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Abstract

It is widely known that AI planning and model checking
are closely related. Compilations have been devised between
various pairs of language fragments. What has barely been
voiced yet, though, is the idea to let go of one’s own mod-
eling language, and use one from the other area instead. We
advocate that idea here – to use automata-network languages
from model checking instead of PDDL – motivated by mod-
eling difficulties relating to planning agents surrounded by
exogenous agents in complex environments. One could, of
course, address this by designing additional extended plan-
ning languages. But one can also leverage decades of work
on modeling in the formal methods community, creating po-
tential for deep synergy and integration with their techniques
as a side effect. We believe there’s a case to be made for the
latter, as one modeling alternative in planning among others.

1 Introduction

The close relation between AI planning (AIP) and model
checking (MC) is widely known. Model checkers have been
used as planning back-ends (e. g. (Giunchiglia and Traverso
1999; Cimatti et al. 2003; Bogomolov et al. 2014)), compi-
lations are known between a variety of language fragments
(e. g. (Edelkamp 2003a; Abdeddaı̈m et al. 2007; Klauck et
al. 2018)), various algorithmic ideas have been transferred
(e. g. (Rintanen 2003; Edelkamp, Lluch-Lafuente, and Leue
2004; Wehrle et al. 2013)), temporal logics is frequently
used in both areas (e. g. (Baier, Bacchus, and McIlraith
2009; De Giacomo and Vardi 2013)).

Despite this intense exchange across areas, it is uncom-
mon to use a modeling language from area X to model (and
solve) a problem from area Y; we discuss exceptions below.
There seems to be an implicit assumption that the model-
ing languages of either area are best suited to model those
practical problems that area is interested in solving. We be-
lieve there is good reason to challenge that assumption. We
advocate the use of MC languages based on automata net-
works to model AIP problems, as one modeling alternative
in planning. We believe that this is the rational choice for
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certain problem characteristics, pertaining to AIP applica-
tions involving planning agents surrounded by exogenous
agents (not under control of the planner) in complex envi-
ronments. Specifically, in our own work, we have considered
Minecraft planning, robot-human collaboration, and drones
control avoiding exogenous drones. After modeling these in
AIP languages, and considering MC languages based on au-
tomata networks as an alternative, we cannot help but con-
clude that the latter provide a superior combination of sup-
port for (I) exogenous agents, (II) pre-defined plan structure,
(III) probabilistic duration uncertainty, and (IV) data struc-
tures. Various AIP dialects address some of (I)–(IV), but of-
ten with limitations and none addresses the combination.

The technical part of the paper elaborates on these points.
Before we delve into the details, let us briefly discuss the
consequences of our proposal, and related prior works.

In the short term, if we model our problems in MC lan-
guages then we have to use MC tools. In the long term,
however, our vision is to synergetically combine algorith-
mic ideas across areas. While many ideas are related, AIP
has generally focused on fast methods finding solutions un-
der run-time conditions, while MC has generally focused
on complete analyses under design-time conditions. So a
blueprint for combination across areas is an architecture in
which planning methods serve for online decision making,
while MC/verification methods serve for offline analysis and
for the preparation of information to be leveraged at run-
time (approximations of the safe region, etc). Note that this
could transform the connection between the two areas. Apart
from getting rid of the language barrier, we would elaborate
and leverage the complementarity across areas, rather than
their commonality as previous approaches do.

It has been previously observed in AIP that automata net-
works can have advantages for modeling planning prob-
lems. In the PDDL+ (Fox and Long 2006) variant of the
most common planning language PDDL, the semantics is
based on mapping PDDL+ to hybrid automata, motivated
among other things by the potential for exchange of results.
In Web service composition as planning, at the so-called
process level Web services are represented as automata (Pi-
store, Traverso, and Bertoli 2005). Models and tools from
probabilistic MC have become popular in the robotics and
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motion planning communities due to their expressivity (e. g.
(Johnson and Kress-Gazit 2011; Lacerda, Parker, and Hawes
2015)). Work on the design of reactive model-based execu-
tives has made intensive use of automata-based semantics, in
the RMPL language (Williams, Chung, and Gupta 2001) and
in variants of the Burton system (e. g. (Williams and Nayak
1997; Wang and Williams 2015)).

While MC languages have been conceived as abstract
models against which to check system properties, they have
also been used for model-based control. To give just one ex-
ample, quantitative MC supporting probabilities and arith-
metics has been used to model and solve a variety of satellite
control problems taking into account battery usage (Nies et
al. 2018). The MC tool configuration here falsifies reacha-
bility properties corresponding to the negated satellite goal,
so that effectively MC is used to solve a planning problem.

In the light of these prior works, what is new in our pro-
posal is merely its radical nature within AIP, suggesting to
use automata-based MC languages instead of PDDL dialects
at the front end, where suited to the application.

Section 2 briefly introduces the planning and MC lan-
guages considered in our discussion. Section 3 gives a lan-
guage comparison overview, outlining the weaknesses of
AIP vs. MC languages along the lines (I)–(IV) mentioned
above. Sections 4 and 5 illustrate these language differences
with two use cases pertaining to drones control and robot-
human collaboration. Section 6 closes the paper.

2 Background: The Languages We Consider

AI Planning

Planning languages are generally based on first-order logics,
with a finite universe of objects and without function sym-
bols. A state is an interpretation, which can be viewed as
a vector of Boolean state variables. An action is described
in terms of a precondition formula, and an effect specifying
how the interpretation changes. Planning tasks specify the
sets of objects and predicates, a set of actions with object
parameters (as in “drive(x,y)”), an initial state, and a goal
formula. The most common front end language is the plan-
ning domain definition language (PDDL), used in the inter-
national planning competitions (IPC). In classical planning,
actions are deterministic and the initial state is fully known.
Many extensions to richer models exist.

The PDDL1.0 dialect used in the 1998 and 2000 IPCs
(McDermott 2000; Bacchus 2001), corresponds to classi-
cal planning with Boolean state variables only. In PDDL2.1,
Fox and Long (2003) enriched this with numeric state vari-
ables and temporal planning. In PDDL2.2, Hoffmann and
Edelkamp (2005) added timed initial literals to model ex-
ogenous events. In PDDL+, Fox and Long (2006) support
continuous processes triggered by actions, including ex-
ogenous actions, allowing to model time-dependent effects.
Tool support for this branch of PDDL is generally good,
with ample coverage of PDDL1.0 notably in the FD plat-
form (Helmert 2006), but many tools also for richer dialects
(e. g. (Edelkamp 2003b; Gerevini, Saetti, and Serina 2008;
Coles et al. 2012; 2013; Bryce et al. 2015)).

To support probabilistic planning, Younes et al. (2005)

introduced PPDDL which extends PDDL1.0 with proba-
bilistic action outcomes. Later on, Sanner (2010) introduced
RDDL which departs from PDDL more radically, in particu-
lar adding support for probabilistic behaviors exogenous to,
and concurrent with, the planning agent (such as traffic at
a crossing). That support is crucial in our target use cases.
Various tools support fragments of RDDL. A prominent one
is Prost (Keller and Eyerich 2012) for effective satisficing
planning based on Monte-Carlo tree search.

Functional STRIPS (Geffner 2000) extends STRIPS with
function symbols, mapping objects to objects. This allows
to refer to objects more flexibly, in particular eliminating
the need to parameterize each action by all relevant objects
(which often results in large grounded encodings).

In many applications it makes sense for the human mod-
eler to impose a partially pre-defined plan structure. Support
for this is provided by HTN planning (e. g. (Nau et al. 2003;
Höller et al. 2014), where a hierarchy of action decomposi-
tions imposes plan structure; and by Golog (e. g. (Levesque
et al. 1994; Grosskreutz and Lakemeyer 2003)), where im-
perative programming constructs impose plan structure.

It is finally worth mentioning MA-PDDL (Brafman and
Domshlak 2008; Komenda, Stolba, and Kovacs 2016) in our
context, which extends PDDL1.0 with support for multi-
agent cooperative planning, where the task is to control all
agents but in a decentralized manner.

Model Checking

From the large and diverse landscape of MC modeling lan-
guages, here we focus on automata networks, which natu-
rally lend themselves to an agent-based view of the world.

Languages based on automata networks incorporate in-
dividual automata variants ranging from deterministic fi-
nite automata to ones incorporating state variables, data
structures, non-determinism, time, and/or stochastic behav-
ior. Several such automata are executed concurrently, so
that states are combinations of automaton positions (and
state variable values/data structure instances if present). Au-
tomata can be synchronized through shared actions (labels
for transitions that have to be taken synchronously), global
state variables or data structures, and communication chan-
nels transferring data between automata.

Well-known example modeling languages and tools are
Promela and SPIN (Holzmann 2004); UPPAAL (Larsen,
Pettersson, and Yi 1997), which focuses on timed automata
models; and PRISM (Kwiatkowska, Norman, and Parker
2011), which focuses on probabilistic models.

In the remainder of the paper, we refer to automata-based
MC languages in general when finer distinctions are not nec-
essary. The only concrete MC language we discuss is Jani
(Budde et al. 2017), see http://www.jani-spec.org/, which
is ideally suited due to its broad coverage of MC models.
Jani has been conceived as an overarching language to foster
MC tool interoperation and comparability. It encompasses
data structures, clocks, and probabilities. It defines language
fragments capturing a wide range of sub-formalisms, from
labeled transition systems to stochastic hybrid automata and
everything in between, e. g. discrete- and continuous-time
Markov chains and decision processes. Tool support for Jani
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is available from the Modest Toolset (Hartmanns and Her-
manns 2014), Storm (Dehnert et al. 2017), and (through
model translations) from PRISM among others. A large
spectrum of case studies exists.

3 Language Comparison Overview

This work is motivated by, and our conclusions pertain to,
AIP applications with certain problem characteristics:

(I) exogenous agents;

(II) pre-defined plan structure;

(III) probabilistic duration uncertainty;

(IV) need for non-trivial data structures.

Characteristic (I) occurs whenever the planning agent is sur-
rounded by exogenous agents, and knowledge about those
agents’ behavior is available and important for the decision
taking (e. g. a human co-worker). Characteristic (II) is natu-
ral for technical systems that require autonomous decisions
in particular situations only, using scripted behavior other-
wise (e. g. drones control in critical vs. standard situations).
Characteristic (III) is important, e. g., for temporal synchro-
nization with exogenous agents whose action durations can-
not be assumed to be fixed (e. g. a human co-worker’s coffee
break). Characteristic (IV) occurs, for example, when act-
ing in a large discrete space, where arrays are convenient to
store location information (e. g. Minecraft). Table 1 gives an
overview of our language comparison regarding (I) – (IV).

(I) Exogenous Agents

Of interest to us here specifically are agents whose under-
lying workflows are known or at least partially known. An
example for an exogenous agent of this kind is a co-worker
in robot-human collaboration, triggering exogenous events
through action choice in a (partially) known workflow.

PDDL2.2 supports exogenous events as timed initial lit-
erals, that will become true at given points in time. This al-
lows to model events triggered by exogenous agents, but it
lacks the ability to model the underlying workflows. PDDL+
supports the latter more explicitly, through exogenous ac-
tions that trigger when their precondition becomes true.
Neither can model non-deterministic or probabilistic be-
havior. In work on model-based flexible execution (Levine
and Williams 2018), temporal networks have been extended
with exogenously controlled decision variables, allowing to
model non-deterministic but not probabilistic behavior.

RDDL provides the best AIP support for (I); indeed that is
a large part of its raison d’être. The probabilistic state transi-
tion model in RDDL allows to model environment behavior.
This lends itself, in particular, to exogenous agents.

MA-PDDL supports an explicit model of individual
agents, but is intended for cooperative planning where all
agents are under control of the planner. Somewhat similarly,
the ConGolog (De Giacomo, Lespérance, and Levesque
2000) variant of Golog permits programs that are exe-
cuted concurrently but that are all controlled by the plan-
ner. ConGolog furthermore adds exogenous events non-
deterministically choosing environment actions.

On the MC side, automata networks are perfectly suited
to model (I). Individual agents (planner-controlled or exoge-
nous) can be modeled through one or several automata each.
The underlying workflows are then explicitly specified, and
they allow to incorporate non-deterministic and probabilistic
behavior (where we can choose whether non-deterministic
exogenous agents are cooperative or adversarial).

(II) Pre-Defined Plan Structure

It is quite natural for a technical system to use autonomous
decision technology only at particular choice points, follow-
ing pre-programmed standard behavior otherwise.

Jani naturally supports such specifications. In AIP, sup-
port for user-imposed plan structure has a long tradition,
but remains rather an under-addressed area; e. g. it has not
been part of an IPC since 2004. IPC variants of PDDL do
not provide modeling support (though compilations are pos-
sible (Rintanen 2000)). The major approaches to provide
such support are HTN planning and Golog as previously
mentioned. In work on temporal planning networks (Kim,
Williams, and Abramson 2001), a user can write a control
program, imposing some structure on the plan, leaving some
choices for the agent to make during execution.

(III) Probabilistic Duration Uncertainty

Action durations can be subject to uncertainty. In Section 5
we discuss the example of robot-human collaboration where
action durations are uncertain for both human and robot.

PDDL 2.1 and upwards permit duration inequalities, but
they assume the duration is under control of the planner.
Prottle (Little, Aberdeen, and Thiébaux 2005) supports dis-
crete probabilistic durations. Probabilistic simple temporal
networks (e. g. (Vidal and Ghallab 1996; Fang, Yu, and
Williams 2014; Lund et al. 2017)) are a well-investigated
framework to schedule plans (not to find them). Temporal
planning networks have been extended with uncertain set-
bounded (interval) durations (Karpas et al. 2015), and also
with probabilistic durations (Yu et al. 2017). But the latter
function as constraints, bounding the risk that the real dura-
tion is outside a chosen interval.

In Jani, on the other hand, probabilistic duration uncer-
tainty is a key modeling dimension, reflecting a mature sub-
area of the MC literature (e. g. (Baier et al. 2010)). Jani syn-
tax allows to sample from continuous distributions and to
specify clock guards on the sampled values. Exponential dis-
tributions are supported in continuous-time Markov chain-
s/decision processes (CTMxx), more general ones in (gener-
alized) semi-Markov models. Algorithms tackling CTMxx
are well-investigated and advanced tool support is available,
including also approximations to more general models.

(IV) Data Structures

Acting in a large discrete space requires to handle location
information in some form. Sometimes this can be limited to
waypoint graphs, but that is not always so. An example is
the Minecraft game, where individual 3D positions matter.
In Section 4 we discuss a use case involving drones control.

To store discrete space information, arrays are a conve-
nient data structure. Yet PDDL encodings (e. g. of Minecraft
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PDDL1.0 PDDL2.1 PDDL 2.2 PDDL+ PPDDL RDDL F-STRIPS MA-PDDL HTN (SHOP) Golog Jani
(I) – – (�) (�) – � – (�) – (�) �
(II) – – – – – – – – � � �
(III) – (�) (�) (�) – – – – – – �
(IV) – (�) (�) (�) – (�) (�) – � – �

Table 1: Language comparison overview. ’–’ no support, ’(�)’ limited support, ’�’ full support. See text for details.

(Roberts et al. 2017)) model positions as object tuples, yield-
ing huge grounded representations. Functional STRIPS im-
proves this by reducing the number of action parameters
needed, and combined task and motion planning has been
addressed with extensions of functional STRIPS (Ferrer-
Mestres, Francès, and Geffner 2017) using state constraints
to compactly express no-overlap preconditions, and using
pre-processing to store compatibility information. PDDL2.1
and RDDL support numeric fluents, i. e., predicates that map
into real numbers instead of true/false. But numeric fluents
cannot be used as arguments of predicates, so we cannot di-
rectly encode arrays. In the HTN variant of the SHOP sys-
tem (Nau et al. 2003), action descriptions can link to arbi-
trary LISP code. Planning modulo theories (Gregory et al.
2012) could use arrays as a theory in principle, but that
hasn’t been implemented. No planning language explicitly
supports arrays as part of the state model.

On the MC side, with models intended to reflect software,
there is no inherent bias to logic-based encodings, and there
is a variety of support for programming-like constructs. In
particular, Jani admits arrays indexed with integer variables,
and some tools support these effectively.

MC does also, of course, have weaknesses compared to
AIP, for example regarding state uncertainty and distributed
control. POMDPs are not part of the Jani language land-
scape. Multi-agent planning problems can be naturally mod-
eled, but distributed planning is not an established MC prob-
lem so there is little to no tool support. Keep in mind that we
are suggesting MC as a modeling alternative for particular
cases, not as a lord of the languages to rule them all.

4 Use Case: Drone Control

Consider a scenario, like drone-fleet logistics, or the use of
drones to aid disaster recovery, where we need to control a
fleet of drones in an airspace containing also other moving
objects, like 3rd-party drones. Drones must keep a safety
distance from (fixed obstacles and) other drones.

One solution to the safety issue is to defer it to lower con-
trol layers, leveraging obstacle avoidance techniques, and
maintaining a high-level road map only. Assume though that
we want to take collision safety into account up front in
high-level planning, based on traffic predictions. This makes
sense, e. g., if the air space is typically crowded in partic-
ular places at particular times (drone fleet logistics), or if
some areas leave little room for maneuvering and we are in-
formed about exogenous drones’ trajectories (disaster recov-
ery). Note that exogenous drones, and our knowledge about
their future trajectorties, are a key difference to the litera-
ture on combined task and motion planning (e. g. (Srivas-
tava et al. 2014; Ferrer-Mestres, Francès, and Geffner 2017;

Fernández-González, Williams, and Karpas 2018)).
We focus on two modeling issues:

(1) Exogenous drones’ trajectories/traffic. How to model
the behavior of the agents not under our control?

(2) Collision avoidance. How to ensure that our drone
moves avoid collisions?

We will briefly discuss other possible challenges at the end
of this section. We parameterize (1) and (2) as follows:

(1) Knowledge about exogenous drones: (a) estimates of
crowded times/places; (b) assuming the current move-
ment vectors remain fixed; (c) movement trajectories;
(d) stochastic movement procedures.

(2) Movement granularity: (a) road map graph; (b) discrete
3D neighbor positions; (c) discrete 3D movement vec-
tors; (d) continuous 3D movement vectors.

Regarding (1), in PDDL2.2 we can write a temporal model
with timed initial literals. This necessitates to precompute
all relevant points in time and space, and list these explic-
itly in the initial state. The structure underlying this data is
lost completely, and the model may be huge. The only sce-
nario where this approach is plausible is (1a), i. e., if we want
to represent a small selection of critical time/space situa-
tions. A special case PDDL+ can handle is that of (1c) fully
known piecewise linear trajectories for exogenous drones,
in a continuous setting (2d), through exogenous events trig-
gering processes, and “over all” conditions enforcing mini-
mum distances. But that requires a separate process for every
drone-trajectory segment, and “over all” conditions ranging
over all objects. In RDDL we can model (1a)–(1d) through
probabilistic state-transition functions.

Regarding space & movement granularity (2), the only
clearly viable scenario is (2a). Scenarios (2b) and (2c) re-
quire either a “blocked” predicate for all possible (x,y,z)
positions, or collision checks implementing a disjunction
over all other objects. The latter is awkward, and results in
unwieldy precondition formulas as the number of objects
grows. The former severely limits scalability as the x, y,
and z dimensions must be encoded via objects resulting in
large ground encodings. Scenario (2c) additionally requires
to check whether any position on the move trajectory is
blocked. Expressing this as a precondition formula (or an
artificial check-move phase in the planning model) is pos-
sible when distinguishing “all relevant cases” (naı̈vely: all
possible movement vectors). But this is cumbersome to say
the least. In scenario (2d), the only way to avoid collisions
are preconditions ranging over all other objects. The sole ex-
ceptions to these difficulties are HTN planning with SHOP
using LISP code, and Golog through its program structure.
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Summing up, in PDDL dialects the only easy case are
crowded times/places (1a) on a road map (2a), supported by
timed initial literals. RDDL solves (1) but does not help with
(2), SHOP and Golog solve (2) but do not address (1).

choice move
dx:=−1; dy:=−1

dx:=1; dy:=1

...

free[x+dx][y+dy]
free[x ][y]:=�;
free[x+dx ][y+dy]:=⊥;
x:=x+dx; y:=y+dy

¬free[x+dx][y+dy]

Controlled drone

choice move

[ 1
9
]
dx:=−1
dy:=−1

[ 1
9
]
dx:=1
dy:=1

...

free[x+dx][y+dy]
free[x ][y]:=�;
free[x+dx ][y+dy]:=⊥;
x:=x+dx; y:=y+dy

¬free[x+dx][y+dy]

Exogenous drone

Figure 1: Illustration of automata-network encoding of type
(2b) with exogenous drone of type (1d).

Consider now MC languages based on automata net-
works, in particular Jani. Figure 1 illustrates an example.

The behavior (1) of exogenous drones can be explic-
itly modeled through automata representing individual such
drones in (1b)–(1d), or through an automaton representing a
traffic summary in (1a). We can additionally choose whether
to encode continuous time through timed automata, or dis-
crete time through discrete clocks and synchronization.

Collision avoidance (2) in discrete space (2b)–(2c) can be
encoded in Jani based on a “free[x,y,z]” array of booleans,
thus replacing an awkward logic-based encoding with the
simple data structure actually needed here. Scenario (2c)
(discrete movement vectors) requires a move-check phase,
as in planning languages. But that phase can be implemented
explicitly as a simple algorithm forming part of the agent’s
automaton, again replacing an awkward logic-based encod-
ing with a much simpler explicit form. Similarly, in scenario
(2d) parallel automata give us ample means for arithmetic
modeling of exogenous drones, and a simple algorithm can
be added for arithmetic intersection checks.

So MC languages and Jani have advantages (I) and (IV)
from Section 3. With a partially predefined drone workflow
we would also get (II), and with probabilistic duration uncer-
tainty (e. g. about exogenous drones’ movements) we would
get (III). Potential weaknesses of MC lie in state uncertainty
and distributed control as discussed in Section 3.

5 Use Case: Robot-Human Collaboration

We now consider a scenario where humans and robots are
collaborating in some form of production. Specifically, say
that the robots should behave like well-informed human
aides would, i. e., autonomously and flexibly adapt to sup-
port what their human co-workers are currently trying to do.
Say that the human workers follow fixed workflows, but that
these are non-deterministic (ordering of working steps, alter-
nate production routes, online job arrival, coffee breaks), and
there is temporal uncertainty as different things will take dif-
ferent time depending on circumstance. The robots need to
flexibly adapt to the workflow execution. Arguably, this set-
ting is typical of many situations where well-informed hu-
man aides make sense, for example in small-batch produc-
tion or in work at construction sites. Related settings have

been considered, for example, in work on model-based flex-
ible execution (e. g. (Levine and Williams 2018)).

A concrete use case we have previously explored is a riv-
eting process in aircraft assembly (Rekik et al. 2019). De-
pending on the type of aircraft, there can be millions of rivets
in one aircraft. Many riveting steps are manual. This requires
two operators, one to perform the actual riveting, the other to
perform a counter-holder role. The counter-holder positions
are often hard to reach and work in, so the idea is to use
a robot for that part of the work. The robot planner should
flexibly adapt to the human’s workflow decisions, pertaining
to the ordering of riveting points and to breaks. In particular,
the planner should exploit human breaks to inspect previous
riveting points, while taking into account the time needed to
come back when the human returns. Similar forms of collab-
oration and flexibility requirements arise, e. g., in work on a
car chassis if the robot should assist in certain steps and/or
hand over the required tools at the right points in time.
The modeling challenges we are interested in here are:
(1) Human co-worker workflows. How to model these and

their non-determinism?
(2) Human workflow step duration uncertainty. How to in-

form the robot about the time distributions?
(3) Robot workflow structure. How to model predefined

parts of the robot’s workflow?
The problem parameters we discuss are:
(1) Human co-worker workflow non-determinism: (a) non-

deterministic transitions; (b) probabilistic transitions
with fixed probabilities; (c) probabilities depending on
time (e. g. likelihood of taking a break).

(2) Human workflow step duration uncertainty: (a) expo-
nential (memoryless) distributions; (b) general ones.

(3) Robot workflow structure: (a) robot action precondi-
tions; (b) workflow with individual choice points.

The support of planning languages for (1) is limited. As hu-
man co-workers are exogenous agents not under control of
the planner, the difficulties with (1) relate closely to those
discussed for exogenous drones in Section 4. PDDL does not
support non-deterministic exogenous events. A possibility
might be PPDDL, using additional actions with probabilis-
tic outcomes to model workflow non-determinism. RDDL
naturally supports (1a) and (1b), but does not support (1c)
other than by encoding aspects of “time” as a discrete state
variable affecting the probabilities in question.

As discussed in Section 3, support for (2) in planning
is basically non-existent. Regarding (3), (3a) can easily be
dealt with by action preconditions in any planning language.
But no language other than Golog supports the specification
of a partial plan as a workflow with choice points.

Summing up, RDDL tackles (1) in discrete-time settings,
and Golog tackles (3), but neither helps with the respective
other problem and (2) remains basically unsupported.

The situation for MC languages, in particular Jani, is
much more positive. Figure 2 illustrates an example. Con-
tinuous time and duration uncertainty (2) are a key modeling
dimension in Jani. Mature tool support exists for exponen-
tial distributions (2a), and approximations to more general
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idle

react

move1 choice

move2

inspect
E(β=10)

E(β=|pos−r|)

next?

b=⊥

rivet?

pos:=r

b=� r′:=1

r′:=n
· · ·

pos:=r′
E(β=|pos−r′|)

Robot choice

waiting break
E(β=300)

next!

[ 0.99
n

]
r:=n

[ 0.99
n

]
r:=1

[0.01]
b:=�· · ·

rivet! b:=⊥

Human
(exogenous)

E(β=0.2)

Figure 2: Illustration of automata-network encoding for the
riveting application, with robot workflow of type (3b), and
human workflow of type (1b) and (2a). E(β=x) denotes the
exponential distribution with mean x.

models (2b) exist as well. Scenarios (3a) and (3b) can be
naturally and explicitly encoded into fixed parts of the robot
workflow, with specific choice points to be resolved by the
planner. Similarly, (1a) and (1b) are naturally and explicitly
supported by parallel automata not under control of the plan-
ning agent, capturing the humans’ workflows (online job ar-
rival can be modeled by additional parallel automata). Sce-
nario (1c) can be captured through parallel automata with
uncertain durations, controlling conditions under which the
humans’ workflows can transition to different states.

In short, MC languages here have advantages regarding
(I) exogenous agents, (II) pre-defined plan structure, and
(III) probabilistic duration uncertainty. (IV) data structures
may be helpful too, for 3D navigation. Potential weaknesses
again lie in state uncertainty and distributed control.

6 Conclusion

The quest for suitable modeling languages is complex. So
far that quest has been pursued largely independently in AI
planning and model checking, with both communities de-
voted to their own language landscape. Yet, while what is
“suitable” depends on the application, some scenarios tradi-
tionally viewed as applications of area X do not clearly favor
that area’s languages. Prior work provides evidence for this
claim through various successful uses of compilations across
areas, and through the use of MC tools for model-based con-
trol. Here we suggest to go one step further, using the other
area’s surface languages where they are more suitable. This
can go both ways in principle, though our central proposi-
tion here is to use Jani, rather than adding yet more PDDL
dialects covering the difficulties (I)–(IV) we described.

To be absolutely clear: we do not mean to imply that cur-
rent planning languages are useless. Our proposition is to
consider MC languages as yet another modeling alternative
for planning. We hope that this will inspire other researchers
from both communities, spawning a new brand of cross-area
research and integration. For example, a first step may be
to run an ICKEPS model-and-solve competition at ICAPS,
without restrictions on the modeling language used.
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