Journal article Open Access

Goal-driven, neurobiological-inspired convolutional neural network models of human spatial hearing

van der Heijden, Kiki; Mehrkanoon, Siamak

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="URL"></identifier>
      <creatorName>van der Heijden, Kiki</creatorName>
      <familyName>van der Heijden</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0003-4516-7907</nameIdentifier>
      <affiliation>Donders Institute</affiliation>
      <creatorName>Mehrkanoon, Siamak</creatorName>
      <affiliation>Maastricht University</affiliation>
    <title>Goal-driven, neurobiological-inspired convolutional neural network models of human spatial hearing</title>
    <date dateType="Issued">2021-12-06</date>
  <resourceType resourceTypeGeneral="JournalArticle"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.neucom.2021.05.104</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;The human brain effortlessly solves the complex computational task of sound localization using a mixture of spatial cues. How the brain performs this task in naturalistic listening environments (e.g. with reverberation) is not well understood. In the present paper, we build on the success of deep neural networks at solving complex and high-dimensional problems&amp;nbsp;&lt;a href=""&gt;[1]&lt;/a&gt;&amp;nbsp;to develop goal-driven, neurobiological-inspired convolutional neural network (CNN) models of human spatial hearing. After training, we visualize and quantify feature representations in intermediate layers to gain insights into the representational mechanisms underlying sound location encoding in CNNs. Our results show that neurobiological-inspired CNN models trained on real-life sounds spatialized with human binaural hearing characteristics can accurately predict sound location in the horizontal plane. CNN localization acuity across the azimuth resembles human sound localization acuity, but CNN models outperform human sound localization in the back. Training models with different objective functions - that is, minimizing either Euclidean or angular distance - modulates localization acuity in particular ways. Moreover, different implementations of binaural integration result in unique patterns of localization errors that resemble behavioral observations in humans. Finally, feature representations reveal a gradient of spatial selectivity across network layers, starting with broad spatial representations in early layers and progressing to sparse, highly selective spatial representations in deeper layers. In sum, our results show that neurobiological-inspired CNNs are a valid approach to modeling human spatial hearing. This work paves the way for future studies combining neural network models with empirical measurements of neural activity to unravel the complex computational mechanisms underlying neural sound location encoding in the human auditory pathway.&lt;/p&gt;</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Global Fellowships/898134/">898134</awardNumber>
      <awardTitle>Representational Mechanisms of Neural Location Encoding of Real-life Sounds in Normal and Hearing Impaired Listeners.</awardTitle>
Views 36
Downloads 22
Data volume 62.5 MB
Unique views 33
Unique downloads 21


Cite as