (VCS): The Model was
checked in to version control, and all changes to
The Model were performed as commits, subject to
the same processes of code reviews, con�ict han-
dling and so forth as all other source code; gen-
erated code was checked in and used to validate
changes to The Code Generator.

4.5 Project Evolution

Work on The Code Generator preceded New Sys-
tem development by around six months. During
this period, The Architect and The Code Genera-
tion Team created and implemented a set of generic
requirements that were deemed to be necessary in
order to develop New System. These were devel-

6https://msdn.microsoft.com/en-us/library/

bb126445.aspx
7https://docs.microsoft.com/

en-us/dotnet/standard/serialization/

xml-schema-definition-tool-xsd-exe

5

https://msdn.microsoft.com/en-us/library/bb126445.aspx
https://msdn.microsoft.com/en-us/library/bb126445.aspx
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-schema-definition-tool-xsd-exe
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-schema-definition-tool-xsd-exe
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-schema-definition-tool-xsd-exe


oped by making use of the reference model to test
features.

The next eighteen months of development of New
System were characterised by a rapid evolution
of both The Code Generator and the surrounding
system infrastructure. Given the choice of Agile
as the development methodology, The Model, its
XSD Schema and The Code Generator were all de-
veloped incrementally and symbiotically with the
rest of New System: as developers requested fea-
tures or reported bugs, The Code Generation Team
acted accordingly by changing The Code Gener-
ator code, augmenting the reference model, up-
dating The Model and/or extending its schema.
Nevertheless, the fundamental architecture of The
Code Generator � and of the generated code � re-
mained that of the initial vision developed in isola-
tion by The Code Generation Team and The Archi-
tect. As The Architect had envisioned, The Model
and The Code Generator grew to become the cen-
tre of the New System, and found uses beyond core
domain types, such as for con�guration and mes-
saging.

Around the two year mark, The Code Generator
was deemed to be largely feature complete and The
Code Generation Team was folded into New Sys-
tem's main development team. Evolution of The
Code Generator largely ceased, other than trivial
new features and bug-�xes. The business viewed
New System as a very successful delivery, particu-
larly with regards to the reliable two-week release
cadence and the decrease on the cost of adding new
products.

From year two to year eight (the present), the
system has been under constant development and
maintenance, albeit with a smaller development
team. Deliveries tend to be largely business-
focused, with a component of refactoring to tidy-up
the system. Overall, New System has maintained
its core architectural structure from its early phase,
including having The Code Generator at its centre.

5 Technical Analysis

Whilst The Code Generation Team did not make
use of standard MDE vocabulary, most of the con-
cepts arrived at do have a straightforward corre-
spondence to the canonical terms. Less obvious
are the trade-o�s made on key technical decisions,

which perhaps require a broader understanding of
the literature. We shall now provide a mapping
back to core MDE concepts and highlight what we
perceive as the most signi�cant trade-o�s.8

5.1 Metametamodel

In keeping with its bespoke nature, The Code Gen-
erator's metamodel was not described with exist-
ing metametamodel technology such as the Meta-
Object Facility (MOF).9 The metametamodel was
discussed at length by The Architect and The Code
Generation Team during the early development
stages but, once the key ideas were understood and
documented, it was left as an implicit construct and
played no further role in development.
One of the most important consequences was

that The Code Generation Team did not consider
generating the metamodel using The Code Gen-
erator. Instead, the metamodel was treated as a
special case and handled by external tooling. An
opportunity was lost to dog-food The Code Gener-
ator but, as an advantage, the resulting code base
was easier to understand by new developers.

5.2 Metamodel

As with the metametamodel, The Code Genera-
tor's metamodel was also developed internally, in
an independent manner. Given that it factored out
commonalities between the three target OO lan-
guages � i.e. Java, C++ and C#� its �nal shape
resembled the structural aspects of Piefel's code-
generation metamodel [Pie06]. Figure 1 contains a
UML representation of part of the metamodel.
However, The Code Generation Team took the

very signi�cant decision of modeling only a well-
de�ned subset of the structural aspects and only
generating behaviours that are trivial functions of
the structure such as serialisation. This simpli�ed
the scope of the metamodel and reduced the com-
plexity of The Code Generator.
The run-time re�ection layer also required access

to metamodel concepts but it was implemented sep-
arately from The Code Generator's metamodel, re-
sulting in very distinct APIs for each use case. This

8Note that the reader is expected to be familiar with the
most common MDE terms. For an accessible introduction
see [BCW12].

9http://www.omg.org/mof/

6

http://www.omg.org/mof/


Figure 1: UML diagram of a metamodel fragment.

simplistic approach had the advantage of creating
smaller and more focused APIs but the disadvan-
tages were duplication of code and the need to learn
two di�erent APIs.

5.3 Model

Listing 33 contains a sample model M1, created for
this paper, but which conforms to The Financial
Company's XSD. The source was adapted to �t the
space constraints.

<Schema Name="M1" IdMin="1" IdMax="10" BaseGuid="A . . . ">
<Dependencies>

<Name Value="M2"/>
</Dependencies>
<Tags>

<Name Value="T1"/>
<Comment Text="Comment . "/>

</Tags>

<Types x s i : t y p e="Pr imi t ive ">
<Name Value="P1"/>
<Id Value="1"/>
<TagRefs Value="T1"/>
<I n t r i n s i c Value="Date"/>
<Default Value="1970=01=01"/>

</Types>

<Types x s i : t y p e="Compound">
<Name Value="C1"/>
<Id Value="2"/>
<Extends Value="ModelValue"/>
<TagRefs Value="T1"/>
<Fie ld s>

<Name Value="F1"/>
<TypeName Value=" Str ing " SchemaName="M2"/>

</ F i e ld s>
<Fie ld s>

<Name Value="F2"/>
<TypeName Value="P1"/>

</ F i e ld s>
</Types>

</Schema>

Listing 1: Sample model conforming to the meta-
model's XSD.

A common theme in MDE is to classify models
according to the proximity to the implementation

platform. Model Driven Architecture (MDA)10 �
Object Management Group's (OMG) particular vi-
sion of MDE � provides a useful distinction be-
tween Platform Independent Models (PIMs) and
Platform Speci�c Models (PSMs), a classi�cation
that, according to Kurtev, "[. . . ] is motivated by
the constant change in implementation technologies
and the recurring need to port software from one
technology to another." [Kur07]

As the metamodel was designed to provide a thin
abstraction above the implementation languages,
technically its instance models are PIMs; these are
then converted into PSMs during code generation.
However, these concepts were left implicit in The
Code Generator and encoded into the template in-
stantiation process, which translates a Platform In-
dependent Model (PIM) directly to source code.
Whilst unsophisticated, the approach was su�cient
to take advantage of the PIM / Platform Speci�c
Model (PSM) separation, not only by having a sin-
gle model for all three languages, but also by allow-
ing upgrades to the Java and C# frameworks and
to the C++ compiler � all performed via small
changes to The Code Generator and with no impact
to models. Nevertheless, given the limited scope for
modeling in the project, the potential of the PIM
/ PSM separation was not exploited as fully as it
could have otherwise been � for instance, by tar-
geting architectural concepts such as SOA.

Similarly, the distinction between problem space
and solution space was never made explicit, and
thus many concepts in The Model either straddle
both spaces or are purely implementation-level con-
cepts. In part, this is a consequence of the design
of the modeling language, closer to a General Pur-
pose Modeling Language (GPML) rather than to a
Domain Speci�c Language (DSL) purposely built
for the problem space. Nevertheless, this prag-
matic approach had advantages: developers under-
stood intuitively how the modeling process worked
as they saw it as a simple type translation between
the description in The Model and the implementa-
tion in source code.

5.4 Variability

The Code Generator was designed explicitly with
limited support for variability. It was understood

10http://www.omg.org/mda/

7

http://www.omg.org/mda/


as a special purpose code generator, built exclu-
sively for New System and with no application out-
side that remit. Therefore, The Code Generation
Team took a strict approach, in keeping with the
Agile methodology: in general, functionality was
only introduced as needed and, if no longer re-
quired, it was to be removed from the system as
quickly as possible.
As a result of this approach, the only signi�cant

variation point supported by The Code Generator
was the ability to con�gure model element gener-
ation for each programming language. The main
advantage of constraining variability so rigorously
was the simplicity of the code base, but the disad-
vantages were not insigni�cant:

� as the code generator started before New Sys-
tem, a number of features were introduced
speculatively; because there were no variation
points, developers had to make use of these
features even though they were not a good �t
for the system;

� the lack of variability meant that The Code
Generator was never considered for use on
other systems, which perhaps could have bene-
�ted from this approach and could have shared
the maintenance cost.

5.5 Transforms

Unsurprisingly, The Code Generator makes use of
both Model-to-Model (M2M) and Model-to-Text
(M2T) transforms, and there is a clear separation
between these two major categories of transforms
due to the use of a templating language for M2T.11

All M2M transformations were implemented by
means of direct manipulation and written in im-
perative form in C#. As a result, the formalism
around the metamodel and transformations were
expressed in a limited manner, split between the
facilities provided by XML tooling and manually
written code in C#, and validated by an extensive
test suite. This simplistic approach removed the
need for scheduling as transforms were hard-coded
to execute in a deterministic order and dependen-
cies between transformations were implicitly under-
stood by developers. In addition, as the metamodel

11This section makes use of the feature model de�ned by
Czarnecki and Helsen's in [CH06] for the analysis.

was designed speci�cally for code generation, there
was a limited need for M2M transforms other than
model checking and validation.

M2T transforms were implemented as T4 tem-
plates. A minimalist Aspect Oriented (AO) frame-
work was developed internally to allow for code
reuse across templates. Given the limited variabil-
ity needs, the role of aspects was correspondingly
limited. As with transforms, aspects were manu-
ally added to templates by developers as required
via C# code. This spirit of simplicity also guided
decisions related to incrementality and direction-
ality: there was no support for incrementality �
models are processed from scratch on every execu-
tion of The Code Generator, and fully regenerated
� and processing is performed in a strict one-way
manner, from XML representation to source code.
No manual changes are allowed to generated code.

Finally, tracing also followed a minimalist ap-
proach: an informal tracing strategy was adopted
by adding comments to templates and aspects. To-
gether with the knowledge of the code base, it was
deemed su�cient given the requirements.

6 Personal Experiences

This section provides an insight into the individ-
ual experiences of software engineers, via extracts
sourced from the semi-structured interviews. These
have been edited for the sake of readability.

The section is divided into major themes, but
there are limitations to this classi�cation as they
are closely interrelated � at times even overlap-
ping � and do not have a natural order. In addi-
tion, whilst themes focus mostly on what could be
construed as negative experiences, its important to
note that all interviewees saw the role of the code
generator as having both a positive and negative
impact, but chose to focus more on negative as-
pects.

6.1 Ambitious Undertaking

Interviewees developed an appreciation for the dif-
�culty of creating a general purpose code generator:
"[. . . ] It was a massively ambitious project, right?
[To] [b]uild a general purpose code generator, is a
very, very di�cult thing."

8



Once the magnitude of the task was understood,
a natural process of de-scoping started to take
place: "But when you say, 'I want to write a code
generator that is going to work for everything', well
then now you need to de�ne what everything is.
And how do you de�ne everything? [. . . ] You
can't, so you say 'right I'm guessing I'm going to
need lists, but I'm guessing I won't really need
dictionaries, I'm guessing it will good enough just
to have public setters but let's not worry about
public/private, everything will be public and that's
[. . . ] something reasonable that I can write a code
generator for, within a year and a half and [. . . ]
that'll have to do.' [. . . ] [I]n reality, when you start
using it, you �nd you need a whole load of other
functionality because [. . . ] your problem statement
is so much bigger [. . . ]."
In addition, resourcing was limited, which fur-

ther curtailed ambitions: "[. . . ] [The] C# pro-
gramming language is a set of constraints, right?
And you [. . . ] do the best you can with them until
they add some new language feature in. [. . . ] Its
just that [. . . ] a code generator written in a year
by three people is going to have many more con-
straints than a programming language written by
hundreds of people across ten years."
The net result was a code generator that was

feasible to implement, but which fell short of the
original ambitions: "[W]e [. . . ] wrote a general pur-
pose code generator and tried to �t it around our
requirements. But our general purpose code gener-
ator wasn't really rich enough to really do what we
needed it to do, I don't think."

6.2 Evolving Purpose

Since the lowering of ambitions and the code gener-
ator's purpose are closely linked, its not surprising
that interviewees revealed that their understanding
of the code generator's purpose evolved over time.
Originally, it was meant to produce a rich domain
model, against which all of New System's code was
to be written, as well as providing a serialisation
mechanism between languages: "[W]e needed a way
of sharing [. . . ] information between these three
tiers, [. . . ] and have [. . . ] the same model of what
a thing is, in all three languages."
During this initial phase, many improvements

were made: "[. . . ] as we got experienced work-
ing with it, I think it was plain obvious that cer-

tain things could be improved relatively easily and
those fed back into improvements [. . . ] more into
the code generated rather than the code generator
itself actually."
However, over time, the con�icting nature of the

requirements imposed on the code generator be-
came apparent: "I think the biggest thing was more
to do with. . . and its not, nothing inherent to
code generation itself but I think it came from a
steer that maybe the [The Code Generation Team]
were given earlier on which was that it should be
the same on all three languages. [. . . ] And there
are many ways of interpreting that requirement,
I guess, and [. . . ] the lead of the team seems to
have taken a particularly [. . . ] purist line on that,
namely literally they were exactly the same, as close
as you can get it, given the syntax of languages.
And so you ended up with a model which was not
particularly idiomatic in any of them."
Developers soon discovered that model types

weren't suitable as rich domain types: "So what
we ended up trying to do is, kinda leave the [. . . ]
going down into the model types to as late as pos-
sible in many cases. [. . . ] So, e�ectively we ended
up with a shadow model implemented � particu-
larly in C#, less so in Java, because it doesn't do
as much." This shadow model is a manually writ-
ten, idiomatic version of the domain model, with
associated helper code to translate from and to the
code-generated model.
However, this approach was not used consis-

tently. As a result, there is still a lack of clarity on
the purpose of the code generator: "I don't know
that that's the journey we had, though. I don't, I
don't think that we've ever embraced that. It was
[. . . ] something we did in one place, to use it as a
sort of a serialisation [. . . ] helper [. . . ] only. But
I don't think necessarily that that is the right way
[. . . ] to use it anyway. Because [. . . ] it almost de-
feats the purpose. If you have to, every time you
create a [. . . ] code generated type, you have to
handcraft [. . . ] an actual domain type, and then
write an adaptor to the codegen'd type, then, well,
why not just write a [. . . ] serialiser for your domain
type and leave out the middle man."
What is unmistakable is that there is a desire to

minimise the scope and use of the code generator:
"I think that, had it been used sparingly, and [. . . ]
in certain places where it was useful then [. . . ] we
might have got some bene�ts of it, like rapid devel-

9



opment without the [. . . ] knock on problems that
we eventually ended up with."

6.3 Speculative Features

Code generator development started prior to the
development of the core of New System, meaning
that The Code Generation Team and The Archi-
tect had to shape its initial direction in relative
isolation. Trade-o�s were made by taking this ap-
proach which may have not been obvious: "[. . . ]
[B]y the time we actually started using it in anger
it was actually fairly mature. [. . . ] In some ways
that's a good thing, you want to start with some-
thing rather than nothing but [. . . ] [i]t would have
been possibly better to have had a less mature [. . . ]
product which we could, you know, look at and say
'no, this is not the right direction guys, lets change
these principles.'"
As a result of this approach, a number of specu-

lative features were added to The Code Generator.
In many cases, these were found not to match the
direction of New System: "[. . . ] [T]here are a cou-
ple of design choices [. . . ] there was an insistence
on � this has nothing to do with code generation
particularly, this is more to do with implementa-
tion � on them [the model elements] being [. . . ]
immutable. [. . . ] Which is [. . . ] useful in many
[. . . ] contexts but [. . . ] we didn't have the prob-
lems that that sets out to solve, and it was imposed
up front without actually �nding out if we had any
of these problems. [. . . ] They were [. . . ] kind of
like a solution before we had a problem."
The issue was not restricted to immutability:

"Early on someone decided we shouldn't have con-
structors, we should have everything with factory
methods [. . . ] I don't know where that idea comes
from, it has been fashionable in Java for a while. . .
I think sometimes C++ people choose it because
of various quirks of that language, but it has never
been a problem particularly in C#. Its certainly
not idiomatic C#. [. . . ] So, that's certainly quite
hard to work with."
These and other speculative features were not

optional, perhaps in order to restrict variability, so
as a consequence software engineers started to make
use of them best they could: "I think its a good
point, you just learn to live with what you got,
right? [. . . ] These are the [. . . ] constraints that we
have, so we're going to have to [. . . ] live with those

constraints. [. . . ] And you �nd a way, right?"

6.4 Unintended Consequences

As a result of all the factors discussed thus far,
software engineers found creative workarounds for
code generator de�ciencies: "[. . . ] [T]he problem
was [. . . ] [The Code Generator] only supported ar-
rays [. . . ]. So [. . . ] if your code generated type is
your main domain type, then your access patterns
on it were problematic. We had lots of objects that
were essentially key value stores, but it was a list of
key values, and so we had to build stu� around that
[. . . ] if we wanted to get good access speeds, or we
just accepted the fact that we were going to [. . . ]
search across an array every time we wanted to get
a value for a key. [. . . ] I think it was just a deci-
sion made earlier on, to only support a very limited
number of collections, i.e. lists, and nothing else.
[. . . ] So [. . . ] it was decided that [. . . ] hash maps
weren't, weren't necessary, dictionaries weren't nec-
essary [. . . ]. We worked around it in other places
by treating [. . . ] the code generated type as re-
ally just a serialisation type, so [. . . ] [a] request
would come in, we'd get deserialised into the code-
gen'd type and then, immediately after that, we'd
get adapted into a [. . . ] proper domain object."
When stacked together, all of the de�ciencies of

the code generator and the workarounds had con-
sequences: "We lost any kind of [. . . ] good domain
modeling practices. There is no data encapsula-
tion, data leaked all over the place, [. . . ] our ob-
ject model became a bit of a bag of stu� that got
passed around everywhere and [. . . ] it wasn't really
encouraging good programming practices. [. . . ] I
think it [. . . ] encouraged procedural programming,
badly structured code and [. . . ] no encapsulation."
However, a lot of code has already been written

and it is di�cult to address these problems: "In
terms of [. . . ] the future, [. . . ] I think [. . . ] its so
entrenched in the system, I think its going to be
really hard to get rid of it."

6.5 Business Alignment

A key point was the di�culty in justifying contin-
ued investment on a bespoke code generator from
a business perspective: "Its quite product-y? So
it almost feels like, you know, its something which
[we] should be buying in or open source [. . . ]. Not

10



what you want to be focusing your interest on, if
you can [. . . ] avoid it."
Over time, the budget of New System decreased

as the system matured, and development became
more focused on adding business functionality
rather than on infrastructural changes. As a re-
sult, it became harder to justify further investment
on the code generator: "It's kind of way down in
the priority list."
Part of the di�culty is on how to show unam-

biguous bene�ts to the business: "Because unless
you can see any real [. . . ] [b]ene�ts [. . . ] you're
just going to work around [. . . ] issues, rather than
�xing them."

6.6 Rapid Development

Participants saw the code generator as an enabler
of rapid development during New System's early
days: "[. . . ] [I]t did save a lot of time [. . . ]. Be-
cause [. . . ] we were adding huge numbers of types
early on and [. . . ] it didn't take that long to [. . . ]
write [. . . ] some XML [. . . ] describing [. . . ] them
[. . . ] and have the types generated. And [. . . ] you
could generate thirty types in half an hour, which
[. . . ] had you hand crafted it and written all the
serialisers that you needed, you would have been
there [. . . ] for days. So I think it did speed things
up the early days [. . . ]. And then probably slowed
things down thereafter."

6.7 Interoperability Support

Code generation was also particularly successful
at providing interoperability between languages:
"[. . . ] [B]eing able to create that once in the model
and then have it generated for all of them [pro-
gramming languages] and then knowing that it will
compile, knowing that it will work, you can [. . . ]
then start sending these things around and then
its essentially somebody else's problem, really, [. . . ]
that you send it in from the C# code and it pops
up in the C++ code and [. . . ] the C++ code will
understand it, know what its got and more im-
portantly it will have a strong type [. . . ] its not
[. . . ] pulling things out of XML [. . . ]. Now, at this
point its now a rich object which they can now code
against, safe in the knowledge that everything that
should have been populated will have been popu-
lated. [. . . ] And that, that was very useful [. . . ].

And I must say, with this sort of three-technology
[. . . ] situation we had, it certainly made it an awful
lot quicker [. . . ]. The alternative would have been
to, right we design something in C#, right, now
you need to do the same thing in C++ and make
sure that it all works, and you haven't forgotten
something � dangling pointers and whatever else
� and then make the same thing work again in
Java, again make sure that works, make sure that
they can all talk to each other and understand the
same things in the same way [. . . ] Codegen solved
that problem for us. [. . . ] So that became plumb-
ing, and essentially we just say: 'this is what, you
know, this class looks like' and everything will have
the same understanding of what that class looks
like."

7 Impact Analysis

In order to obtain a better picture of the role of
MDD in the project under analysis, we shall use
Whittle et al.'s "Taxonomy of Tool Related Con-
siderations". [Whi+17] The taxonomy de�nes four
di�erent major groups of factors, each split into
categories and subcategories. These are covered in
the next four sections.

7.1 Technical Factors

We shall start by �rst considering the technical
challenges and opportunities that were faced when
applying MDD.

7.1.1 Tool Features

Developing an MDD tool internally is a key deci-
sion for any project, regardless of its size, and thus
one which should not be taken lightly. Even though
The Code Generation Team used o�-the-shelf tech-
nologies for templating and XSD support, the de-
velopment of The Code Generator was still a very
large and complex undertaking � especially as they
lacked �eld experience.
On one hand, the tool was designed speci�cally

for the use cases requested by New System devel-
opers, which made it �t for purpose � although,
as we saw, the understanding of its purpose has
continually evolved. On the other hand, modeling
was constrained by the tool's features and these

11



in turn were constrained by the modeling knowl-
edge of the developers involved, both in The Code
Generation Team and the wider New System team.
Further: many crucial decisions were made � such
as not modeling system behaviour, not support-
ing DSLs or not supporting the system's architec-
ture � which are directly related to the perceived
complexity in implementing these features. Thus
the tool was simultaneously an enabler and a con-
strainer of modeling.
In addition, the development of features before

their requirement was properly understood had a
markedly negative impact on the usage of The Code
Generator.

7.1.2 Practical Applicability

The Code Generator faced several scalability prob-
lems during its development, which were resolved
by the team. For example, compilation times in
C++ were deemed too high when building the en-
tire model, as the code generator produced too
many translation units. Changes were performed
to address this issue, such as moving functional-
ity to run-time via re�ection, where performance
was not signi�cantly impacted. Serialisation was
also aggressively optimised to meet New System's
demands, both in terms of object sizes and to-
tal elapsed time � though there are still concerns
about performance as the system load continually
increases. In general, however, The Code Gener-
ator scaled well to a very large number of model
elements (over one thousand).
Versioning was a challenge, both in terms of

metamodel and model, as well as serialised ob-
jects from generated code. The solution was char-
acteristically pragmatic: The Model's XML docu-
ment was version-controlled in the same manner as
source code � changes to the metamodel required
manually updating models � and a serialisation
format was designed to enable forward compatibil-
ity, and was used where required. Backwards com-
patibility was solved by not allowing the removal
of �elds, which can be marked as deprecated but
cannot be deleted from The Model. Overall, the
approach constrained model evolution as well as
refactoring but was deemed su�cient for the needs.
With regards to the industrial quality of gener-

ated code and the �exibility and maturity of tool-
ing, the approach taken was to evolve both gener-

ated code and tool to �t the requirements.

On one hand, there is a near unanimous agree-
ment � as demonstrated in the Section 6 � that
the quality of the generated code is inferior to man-
ually crafted code and that it has had a negative
impact on the overall quality of the system because
it has encouraged a bad style of programming that
eschews encapsulation. This is particularly prob-
lematic for new developers, who not only are more
prone to making mistakes by following (and intro-
ducing) bad model-usage patterns but also need to
learn The Code Generator's API; there is also a de-
gree of tool subversion required in order to use the
tool to the developer's bene�t.

On the other hand, from a technical perspective
the code has been used in a production system for
several years, demonstrating the ability to with-
stand stresses and performing to high-availability
standards, so one is forced to conclude that The
Code Generator has industrial-grade quality as it
was su�cient to enable the development of New
System.

Finally, its important to mention that The Code
Generator created a form of lock-in: New System
is so dependent on it that it is di�cult to make
large changes to generated code without breaking
large amounts of non-generated code. Thus, senior
engineers tend to see it now as an impediment to
progress, as opposed to an enabler of progress, as
it was during the initial phase.

7.1.3 Complexity

It is clear that the tooling added a layer of complex-
ity to New System, some of which was accidental in
nature, but most of which can be attributed to the
di�cult domain of MDD. For example, it is di�cult
to �nd developers with enough technical knowledge
to evolve the code generator.

In addition, and somewhat paradoxically, gen-
erated code was also responsible for adding com-
plexity to New System. The style of programming
was in�uenced by the generated code � large data
types with little associated behaviour � resulting
in a less encapsulated style of programming. This
had very big implications for the overall complexity
of the system, which evolved towards a procedural
style instead of OO.

12



7.1.4 Human Factors

As with generated code and loss of abstraction, a
case could also be made at the modeling level: de-
velopers started to think at the level of abstrac-
tion of The Code Generator. That is, the modeling
process got skewed over time to "a way of doing
things" that was supported by the code generator,
which perhaps di�ers from how things would have
otherwise be done. For example, the non-idiomatic
properties of the generated code spread out to the
handcrafted code which integrated with it.
Likewise, practices evolved to compensate for the

usability constraints of the tool � such as a lack
graphical representation, manual editing of XML
and so forth � which may not be necessarily con-
ducive to good modeling practices.

7.1.5 Theory

One of the biggest disadvantages of building your
own tool by exploring the domain of modeling is
how far you are from the state of the art in the
literature; the weak theoretical foundations of the
tool led to some of the problems described in this
analysis. However, if the required amount of train-
ing was understood at inception, it is not clear that
an MDD approach would have been undertaken at
all. Thus there is a con�icting nature in the role of
theory in tool design and application.

7.1.6 Impact on Development

MDD adoption had a very positive impact on de-
velopment during the initial phase of problem space
exploration because it was an enabler of rapid ap-
plication development: it allowed for very quick
prototyping, implementation and deployment of
ideas across the stack, and to quickly refactor those
ideas in response to user and stakeholder feedback.
Once the system matured, the impact is not seen

as quite as positive. The unencapsulated style of
development encouraged by the generated code re-
sulted in a system that is harder to change be-
cause logic is now scattered across the code base,
which acquired a procedural-like nature; in tradi-
tional OO development, objects would own their
behaviour and mediate access to state, avoiding this
scattering of responsibilities.
In addition, by enforcing a common API across

programming languages, The Code Generator cre-

ated a non-idiomatic style of programming that is
unfamiliar to developers of all languages, and does
not make e�cient use of the native facilities avail-
able � for example, built-in re�ection in C# and
Java. As a result, new developers require a longer
period of training, which includes both The Code
Generator and the model's APIs.

7.2 Internal Organisational Factors

The alignment of The Financial Company's tech-
nology and business management structure was in-
strumental to the success of New System: they pro-
vided their full support and engaged actively in the
Agile process. As discussed previously, the success
of The Code Generator was closely connected to
the success of New System because, through Agile,
it permitted a fast exploration of a large problem
domain, which would not have been economically
feasible by manual means.
The organisational approach can be summarised

as a set of key factors:12

� Wholesale: MDD processes were tightly cou-
pled with Agile adoption from New System's
early days and their removal was not consid-
ered. Nevertheless, there was also a very early
demarcation of their role, thus a narrowing of
scope for the impact of MDD. This mitigated
most of the dangers associated by Hutchinson
et al. with a wholesale approach [HRW11].

� Iterative: Whilst there was never a question
of whether to use MDD or not, its application
was largely an iterative process, evolved as the
interactions between the wider team and The
Code Generation Team became better de�ned.

� Committed: Management and developers
were committed on making MDD work. This
commitment was tested often during early de-
velopment, as it was not understood if all nec-
essary features could be implemented; man-
agement did not waver even under the di�cult
circumstances of these early years.

� Business Led: From the start, MDD adop-
tion was justi�ed as necessary to achieve busi-
ness outcomes. The business was aware of all
the work related to MDD and was supportive.

12These are as identi�ed by Hutchinson et al. in [HRW11].

13



There are however, some factors pertaining to
the internal organisation of The Financial Com-
pany which are not captured by this analysis.
First, the role of stakeholders impacted the sys-

tem both positively and negatively. During the ini-
tial phase, stakeholders were supportive of the de-
velopment of The Code Generator because its ben-
e�ts were at its most obvious, given the rapid de-
velopment of the system and the small size of the
code base. However, during New System's mature
phase, stakeholders became more reluctant to fund
direct investment in The Code Generator because
the short-term bene�ts are not clear from a busi-
ness perspective and the work required is large due
to the much larger size of the code base and the
complexity of the system.
Secondly, and closely related, is the organisa-

tional structure chosen. It can be argued that man-
agement should not have merged The Code Genera-
tion Team with the main New System development
team, but focused instead on improving The Code
Generator. However, it was not clear how most
of the required improvements would be addressed
� particularly after the di�cult experience of de-
veloping The Code Generator in the �rst place. In-
vesting on a non-business product with an outcome
that is di�cult to predict is very hard to justify
commercially.
A third criticism to the organisational approach

is that there was an excessive focus on the low hang-
ing fruit of structural modeling, which � when
coupled with the strict containment of the use of
code generation � curtailed New System's ability
to fully bene�t from MDD. However, as stated be-
fore, it is very hard to justify making a commit-
ment to more advanced uses of MDD or MDE un-
less there is a obvious demonstration of its bene�ts;
by the same token, it is very di�cult to demon-
strate its bene�ts until one starts to use it in a pro-
duction system as was the case with The Financial
Company.
Finally, it is important to address the issue of

training. The Financial Company did not en-
gage on any training aimed directly at MDD, even
though it was conducted for a number of new tech-
nologies used in New System and deemed impor-
tant by management. In our opinion, this is one of
the biggest disadvantages of the unorthodox prac-
titioner: without the required technical knowledge
of the �eld, they do not see themselves as MDD

practitioners � where there is an awareness of the
discipline at all. This lack of visibility meant that
training was not even considered as an option.

7.3 External Organisational Factors

The biggest external factor appears to be the niche
status of MDD, and the lack of popularity of its
tooling. In a team of over twenty software engi-
neers, there was only passing knowledge of one tool:
Eclipse's Eclipse Modeling Framework (EMF).13

There is clear dearth of tooling, or at least of mar-
keting of existing tools.
In addition, EMF was deemed too Java-speci�c

and too complex to �t the requirements. Even
though the tooling under the EMF umbrella has
had great strides in usability, the barrier to entry
is still too high for a casual developer that has not
mastered MDD theory; there is a very large up-
front investment required in mastering theory and
tooling.

7.4 Social Factors

Social factors played a signi�cant role in the adop-
tion of MDD, both positively and negatively. In
particular, the personalities involved promoted
management structures which shaped the outcome:
the separation between The Code Generation Team
and the wider New System team helped create The
Code Generator quickly but also reinforced separa-
tion between teams, where perhaps it would have
been more bene�cial to have integration.
In addition, developers ended up subverting the

tool more than working with it, in order to com-
pensate for its de�ciencies, and whilst there was a
high-level of trust in The Code Generator as far as
serialisation was concerned, over time developers
became wary of using it for domain modeling. At
present there is an emphasis on using code genera-
tion "sparingly".

8 Conclusions

This paper produced a detailed analysis of the
adoption of MDD by a �nancial company, where
the development team did not have experience with
the methodology, but instead rediscovered parts

13https://www.eclipse.org/modeling/emf

14

https://www.eclipse.org/modeling/emf


of it independently. These we termed unorthodox
practitioners.
As with prior work, the present study has great

di�culty in classifying the impact of MDD adop-
tion as a uniquely positive or negative event.
Hutchinson et al. make this di�culty evident:

MDE involves dependent activities that
have both a positive and a negative e�ect.
For example, code generation in MDE ap-
pears, at �rst glance, to have a positive
e�ect on productivity. But the extra ef-
fort required to develop the models that
make code generation possible, along with
the possible need to make manual modi�-
cations, would appear to have a negative
e�ect on productivity. [HRW11]

What is perhaps more fruitful is to focus on the
speci�c "barriers to entry" and "lessons learned"
in this case study. Barriers to entry denote aspects
that are stopping unorthodox practitioners from
engaging with the wither MDE practices. Lessons
learned are speci�c to this project, but can be gen-
eralised somewhat to similar cases.

8.1 Lessons Learned

The lessons learned from this case-study are cen-
tred around code generation. The following three
factors stand out:

� Large undertaking: before deciding to write
a code generator, or to extend an existing one,
it is important to understand the magnitude
of the task and consider carefully if the organ-
isation should be developing a code generator
or using an existing tool, either proprietary or
open source.

� Well-de�ned purpose and scope: the role
of code-generation must be understood and
agreed from the start of the project. Its better
to have small, separate and well-de�ned roles
and perhaps rely on several "special purpose"
code-generators than to try a "one size �ts all"
approach, will is much harder to execute.

� Separate prototyping from production:
code generation may be helpful in prototyping
and exploring a problem space, but it may not

be as suitable for the �nal system implemen-
tation. By having this in mind, development
can proceed in stages: as parts of the system
become understood, they can be moved to a
�nal, better designed implementation.

8.2 Barriers to Entry

From the perspective of barriers to entry, three fac-
tors stand out of the empiric analysis:

� Theory: MDD / MDE are not widely known
and understood. At the same time, MDD
/ MDE have clear practical application since
software engineers are rediscovering signi�cant
parts of the methodology and applying it to
the concrete problems they face. The MDE
cannon appears to be too large and complex
for an untrained developer to pick up without
specialised training; yet, it is extremely di�-
cult for a team without specialised skills to un-
derstand how to deploy it for their particular
use case.

� Tooling: popular freely available tooling is
connected to a speci�c IDE and/or platform
� e.g. EMF � making it less appealing to
those not using those technologies. It also ap-
pears to be tailored to advanced users such
as researches and MDE practitioners rather
than targeting entry level use cases. Develop-
ers cannot immediately see how to make use of
the tools for their use case.

� Developer Pipeline: unorthodox practition-
ers can be thought of as proto-practitioners on
the path to MDE, but which seem to strug-
gle to �nd their way. There appears to be
a pipeline problem, discouraging inexperienced
practitioners to continue to develop their mod-
eling skills towards the literature's state of the
art. In this light, studying unorthodox prac-
titioners is likely an important avenue in un-
derstanding what is blocking wider adoption
of MDE.

Our conclusion, which points to future work, is
that it seems there is a need for entry level tooling,
able to integrate seamlessly with the most popular
development environments � but not demanding

15



a speci�c one � and designed speci�cally to intro-
duce inexperienced developers to MDE. The tooling
should require little understanding of the theoreti-
cal apparatus, but simultaneously allow developers
to explore more advanced topics as they become
pro�cient in MDE. In addition, quantitative and
qualitative studies should be performed on teams of
unorthodox practitioners to understand what the
requirements for the tooling should be. Finally,
work should be carried out in the spirit evoked by
Whittle et al. in [WHR14]: "match tools to people,
not the other way around."

Acknowledgements The author would like to
thank those that took part on the interviews and
in particular, those who have facilitated the inter-
views and access to The Financial Company.

References

[Ame] David Ameller. �SAD: Systematic Ar-
chitecture Design�. PhD thesis. Univer-
sitat Politècnica de Catalunya (cit. on
p. 1).

[And+14] Luigi Andolfato et al. �Experiences in
Applying Model Driven Engineering
to the Telescope and Instrument Con-
trol System Domain�. In: International
Conference on Model Driven Engineer-
ing Languages and Systems. Springer.
2014, pp. 403�419 (cit. on pp. 1, 2).

[BCW12] Marco Brambilla, Jordi Cabot, and
Manuel Wimmer. Model-driven soft-
ware engineering in practice. Vol. 1. 1.
Morgan & Claypool Publishers, 2012,
pp. 1�182 (cit. on pp. 1, 6).

[Bec+01] Kent Beck et al. �Manifesto for agile
software development�. In: (2001) (cit.
on p. 4).

[CH06] Krzysztof Czarnecki and Simon Helsen.
�Feature-based survey of model trans-
formation approaches�. In: IBM Sys-
tems Journal 45.3 (2006), pp. 621�645
(cit. on p. 8).

[FT00] Roy T Fielding and Richard N Tay-
lor. Architectural styles and the de-
sign of network-based software archi-
tectures. Vol. 7. University of Califor-
nia, Irvine Irvine, USA, 2000 (cit. on
p. 4).

[Fie+99] Roy Fielding et al. Hypertext transfer
protocol�HTTP/1.1. Tech. rep. 1999
(cit. on p. 4).

[Fje08] Hans-Christian Fjeldberg. �Polyglot
programming�. MA thesis. Norwegian
University of Science and Technology,
Trondheim/Norway, 2008 (cit. on p. 4).

[HRW11] John Hutchinson, Mark Rounce�eld,
and Jon Whittle. �Model-driven en-
gineering practices in industry�. In:
Proceedings of the 33rd International
Conference on Software Engineering.
ACM. 2011, pp. 633�642 (cit. on pp. 2,
13, 15).

[Hut+11] John Hutchinson et al. �Empirical as-
sessment of MDE in industry�. In: Soft-
ware Engineering (ICSE), 2011 33rd
International Conference on. IEEE.
2011, pp. 471�480 (cit. on pp. 1�3).

[Kur07] Ivan Kurtev. �State of the art of QVT:
A model transformation language stan-
dard�. In: International Symposium on
Applications of Graph Transformations
with Industrial Relevance. Springer.
2007, pp. 377�393 (cit. on p. 7).

[MD08] Parastoo Mohagheghi and Vegard
Dehlen. �Where is the proof? A
review of experiences from apply-
ing MDE in industry�. In: Euro-
pean Conference on Model Driven
Architecture-Foundations and Applica-
tions. Springer. 2008, pp. 432�443 (cit.
on pp. 1, 2).

[Mus+14] Gunter Mussbacher et al. �The rel-
evance of model-driven engineering
thirty years from now�. In: Interna-
tional Conference on Model Driven
Engineering Languages and Systems.
Springer. 2014, pp. 183�200 (cit. on
pp. 1, 2).

16



[PL03] Randall Perrey and Mark Lycett.
�Service-oriented architecture�. In: Ap-
plications and the Internet Workshops,
2003. Proceedings. 2003 Symposium
on. IEEE. 2003, pp. 116�119 (cit. on
p. 4).

[Pie06] Michael Piefel. �A common metamodel
for code generation�. In: (2006) (cit. on
p. 6).

[RR15] Alexander Roth and Bernhard Rumpe.
�Towards product lining model-driven
development code generators�. In:
Model-Driven Engineering and Soft-
ware Development (MODELSWARD),
2015 3rd International Conference on.
IEEE. 2015, pp. 539�545 (cit. on p. 1).

[SKSG07] Dov Shirtz, Michael Kazakov, and
Yael Shaham-Gafni. �Adopting
model driven development in a large
�nancial organization�. In: Euro-
pean Conference on Model Driven
Architecture-Foundations and Appli-
cations. Springer. 2007, pp. 172�183
(cit. on pp. 1, 3).

[Völ09] Markus Völter. �MD* Best Practices�.
In: Journal of Object Technology 8
(2009), pp. 79�102 (cit. on p. 1).

[Völ+13] Markus Völter et al.Model-driven soft-
ware development: technology, engi-
neering, management. John Wiley &
Sons, 2013 (cit. on p. 1).

[WHR14] Jon Whittle, John Hutchinson, and
Mark Rounce�eld. �The state of prac-
tice in model-driven engineering�. In:
IEEE software 31.3 (2014), pp. 79�85
(cit. on pp. 1, 16).

[Whi+13] Jon Whittle et al. �Industrial adoption
of model-driven engineering: Are the
tools really the problem?� In: Inter-
national Conference on Model Driven
Engineering Languages and Systems.
Springer. 2013, pp. 1�17 (cit. on p. 2).

[Whi+17] Jon Whittle et al. �A taxonomy of tool-
related issues a�ecting the adoption
of model-driven engineering�. In: Soft-
ware & Systems Modeling 16.2 (2017),
pp. 313�331 (cit. on pp. 2, 4, 11).

17


	Introduction
	Related Work
	Study Method
	The Financial Company
	Requirements
	Architecture
	The Model
	The Code Generator
	Project Evolution

	Technical Analysis
	Metametamodel
	Metamodel
	Model
	Variability
	Transforms

	Personal Experiences
	Ambitious Undertaking
	Evolving Purpose
	Speculative Features
	Unintended Consequences
	Business Alignment
	Rapid Development
	Interoperability Support

	Impact Analysis
	Technical Factors
	Tool Features
	Practical Applicability
	Complexity
	Human Factors
	Theory
	Impact on Development

	Internal Organisational Factors
	External Organisational Factors
	Social Factors

	Conclusions
	Lessons Learned
	Barriers to Entry


