Journal article Open Access

Muscle stem cell aging: identifying ways to induce tissue rejuvenation

Sousa-Victor, Pedro; Neves, Joana; Muñoz-Cánoves, Pura


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5751928</identifier>
  <creators>
    <creator>
      <creatorName>Sousa-Victor,  Pedro</creatorName>
      <givenName>Pedro</givenName>
      <familyName>Sousa-Victor</familyName>
      <affiliation>Instituto de Medicina Molecular (iMM), Faculdade de Medicina, Universidade de Lisboa, Lisbon, 1649-028, Portugal</affiliation>
    </creator>
    <creator>
      <creatorName>Neves, Joana</creatorName>
      <givenName>Joana</givenName>
      <familyName>Neves</familyName>
      <affiliation>Instituto de Medicina Molecular (iMM), Faculdade de Medicina, Universidade de Lisboa, Lisbon, 1649-028, Portugal</affiliation>
    </creator>
    <creator>
      <creatorName>Muñoz-Cánoves, Pura</creatorName>
      <givenName>Pura</givenName>
      <familyName>Muñoz-Cánoves</familyName>
      <affiliation>Department of Experimental &amp; Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003, Barcelona, Spain - Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019, Madrid, Spain</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Muscle stem cell aging: identifying ways to induce tissue rejuvenation</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-04-18</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5751928</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.mad.2020.111246</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/upgrade-h2020-project</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Aging is characterized by the functional and regenerative decline of tissues and organs. This regenerative decline is a consequence of the numerical and functional loss of adult stem cells, which are the corner stone of tissue homeostasis and repair. A palpable example of this decline is provided by skeletal muscle, a specialized tissue composed of postmitotic myofibers that contract to generate force. Skeletal muscle stem cells (satellite cells) are long-lived and support muscle regeneration throughout life, but at advanced age they fail for largely undefined reasons. Here, we discuss recent advances in the understanding of how satellite cells integrate diverse intrinsic and extrinsic processes to ensure optimal homeostatic function and how this integration is perturbed during aging, causing regenerative failure. With this increased understanding, it is now feasible to design and test interventions that delay satellite cell aging. We discuss the exciting new therapeutic potential of integrating and combining distinct anti-aging strategies for regenerative medicine.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825825/">825825</awardNumber>
      <awardTitle>Unlocking Precision Gene Therapy</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
34
60
views
downloads
Views 34
Downloads 60
Data volume 108.6 MB
Unique views 30
Unique downloads 58

Share

Cite as