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Accurate Modelling of a real-world system with probabilistic behaviour is a difficult task. Sensor noise and

statistical estimations, among other imprecisions, make the exact probability values impossible to obtain. In

this article, we consider Interval Markov decision processes (IMDPs), which generalise classical MDPs by hav-

ing interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems

with an additional variation or uncertainty that prevents the knowledge of the exact transition probabili-

ties. We investigate the problem of robust multi-objective synthesis for IMDPs and Pareto curve analysis of

multi-objective queries on IMDPs. We study how to find a robust (randomised) strategy that satisfies mul-

tiple objectives involving rewards, reachability, and more general ω-regular properties against all possible

resolutions of the transition probability uncertainties, as well as to generate an approximate Pareto curve

providing an explicit view of the trade-offs between multiple objectives. We show that the multi-objective

synthesis problem is PSPACE-hard and provide a value iteration-based decision algorithm to approximate
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the Pareto set of achievable points. We finally demonstrate the practical effectiveness of our proposed ap-

proaches by applying them on several case studies using a prototype tool.

CCS Concepts: • Computing methodologies → Planning under uncertainty; Motion planning; • The-

ory of computation → Approximation algorithms analysis;

Additional Key Words and Phrases: Interval Markov decision processes, multi-objective optimisation, robust
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1 INTRODUCTION

Interval Markov Decision Processes (IMDPs) [Givan et al. 2000] extend classical Markov Decision

Processes (MDPs) [Bellman 1957] by including uncertainty over the transition probabilities. More
precisely, instead of a single value for the probability of taking a transition, IMDPs allow ranges of
possible probability values given as closed intervals of the reals. Thereby, IMDPs provide a powerful
modelling tool for probabilistic systems with an additional variation or uncertainty concerning
the knowledge of exact transition probabilities. They are especially useful to represent realistic
stochastic systems that, for instance, evolve in unknown environments with bounded behaviour
or do not preserve the Markov property.

Since their introduction (under the name of bounded-parameter MDPs) [Givan et al. 2000],
IMDPs have been receiving a lot of attention in the formal verification community [Cubuktepe
et al. 2017; Petrucci and van de Pol 2018; Quatmann et al. 2016]. They are viewed as the appropriate
abstraction model for uncertain systems with large state spaces, including continuous dynamical
systems, for the purpose of analysis, verification, and control synthesis. Several model checking
and control synthesis techniques have been developed [Puggelli 2014; Puggelli et al. 2013; Wolff
et al. 2012] causing a boost in the applications of IMDPs, ranging from verification of continuous
stochastic systems (e.g., Lahijanian et al. [2015]) to robust strategy synthesis for robotic systems
(e.g., Luna et al. [2014a, 2014b, 2014c]; Wolff et al. [2012]).

In recent years, there has been an increasing interest in multi-objective strategy synthesis for
probabilistic systems [Chatterjee et al. 2006; Esteve et al. 2012; Forejt et al. 2011, 2012; Kwiatkowska
et al. 2013; Mouaddib 2004; Ogryczak et al. 2013; Perny et al. 2013; Randour et al. 2015]. Here, the
goal is first to provide a complete trade-off analysis of several, possibly conflicting, quantitative
properties and then to synthesise a strategy that guarantees the user’s desired behaviour. Such
properties, for instance, ask to “find a robot strategy that maximises psafe, the probability of suc-
cessfully completing a track by safely manoeuvring between obstacles, while minimising ttravel,
the total expected travel time.” This example has competing objectives: maximising psafe, which
requires the robot to be conservative, and minimising ttravel, which causes the robot to be reckless.
In such contexts, the interest is in the Pareto curve of the possible solution points: the set of all pairs
of (psafe, ttravel) for which an increase in the value of psafe must induce an increase in the value of
ttravel, and vice versa. Given a point on the curve, the computation of the corresponding strategy
is asked.

Existing multi-objective synthesis frameworks [Chatterjee et al. 2006; Esteve et al. 2012; Forejt
et al. 2011, 2012; Kwiatkowska et al. 2013; Mouaddib 2004; Ogryczak et al. 2013; Perny et al. 2013;
Randour et al. 2015] are limited to MDP models of probabilistic systems. The algorithms use it-
erative methods (similar to value iteration) for the computation of the Pareto curve and rely on
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reductions to linear programming for strategy synthesis. As discussed above, MDPs, however, are
constrained to single-valued transition probabilities, posing severe limitations for many real-world
systems.

In this article, we present novel techniques for robust control of IMDPs with multiple objectives.
Our aim is to approximate Pareto curve for a set of conflicting objectives, despite the additional
uncertainty over the transition probabilities in these models. Our approach views the uncertainty
as making adversarial choices among the available transition probability distributions induced by
the intervals, as the system evolves. This is contrary to works like Scheftelowitsch et al. [2017],
where a probability distribution about the intervals is assumed and similar approaches [Petrucci
and van de Pol 2018]. We refer to this as the controller synthesis semantics. We compute a succes-
sive and increasingly precise approximation of the Pareto curve through a value iteration algo-
rithm that optimises the weighted sum of objectives. We consider three different multi-objective
queries for IMDPs, namely synthesis, quantitative, and Pareto queries. We start with the synthe-
sis queries where our goal is to synthesise a robust strategy that guarantees the satisfaction of a
multi-objective property. We first analyse the problem complexity and prove that it is PSPACE-
hard and then develop a value iteration-based algorithm to approximate the Pareto curve of the
given set of objectives. Afterwards, we extend our solution approach to approximate the Pareto
curve for other types of queries. To show the effectiveness of our approach, we present promising
results on several case studies analysed by a prototype implementation of the algorithms.

Our queries are formulated in a way similar to Forejt et al. [2012] but with three key exten-
sions. First, we discuss approximating Pareto curves for IMDP models that include interval model
of uncertainty and provide more expressive modelling formalisms for the abstraction of real-world
systems. As we discuss later, our solution approach can also handle MDP models with more gen-
eral convex models of uncertainty. Next, we provide a detailed discussion on the reduction of a
multi-objective property, including reachability or reward predicates to a basic form, i.e., a multi-
objective property including only reward predicates. Our reduction to the basic form extends its
counterpart in Forejt et al. [2011, 2012] for MDPs. It also corrects a few minor flaws of these works,
in particular in Forejt et al. [2012], Proposition 2; see the discussion after Proposition 18.

Finally, we detail the generation of randomised strategies.
This article is an extended version of Hahn et al. [2017]; compared with Hahn et al. [2017], in

this article, we provide additional technical details such as formal proofs, the extension to general
PLTL and ω-regular properties, the generation of randomised strategies, and additional empirical
results.

Related work. Related work can be grouped into two main categories: uncertain Markov model
formalisms and model checking/synthesis algorithms.

First, from the modelling viewpoint, various probabilistic modelling formalisms with uncer-
tain transitions have been studied in the literature. Interval Markov Chains (IMCs) [Jonsson and
Larsen 1991; Kozine and Utkin 2002] or abstract Markov chains [Fecher et al. 2006] extend standard
discrete-time Markov Chains (MCs) with interval uncertainties. They do not feature the nonde-
terministic choices of transitions. Uncertain MDPs [Puggelli et al. 2013] allow more general sets
of distributions to be associated with each transition, not only those described by intervals. They
usually are restricted to rectangular uncertainty sets requiring that the uncertainty is linear and
independent for any two transitions of any two states. Parametric MDPs [Daws 2004; Hahn et al.
2011], to the contrary, allow such dependencies, as every probability is described as a rational
function on a finite set of global parameters. IMDPs extend IMCs by inclusion of nondeterminism
and are a subset of uncertain MDPs and parametric MDPs.

Second, from the side of algorithmic developments, several verification methods for uncertain
Markov models have been proposed. The problem of computing reachability probabilities and
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expected total reward for IMCs and IMDPs was first investigated in Chen et al. [2013b] and Wu
and Koutsoukos [2008]. Then, several of PCTL and LTL model checking algorithms discussed in
these works were introduced in Benedikt et al. [2013]; Chatterjee et al. [2008]; Chen et al. [2013b],
and Lahijanian et al. [2015]; Puggelli et al. [2013]; Wolff et al. [2012], respectively. Concerning
strategy synthesis algorithms, the works of Hahn et al. [2011] and Nilim and El Ghaoui [2005]
considered synthesis for parametric MDPs and MDPs with ellipsoidal uncertainty in the verification
community. In control community, such synthesis problems were mostly studied for uncertain
Markov models in Givan et al. [2000]; Nilim and El Ghaoui [2005]; Wu and Koutsoukos [2008] with
the aim to maximise expected finite-horizon (un)discounted rewards. All these works, however,
consider solely single objective properties, and their extension to multi-objective synthesis is not
trivial.

Multi-objective model checking of probabilistic models with respect to various quantitative ob-
jectives has been recently investigated. The works of Etessami et al. [2007]; Forejt et al. [2011, 2012];
Kwiatkowska et al. [2013] focused on multi-objective verification of ordinary MDPs. In Chen et al.
[2013a], these algorithms were extended to the more general models of 2-player stochastic games.
These models, however, cannot capture the continuous uncertainty in the transition probabilities
as IMDPs do. For the purposes of synthesis, though, it is possible to transform an IMDP into a 2-
player stochastic game; nevertheless, such a transformation raises an extra exponential factor to
the complexity of the decision problem. This exponential blowup has been avoided in our setting.

Structure of the article. We start with necessary preliminaries in Section 2. In Section 3, we discuss
multi-objective robust control of IMDPs and present our novel solution approaches. In Section 4,
we detail how randomised strategies can be generated. In Section 5, we demonstrate our approach
on three case studies and present experimental results. In Section 6, we conclude the article.

To keep the presentation clear, non-trivial proofs have been moved to the Appendix A.

2 PRELIMINARIES

For a set X , denote by Disc(X ) the sets of discrete probability distributions over X . A discrete
probability distribution ρ is a function ρ:X → R≥0 such that

∑
x ∈X ρ (x ) = 1; forX ′ ⊆ X , we write

ρ (X ′) for
∑

x ∈X ′ ρ (x ). Given ρ ∈ Disc(X ), we denote by Supp(ρ) the set { x ∈ X | ρ (x ) > 0 }, and by
δx , where x ∈ X , the point distribution such that δx (y) = 1 fory = x , 0 otherwise. For a distribution
ρ, we also write ρ = { (x ,px ) | x ∈ X } where px = ρ (x ) is the probability of x .

For a vector x ∈ Rn , we denote by xi , its ith component, and we call x a weight vector

if xi ≥ 0 for all i and
∑n

i=1 xi = 1. The Euclidean inner product x · y of two vectors x, y ∈
Rn is defined as

∑n
i=1 xi · yi . In the following, when comparing vectors, the comparison is

to be understood component-wise. Thus, e.g., x ≤ y means that for all indices i , we have
xi ≤ yi . For a set of vectors S = {s1, . . . , st } ⊆ Rn , we say that s ∈ Rn is a convex combina-

tion of elements of S , if s =
∑t

i=1wi · si for some weight vector w ∈ Rt
≥0. Furthermore, we de-

note by S↓ the downward closure of the convex hull of S that is defined as S↓ = { y ∈ Rn |
y ≤ z for some convex combination z of the elements of S }. For a given convex set X , we say that
a point x ∈ X is on the boundary of X , denoted by x ∈ ∂X , if for every ε > 0 there is a point
y � X such that the Euclidean distance between x and y is at most ε . Given a downward closed
set X ∈ Rn , for any z ∈ Rn such that z ∈ ∂X or z � X , there is a weight vector w ∈ Rn such that
w · z ≥ w · x for all x ∈ X [Boyd and Vandenberghe 2004]. We say that w separates z from X↓.
Given a set Y ⊆ Rk , we call a vector y ∈ Y Pareto optimal in Y if there does not exist a vector z ∈ Y
such that y ≤ z and y � z. We define the Pareto set or Pareto curve of Y to be the set of all Pareto
optimal vectors in Y , i.e., Pareto set Y = { y ∈ Y | y is Pareto optimal }.
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2.1 Interval Markov Decision Processes

We now define Interval Markov Decision Processes (IMDPs) as an extension of MDPs, which allow
for the inclusion of transition probability uncertainties as intervals. IMDPs belong to the family of
uncertain MDPs and allow to describe a set of MDPs with identical (graph) structures that differ in
distributions associated with transitions. Formally,

Definition 1 (IMDPs). An Interval Markov Decision Process (IMDP)M is a tuple (S, s̄,A, I ,AP, L),
where S is a finite set of states, s̄ ∈ S is the initial state, A is a finite set of actions, I : S × A × S →
I ∪ {[0, 0]} is a total interval transition probability function where I = { [a,b] | 0 < a ≤ b ≤ 1 }, AP

if a finite set of atomic propositions, and L:S → 2AP is a total labelling function.

The requirement that 0 < a ensures that the graph structure remains the same for different
resolutions of the intervals. Having a = 0 would mean that an edge in the graph could disappear.
As discussed later on, this restriction is essential for some of the algorithms we use to analyse
IMDPs. Given s ∈ S and a ∈ A, we call has ∈ Disc(S ) a feasible distribution reachable from s by a,
denoted by s

a−→ has , if, for each state s ′ ∈ S , we have has (s ′) ∈ I (s,a, s ′). This means that we can
only assign probability values lying in the interval I (s,a, s ′) to state s ′. We denote the set of feasible
distributions for state s and action a by H a

s , i.e., H a
s = { has ∈ Disc(S ) | s a−→ has } and we denote

the set of available actions at state s ∈ S byA (s ), i.e.,A (s ) = { a ∈ A | H a
s � ∅ }. We assume that

A (s ) � ∅ for all s ∈ S . We define the size ofM, written |M|, as the number of non-zero entries of
I , i.e., |M| = |{ (s,a, s ′, ι) ∈ S × A × S × I | I (s,a, s ′) = ι }| ∈ O ( |S |2 · |A|).

A path ξ in M is a finite or infinite sequence of alternating states and actions ξ = s0a0s1 . . .,
ending with a state if finite, such that for each i ≥ 0, I (si ,ai , si+1) ∈ I. The ith state (action) along
the path ξ is denoted by ξ [i] (ξ (i )) and, if the path is finite, we denote by last (ξ ) its last state;
moreover, we denote by ξ [i . . . ] the suffix of ξ starting from ξ [i]. For instance, for the finite path
ξ = s0a0s1 . . . sn , we have ξ [i] = si , ξ (i ) = ai , and last (ξ ) = sn . The sets of all finite and infinite
paths inM are denoted by FPaths and IPaths, respectively.

An ω-word w is an infinite sequence of sets of atomic propositions, i.e., w ∈ (2AP )ω . Given an
infinite path ξ , the word w (ξ ) generated by ξ is the sequence w (ξ ) = w0w1 . . . such that for each
i ≥ 0, wi = L(ξ [i]).

The nondeterministic choices between available actions and feasible distributions present in an
IMDP are resolved by strategies and natures, respectively.

Definition 2 (Strategy and Nature in IMDPs). Given an IMDP M, a strategy is a function σ :
FPaths → Disc(A) such that for each ξ ∈ FPaths, σ (ξ ) ∈ Disc(A (last (ξ )). A nature is a func-
tion π : FPaths × A → Disc(S ) such that for each ξ ∈ FPaths and a ∈ A (s ), π (ξ ,a) ∈ H a

s where
s = last (ξ ). The sets of all strategies and all natures are denoted by Σ and Π, respectively.

Given a finite path ξ of an IMDP, a strategy σ , and a nature π , the system evolution proceeds as
follows: Let s = last (ξ ). First, an action a ∈ A (s ) is chosen probabilistically by σ . Then, π resolves
the uncertainties and chooses one feasible distribution has ∈ H a

s . Finally, the next state s ′ is chosen
according to the distribution has , and the path ξ is extended by a and s ′, i.e., the resulting path is
ξ ′ = ξas ′.

A strategy σ and a nature π induce a probability measure over paths as follows: The basic
measurable events are the cylinder sets of finite paths, where the cylinder set of a finite path ξ
is the set Cylξ = { ξ ′ ∈ IPaths | ξ is a prefix of ξ ′ }. The probability Prσ ,π

M of a cylinder set Cylξ is

defined inductively as follows:

Prσ ,π
M (Cylξ ) =

⎧⎪⎪⎨⎪⎪⎩
1 if ξ = s̄ ,
0 if ξ = t � s̄ ,
Prσ ,π
M (Cylξ ′ ) · σ (ξ ′) (a) · π (ξ ′,a) (s ) if ξ = ξ ′as .
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Fig. 1. An example of IMDP.

Standard measure theoretical arguments ensure that Prσ ,π
M extends uniquely to the σ -field gener-

ated by cylinder sets.
To model additional quantitative measures of an IMDP, we associate rewards to the enabled

actions. This is done by means of reward structures.

Definition 3 (Reward Structure). A reward structure for an IMDP is a function r: S × A → R that
assigns to each state-action pair (s,a), where s ∈ S and a ∈ A (s ), a reward r(s,a) ∈ R. Given
a path ξ and k ∈ N ∪ {∞}, the total accumulated reward in k steps for ξ over r is r[k](ξ ) =∑k−1

i=0 r(ξ [i], ξ (i )).

Note that we allow negative rewards in this definition; however, due to later assumptions, their
use is restricted. In particular, negative rewards are only allowed as result of the encoding of prob-
ability values as specified in Proposition 18.

Example 4. As an example of IMDP with a reward structure, consider the IMDP depicted in
Figure 1. The set of states is S = {s, t ,u} with s being the initial one. The set of actions is A =
{a,b}, and the non-zero transition probability intervals are I (s,a, t ) = [ 1

3 ,
2
3 ], I (s,a,u) = [ 1

10 , 1],

I (s,b, t ) = [ 2
5 ,

3
5 ], I (s,b,u) = [ 1

4 ,
2
3 ], and I (t ,a, t ) = I (u,b,u) = [1, 1]. The underlined numbers in-

dicate the reward structure r with r(s,a) = 3, r(s,b) = 1, and r(t ,a) = r(u,b) = 0. Among the
uncountable many distributions belonging toH a

s , two possible choices for nature π on s and a are
π (s,a) = {(t , 3

5 ), (u, 2
5 )} and π (s,a) = {(t , 1

3 ), (u, 2
3 )}. ♦

2.2 Probabilistic Linear Time Logic (PLTL)

Probabilistic Linear Time Logic (PLTL) [Bianco and de Alfaro 1995] is the probabilistic counterpart
of LTL for Kripke structures that can be used to express properties of an IMDP with respect to its
infinite behaviour, such as liveness properties. Let AP be a given set of atomic propositions. The
syntax of a PLTL formula Φ is given by:

Φ ::= Pr∼p[Ψ] | Prmin=?[Ψ] | Prmax=?[Ψ],

Ψ ::= a | ¬Ψ | Ψ ∧ Ψ | XΨ | Ψ U Ψ,

where a ∈ AP , ∼ ∈ {≤, ≥}, and p ∈ [0, 1] ∩Q. Standard Boolean operators such as false, true,
disjunction, implication, equivalence can be derived as usual, e.g., ff = a ∧ ¬a, tt = ¬ff , and
Ψ1 ∨ Ψ2 = ¬(¬Ψ1 ∧ ¬Ψ2); similarly, the finally F and globally G temporal operators can be defined
as FΨ = tt U Ψ and GΨ = ¬F¬Ψ.

Note that a PLTL formula Φ is just a probability operator on top of an LTL formula Ψ; this is
clear by the semantics of Φ and Ψ: Given an IMDPM and a PLTL formula Pr∼p[Ψ], we say that
M satisfies Pr∼p[Ψ], writtenM |= Pr∼p[Ψ], if Prσ ,π

M ({ ξ ∈ IPaths | ξ |= Ψ }) ∼ p for all σ ∈ Σ and
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π ∈ Π, where ξ |= Ψ is defined inductively as follows:

ξ |= a if a ∈ L(ξ [0]),
ξ |= ¬Ψ if it is not the case that ξ |= Ψ (also written ξ � |= Ψ),
ξ |= Ψ1 ∧ Ψ2 if ξ |= Ψ1 and ξ |= Ψ2,
ξ |= XΨ if ξ [1 . . . ] |= Ψ, and
ξ |= Ψ1 U Ψ2 if there is n ∈ N with ξ [n . . . ] |= Ψ2 and for each 0 ≤ i < n, then ξ [i . . . ] |= Ψ1.

The value of the PLTL formula Propt=?[Ψ], with opt ∈ {min,max}, is defined as

Propt=?[Ψ] = optσ ∈Σ,π ∈ΠPrσ ,π
M ({ ξ ∈ IPaths | ξ |= Ψ }).

3 MULTI-OBJECTIVE ROBUST CONTROL OF IMDPs

In this section, we start by considering two main classes of properties for IMDPs: the probability

of reaching a target and the expected total reward. The reason that we focus on these properties is
that their algorithms usually serve as the basis for more complex properties, such as quantitative
properties and PLTL/ω-regular properties, as we will present later in the section. To this aim, we
lift the satisfaction definition of these two classes of properties from MDPs [Forejt et al. 2011, 2012]
to IMDPs by encoding the notion of robustness for strategies.

Definition 5 (Reachability Predicate & its Robust Satisfaction). A reachability predicate [T ]≤k
∼p con-

sists of a set of target states T ⊆ S , a relational operator ∼ ∈ {≤, ≥}, a rational probability bound
p ∈ [0, 1] ∩Q, and a time bound k ∈ N ∪ {∞}. It indicates that the probability of reachingT within
k time steps satisfies ∼ p.

Robust satisfaction of [T ]≤k
∼p by IMDPM under strategy σ ∈ Σ is denoted byM�σ |=Π [T ]≤k

∼p and
indicates that the probability of the set of all paths that reachT under σ satisfies the bound ∼ p for

every choice of nature π ∈ Π. Formally,M�σ |=Π [T ]≤k
∼p iff Prσ

M (�≤k T ) ∼ p where Prσ
M (�≤k T ) =

optπ ∈ΠPrσ ,π
M ({ ξ ∈ IPaths | ∃i ≤ k : ξ [i] ∈ T }) and opt = min if ∼ = ≥ and opt = max if ∼ = ≤. Fur-

thermore, σ is referred to as a robust strategy.

Definition 6 (Reward Predicate & its Robust Satisfaction). A reward predicate [r]≤k
∼r consists of

a reward structure r, a time bound k ∈ N ∪ {∞}, a relational operator ∼ ∈ {≤, ≥}, and a reward
bound r ∈ Q. It indicates that the expected total accumulated reward within k steps satisfies ∼ r .

Robust satisfaction of [r]≤k
∼r by IMDPM under strategy σ ∈ Σ is denoted byM�σ |=Π [r]≤k

∼r and
indicates that the expected total reward over the set of all paths under σ satisfies the bound ∼ r for

every choice of nature π ∈ Π. Formally,M�σ |=Π [r]≤k
∼r iff ExpTotσ ,k

M [r] ∼ r where ExpTotσ ,k
M [r] =

optπ ∈Π

∫
ξ
r[k](ξ ) dPrσ ,π

M and opt = min if ∼ = ≥ and opt = max if ∼ = ≤. Furthermore, σ is re-

ferred to as the robust strategy.

For the purpose of algorithm design, we also consider weighted sum of rewards. Formally,

Definition 7 (Weighted Reward Sum). Given a weight vector w ∈ Rn , a vector of time bounds k =

(k1, . . . ,kn ) ∈ (N ∪ {∞})n and reward structures r = (r1, . . . , rn ) for an IMDPM, the weighted

reward sum w · r[k] over a path ξ is defined as w · r[k](ξ ) =
∑n

i=1wi · ri [k](ξ ). The expected to-

tal weighted sum is defined as ExpTotσ ,k
M [w · r] = maxπ ∈Π

∫
ξ

w · r[k](ξ ) dPrσ ,π
M for bounds ≤ and

accordingly minimises over natures for ≥; for a given strategy σ , we have: ExpTotσ ,k
M [w · r] =∑n

i=1wi · ExpTotσ ,ki

M [ri ].
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3.1 Multi-objective Queries

Multi-objective properties for IMDPs essentially require multiple predicates to be satisfied at the
same time under the same strategy for every choice of the nature. We now explain how to formalise
multi-objective queries for IMDPs.

Definition 8 (Multi-objective Predicate). A multi-objective predicate is a vector φ = (φ1, . . . ,φn )
of reachability or reward predicates. We say that φ is satisfied by IMDPM under strategy σ for
every choice of nature π ∈ Π, denoted byM�σ |=Π φ if, for each 1 ≤ i ≤ n, we haveM�σ |=Π φi .
We refer to σ as a robust strategy. Furthermore, we call φ a basic multi-objective predicate if it is

of the form ([r1]≤k1
≥r1
, . . . , [rn]≤kn

≥rn
), i.e., it includes only lower-bounded reward predicates.

We formulate multi-objective queries for IMDPs in three ways: namely, synthesis queries, quan-

titative queries, and Pareto queries. We first formulate multi-objective synthesis queries for IMDPs
as follows:

Definition 9 (Synthesis Query). Given an IMDPM and a multi-objective predicateφ, the synthesis

query asks if there exists a robust strategy σ ∈ Σ such thatM�σ |=Π φ.

Note that the synthesis queries check for the existence of a robust strategy that satisfies a multi-
objective predicate φ for every resolution of nature.

The next type of query is multi-objective quantitative queries, which are defined as follows:

Definition 10 (Quantitative Query). Given an IMDPM and a multi-objective predicateφ, a quan-

titative query is of the form qnt ([o]≤k1
opt , (φ2, . . . ,φn )), consisting of a multi-objective predicate

(φ2, . . . ,φn ) of size n − 1 and an objective [o]≤k1
opt where o is a target setT or a reward structure r,

k1 ∈ N ∪ {∞} and opt ∈ {min,max}. We define:

qnt
(
[o]≤k1

min , (φ2, . . . ,φn )
)
= inf

{
x ∈ R |

(
[o]≤k1
≤x ,φ2, . . . ,φn

)
is satisfiable

}
,

qnt
(
[o]≤k1

max, (φ2, . . . ,φn )
)
= sup

{
x ∈ R |

(
[o]≤k1
≥x ,φ2, . . . ,φn

)
is satisfiable

}
.

Quantitative queries ask to maximise or minimise the reachability/reward objective over the set
of strategies satisfying a given multi-objective predicate φ.

The last type of query is multi-objective Pareto queries, which ask to determine the Pareto set
for a given set of objectives. Multi-objective Pareto queries are defined as follows.

Definition 11 (Pareto Query). Given an IMDP M and a multi-objective predicate φ, a Pareto

query is of the form Pareto([o1]≤k1
opt1
, . . . , [on]≤kn

optn
), where each [oi ]

≤ki

opti
is an objective in which oi

is either a target set Ti or a reward structure ri , ki ∈ N ∪ {∞}, and opti ∈ {min,max}. We define

the set of achievable values as A = { x ∈ Rn | ([o1]≤k1
∼1x1
, . . . , [on]≤kn

∼n xn
) is satisfiable } where ∼i = ≥

if opti = max, or ∼i = ≤ if opti = min. Then,

Pareto
(
[o1]≤k1

opt1
, . . . , [on]≤kn

optn

)
= { x ∈ A | x is Pareto optimal }.

There are some corner cases under which our proposed algorithms would not work correctly,
such as, for instance, when the total expected reward could become infinite in a given model.
Therefore, we need to limit the usage of rewards by assuming reward-finiteness for the strategies
that satisfy the

Assumption 1 (Reward-finiteness). Suppose that an IMDP M and a synthesis query φ

are given. Let φ = ([T1]≤k1
∼p1
, . . . , [Tn]≤kn

∼pn
, [rn+1]≤kn+1

∼rn+1
, . . . , [rm]≤km

∼rm
). We say that φ is reward-

finite if for each n + 1 ≤ i ≤ m such that ki = ∞, we have supσ ∈Σ{ ExpTotσ ,ki

M [ri ] | M�σ |=Π

([T1]≤k1
∼p1
, . . . , [Tn]≤kn

∼pn
) } < ∞.
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In the next section, we provide a method to check for reward-finiteness assumption of a given
IMDPM and a synthesis query φ, a preprocessing procedure that removes actions with non-zero
rewards from the end components ofM, and a proof for the correctness of this procedure with
respect to φ. In the rest of the article, we assume that all queries are reward-finite. Furthermore,
for the soundness of our analysis, we also require that for any IMDPM and φ given as in Assump-
tion 1, the following properties hold: (i) each reward structure ri assigns only non-negative values;
(ii) φ is reward-finite; and (iii) for indices n + 1 ≤ i ≤ m such that ki = ∞, either all ∼i s are ≤ or
all are ≥.

3.2 A Procedure to Check Assumption 1

In this section, we discuss in detail how reward-finiteness assumption for a given IMDPM and a
synthesis query φ can be checked. Once it is known that the assumption is satisfied, the IMDPM
can then be pruned to simplify the analysis. The idea underlying pruning is to remove transitions
(and states) from the end-components that make the expected reward infinite under strategies not
satisfying the reachability constraints in φ. To describe the procedure that checks Assumption 1,
first, we need to define a counterpart of end components of MDPs for IMDPs, to which we refer as
a strong end-component (SEC). Intuitively, a SEC of an IMDP is a sub-IMDP for which there exists a
strategy that forces the sub-IMDP to remain in the end component and visit all its states infinitely
often under any nature. It is referred to as strong, because it is independent of the choice of nature.
Formally,

Definition 12 (Strong End-Component). A strong end-component (SEC) of an IMDPM is EM =
(S ′,A′), where S ′ ⊆ S and A′ ⊆ ⋃s ∈S ′ {s} × A (s ) such that (i)

∑
s ′ ∈S ′ h

a
ss ′ = 1 for each s ∈ S ′,

(s,a) ∈ A′, and has ∈ H a
s ; and (2) for each s, s ′ ∈ S ′ there is a finite path ξ = ξ [0] · · · ξ [n] such

that ξ [0] = s , ξ [n] = s ′, and for each 0 ≤ i ≤ n − 1, we have ξ [i] ∈ S ′ and (ξ [i], ξ (i )) ∈ A′.

Remark 13. The SECs of an IMDP M can be identified by using any end-component-search
algorithm of MDPs on its underlying graph structure. That is, since the lower transition probability
bounds ofM are strictly greater than zero for the transitions whose upper probability bounds are
non-zero, the underlying graph structure ofM is identical to the graph structure of every MDP it
contains. Therefore, a SEC ofM is an end-component of every contained MDP, and vice versa.

Lemma 14. If a state-action pair (s,a) is not contained in a SEC, then

sup
σ ∈Σ

inf
π ∈Π

occσ
π (s,a) < ∞,

where occσ
π (s,a) denotes the expected total number of occurrences of (s,a) under σ and π .

Proof. If (s,a) is not contained in a SEC of M, then starting from s and under action a, the
probability of returning to s is less than one, independent of the choice of strategy and nature. The
proof then follows from basic results of probability theory. �

Proposition 15. Let EM = (S ′,A′) denote a SEC of IMDP M. Then, we have

supσ ∈Σ{ ExpTotσ ,∞
M [r] | M�σ |=Π ([T1]≤k1

∼p1
, . . . , [Tn]≤kn

∼pn
) } = ∞ for a reward structure r of M

if and only if there exists a strategy σ ofM thatM�σ |=Π ([T1]≤k1
∼p1
, . . . , [Tn]≤kn

∼pn
), EM is reachable

under σ , and r(ξ [i], ξ (i )) > 0, where ξ is a path under σ with ξ [i] ∈ S ′ and (ξ [i], ξ (i )) ∈ A′(ξ [i])
for some i ≥ 0.

We can now construct, fromM, an IMDP M̄ that is equivalent toM in terms of satisfaction
of φ but does not include actions with positive rewards in its SEC. The algorithm is similar to the
one introduced in Forejt et al. [2011] for MDPs and is as follows: First, remove action a fromA (s )
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if (s,a) is contained in a SEC and r(s,a) > 0 for some maximising reward structure r. Second,
recursively remove states with no outgoing transitions and transitions that lead to non-existent
states until a fixed point is reached.

Corollary 16. There is a strategy σ ofM such that ExpTotσ ,∞
M [r] = x < ∞ andM�σ |=Π φ if

and only if there is a strategy σ̄ of M̄ such that ExpTotσ̄ ,∞
M̄ [r] = x and M̄ �σ̄ |=Π φ.

3.3 Multi-objective Robust Strategy Synthesis

We first study the computational complexity of multi-objective robust strategy synthesis problem
for IMDPs. Formally,

Theorem 17. Given an IMDPM and a multi-objective predicate φ, the problem of synthesising a

strategy σ ∈ Σ such thatM�σ |=Π φ is PSPACE-hard.

As the first step towards derivation of a solution approach for the robust strategy synthesis
problem, we need to convert all reachability predicates to reward predicates and therefore, to
transform an arbitrarily given query to a query over a basic predicate on a modified IMDP. This
can be achieved simply by adding a reward of one at the time of reaching the target set and also
negating the objective of predicates with upper-bounded relational operators. We correct and ex-
tend the procedure proposed in Forejt et al. [2012] to reduce a general multi-objective predicate
on an IMDP model to a basic form on a modified IMDP.

Proposition 18. Given an IMDP M = (S, s̄,A, I ) and a multi-objective predicate φ =

([T1]≤k1
∼1p1
, . . . , [Tn]≤kn

∼npn
, [rn+1]≤kn+1

∼n+1rn+1
, . . . , [rm]≤km

∼mrm
), letM′ = (S ′, s̄ ′,A′, I ′) be the IMDP whose

components are defined as follows:

• S ′ = S × 2{1, ... ,n } ;
• s̄ ′ = (s̄, ∅);
• A′ = A × 2{1, ... ,n } ; and

• for all s, s ′ ∈ S , a ∈ A, and v,v ′,v ′′ ⊆ {1, . . . ,n},

I ′((s,v ), (a,v ′), (s ′,v ′′)) =

{
I (s,a, s ′) if v ′ = { i | s ∈ Ti } \v and v ′′ = v ∪v ′,
0 otherwise.

Now, let φ ′ = ([rT1 ]≤k1+1
≥p′1

, . . . , [rTn
]≤kn+1
≥p′n

, [r̄n+1]≤kn+1

≥r ′n+1
, . . . , [r̄m]≤km

≥r ′m
) where, for each i ∈

{1, . . . ,n},

p ′i =

{
pi if ∼i = ≥,

−pi if ∼i = ≤;
and rTi

((s,v ), (a,v ′)) =
⎧⎪⎪⎨⎪⎪⎩

1 if i ∈ v ′ and ∼i = ≥,

−1 if i ∈ v ′ and ∼i = ≤,

0 otherwise;

and, for each j ∈ {n + 1, . . . ,m},

r ′j =

{
r j if ∼j = ≥,

−r j if ∼j = ≤;
and r̄j ((s,v ), (a,v ′)) =

{
rj (s,a) if ∼j = ≥,

−rj (s,a) if ∼j = ≤.

Then φ is satisfiable inM if and only if φ ′ is satisfiable inM′.

Intuitively, the transformation of M to M′ works as follows: For the reachability predicates,
we transform them to reward predicates by assigning a reward of 1 the first time a state in the
target set is reached; the information about which target sets have been reached is kept in the
v ⊆ {1, . . . ,n} component of the transformed state. For both the original and the newly added
reward predicates, we just transform the minimisation of positive rewards to the maximisation of
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Fig. 2. Example of IMDP transformation. (a) The IMDPM′ generated fromM shown in Figure 1. (b) Pareto

curve for the property ([rT ]≤2
max, [r]≤1

max).

their negative values, so all rewards are maximised. By doing this, we also make the threshold in

the predicate comparison negative, e.g., we transform [Ti ]
≤ki

≤pi
to [rTi

]≤ki+1
≥−pi

and [rj ]
≤kj

≤r j
to [−rj ]

≤kj

≥−r j
.

In Forejt et al. [2012], Proposition 2, the thresholds are not made negative, and this is a flaw:
Consider, for instance, the IMDPM, which has only two states, the initial s0 and s1, and the non-
[0, 0] transitions I (s0,a, s0) = I (s0,b, s1) = [1, 1]; let φ = ([{s1}]≤1

≤0.5). Clearly,M�σ |=Π φ, by σ be-
ing the strategy choosing a in s0. In the transformed IMDPM′, the newly added reward structure
r{s1 } assigns reward 0 to ((s0, ∅), (a, ∅)) and reward −1 to ((s0, ∅), (b, {1})); φ is transformed to
φ ′ = [r{s1 }]

≤2
≥−0.5, which is still satisfiable by the strategy choosing (a, ∅) in (s0, ∅). SinceM is also

an MDP, we can apply the transformation given in Forejt et al. [2012], Proposition 2:M′ and r{s1 }
are the same while φ is transformed toψ = [r{s1 }]

≤2
≥0.5 (instead of [r{s1 }]

≤2
≥−0.5), which is obviously

unsatisfiable given that r{s1 } assigns only non-positive values to each state-action pair.

Example 19. To illustrate the transformation presented in Proposition 18, consider again the
IMDP depicted in Figure 1. Assume that the target set is T = {t } and consider the property φ =
([T ]≤1

≥ 1
3

, [r]≤1

≥ 1
4

). The reduction converts φ to the property φ ′ = ([rT ]≤2

≥ 1
3

, [r]≤1

≥ 1
4

) on the modifiedM′

depicted in Figure 2(a). We show two different reward structures r̄ and rT besides each action,
respectively.

In Figure 2(b), we show the Pareto curve for this property. As we see, the maximal reward value
is 3 as long as we require a probability at most 1

3 to reach T . Afterwards, the reward obtainable

linearly decreases. If we require a reachability probability for T of 2
5 , then the reward obtained is

just 1. For higher required probabilities and rewards, the problem becomes infeasible. The reason
for this behaviour is that, as long as we do not require the reachability probability for T to be
higher than 1

3 , action a can be chosen in state s , because the lower interval bound to reach t is 1
3 ,

which in turn leads to a reward of 3 being obtained. For higher reachability probabilities required,
choosing action b with a certain probability is required, which, however, provides a lower reward.
There is no strategy with which t is reached with a probability larger than 2

5 . ♦

By means of Proposition 18, for robust strategy synthesis, we therefore need to only consider

the basic multi-objective predicates of the form ([r1]≤k1
≥r1
, . . . , [rn]≤kn

≥rn
). For such a predicate, we

define its Pareto curve as follows:
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ALGORITHM 1: Algorithm for solving robust synthesis queries

Input: An IMDP M, multi-objective predicate φ = ([r1]≤k1
≥r1
, . . . , [rn]≤kn

≥rn
)

Output: true if there exists a strategy σ ∈ Σ such thatM�σ |=Π φ, false if not.

1 begin

2 X := ∅;
3 r := (r1, . . . , rn );

4 k := (k1, . . . ,kn );

5 r := (r1, . . . , rn );

6 while r � X↓ do

7 Find w separating r from X↓;
8 Find strategy σ maximising ExpTotσ ,k

M [w · r];

9 g := (ExpTot
σ ,ki

M [ri ])1≤i≤n ;

10 if w · g < w · r then

11 return false;

12 X := X ∪ {g};
13 return true;

Definition 20 (Pareto Curve of a Multi-objective Predicate). Given an IMDPM and a basic multi-

objective predicate φ = ([r1]≤k1
≥r1
, . . . , [rn]≤kn

≥rn
), we define the set of achievable values with respect

to φ as AM,φ = {(r1, . . . , rn ) ∈ Rn | ([r1]≤k1
≥r1
, . . . , [rn]≤kn

≥rn
) is satisfiable}. We define the Pareto

curve of φ, denoted PM,φ , to be the Pareto curve of AM,φ .

It is not difficult to see that the Pareto curve is in general an infinite set and, therefore, it is
usually not possible to derive an exact representation of it in polynomial time. However, it can be
shown that an ε-approximation of it can be computed efficiently [Etessami et al. 2007].

In the remainder of this section, we describe an algorithm to solve the synthesis query. We follow
the well-known normalisation approach to solve the multi-objective predicate, which is essentially
based on normalising multiple objectives into one single objective. It is known that the optimal
solution of the normalised (single-objective) predicate, if it exists, is the Pareto optimal solution of
the multi-objective predicate [Ehrgott 2006].

The robust synthesis procedure is detailed in Algorithm 1. This algorithm aims to construct a
sequential approximation to the Pareto curvePM,φ while the quality of approximations gets better
and more precise with each iteration. In other words, along the course of Algorithm 1 a sequence
of weight vectors w are generated and corresponding to each of them, a w-weighted sum of n
objectives is optimised through lines 8–9. The optimal strategy σ is then used to generate a point
g on the Pareto curve PM,φ . We collect all these points in the set X . The multi-objective predicate
φ is satisfiable once we realise that r belongs to X↓.

The optimal strategies for the multi-objective robust synthesis queries are constructed following
the approach of Forejt et al. [2012] and as a result of termination of Algorithm 1. In particular, when
Algorithm 1 terminates, a sequence of points g1, . . . , gt on the Pareto curve PM,φ are generated,

each of which corresponds to a deterministic strategy σgj for the current point gj . The resulting
optimal strategy σopt is subsequently constructed from these using a randomised weight vector

α ∈ Rt satisfying ri ≤
∑t

j=1 αi · дi
j , as we will explain in Section 4.

Remark 21. It is worthwhile to mention that the synthesis query for IMDPs cannot be solved
on the MDPs generated from IMDPs by computing all feasible extreme transition probabilities and
then applying the algorithm of Forejt et al. [2012]. The latter is a valid approach provided the
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ALGORITHM 2: Value iteration–based algorithm to solve lines 6–7 of Algorithm 1

Input: An IMDP M, weight vector w , reward structures r = (r1, . . . , rn ), time-bound vector

k ∈ (N ∪ {∞})n , threshold ε

Output: strategy σ maximising ExpTotσ ,k
M [w · r], g := (ExpTot

σ ,ki

M [ri ])1≤i≤n

1 begin

2 x := 0; x1 := 0; . . . ; xn := 0;

3 y := 0; y1 := 0; . . . ; yn := 0;

4 σ∞ (s ) := ⊥ for all s ∈ S ;

5 while δ > ε do

6 foreach s ∈ S do

7 ys := maxa∈A (s ) (
∑
{i |ki=∞}wi · ri (s,a) +minhas ∈H a

s

∑
s ′ ∈S h

a
s (s ′) · xs ′ );

8 σ∞ (s ) := arg maxa∈A (s ) (
∑
{i |ki=∞}wi · ri (s,a) +minhas ∈H a

s

∑
s ′ ∈S h

a
s (s ′) · xs ′ );

9 h̄
σ∞ (s )
s (s ′) := arg minhas ∈H a

s

∑
s ′ ∈S h

a
s (s ′) · xs ′ ;

10 δ := maxs ∈S (ys − xs );

11 x := y;

12 while δ > ε do

13 foreach s ∈ S and i ∈ {1, . . . ,n} where ki = ∞ do

14 yi
s := ri (s,σ∞ (s )) +

∑
s ′ ∈S h̄

σ∞ (s )
s (s ′) · x i

s ′ ;

15 δ := maxn
i=1 maxs ∈S (yi

s − x i
s );

16 x1 := y1; . . . ; xn := yn ;

17 for j = max{kb < ∞ | b ∈ {1, . . . ,n}} down to 1 do

18 foreach s ∈ S do

19 ys := maxa∈A (s ) (
∑
{i |ki ≥j }wi · ri (s,a) +minhas ∈H a

s

∑
s ′ ∈S h

a
s (s ′) · xs ′ );

20 σ j (s ) := arg maxa∈A (s ) (
∑
{i |ki ≥j }wi · ri (s,a) +minhas ∈H a

s

∑
s ′ ∈S h

a
s (s ′) · xs ′ );

21 h̄
σ j (s )
s (s ′) := arg minhas ∈H a

s

∑
s ′ ∈S h

a
s (s ′) · xs ′ ;

22 foreach i ∈ {1, . . . ,n} where ki ≥ j do

23 yi
s := ri (s,σ j (s )) +

∑
s ′ ∈S h̄

σ j (s )
s (s ′) · x i

s ′ ;

24 x := y; x1 := y1; . . . ; xn := yn ;

25 for i = 1 to n do

26 дi := yi
s̄ ;

27 σ acts as σ j in jth step when j < maxi ∈{1, ...,n } ki and as σ∞ afterwards;

28 return σ , g;

cooperative semantics is applied for resolving the two sources of nondeterminism in IMDPs. With
respect to the competitive semantics needed here, one can instead transform IMDPs to 2 1

2 -player
games [Basset et al. 2014] and then along the lines of the previous approach apply the algorithm
of Chen et al. [2013a]. Unfortunately, the transformation to (MDPs or) 2 1

2 -player games induces an
exponential blowup, adding an exponential factor to the worst-case time complexity of the decision
problem. Our algorithm avoids this by solving the robust synthesis problem directly on the IMDP

so the core part, i.e., lines 8–9 of Algorithm 1, can be solved with time complexity polynomial
in |M|.

Algorithm 2 represents a value iteration–based algorithm that extends the value iteration–
based algorithm of Forejt et al. [2012] and adjusts it for IMDP models by encoding the notion of
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ALGORITHM 3: Algorithm for solving robust quantitative queries

Input: An IMDP M, objective [r1]≤k1
max, multi-objective predicate ([r2]≤k2

≥r2
, . . . , [rn]≤kn

≥rn
)

Output: value of qnt ([r1]≤k1
max, ([r2]≤k2

≥r2
, . . . , [rn]≤kn

≥rn
))

1 begin

2 X = ∅;
3 r = (r1, . . . , rn );

4 k = (k1, . . . ,kn );

5 r = (minσ ∈Σ ExpTotσ ,k
M [r1], r2, . . . , rn );

6 while r � X↓ or w · g > w · r do

7 Find w separating r from X↓ such that w1 > 0;

8 Find strategy σ maximising ExpTotσ ,k
M [w · r];

9 g := (ExpTot
σ ,ki

M [ri ])1≤i≤n ;

10 if w · g < w · r then

11 return ⊥;

12 X = X ∪ {g};
13 r1 := max{r1,max{r ′ | (r ′, r2, . . . , rn ) ∈ X↓}};
14 return r1;

robustness. More precisely, the core difference is at lines 7 and 19, where the optimal strategy is
computed to be robust against any choice of nature.

Theorem 22. Algorithm 1 is sound, complete, and has runtime exponential in |M|, k, and n.

Remark 23. It is worthwhile to mention that our robust strategy synthesis approach can also be
applied to MDPs with richer formalisms for uncertainties such as likelihood or ellipsoidal uncer-
tainties while preserving the computational complexity. In particular, in every inner optimisation
problem in Algorithm 1, the optimality of a Markovian deterministic strategy and nature is guar-
anteed as long as the uncertainty set is convex, the set of actions is finite and the inner optimisation
problem that minimises/maximises the objective function over the choices of nature achieves its
optimum (cf. Puggelli [2014], Proposition 4.1). Furthermore, due to the convexity of the generated
optimisation problems, the computational complexity of our approach remains intact.

3.4 Multi-objective Quantitative Queries

In this section, we discuss multi-objective quantitative queries and present algorithms to solve
them. In particular, we follow the same direction as Forejt et al. [2012] and show how Algorithm 1
can be adapted to solve these types of queries.

To present the algorithm, consider the quantitative query qnt ([r1]≤k1
max, ([r2]≤k2

≥r2
, . . . , [rn]≤kn

≥rn
).

Algorithm 3, similarly to Algorithm 1, generates a sequence of points g on the Pareto curve from
a sequence of weight vectors w. To optimise the objective r1, a sequence of lower bounds r1 is
generated that are used in the same manner as Algorithm 1. In particular, in the initial step, we let
r1 be the minimum value for r1 that can be computed with an instance of value iteration [Puggelli
2014]. The sequence of non-decreasing values for r1 are generated at the next steps based on the
set of points X specified so far. In each step, the computation in the lines 8–9 of Algorithm 3 can
again be achieved using Algorithm 2.

At this point it is worthwhile to mention that Algorithm 3 is different from its counterpart [Forejt
et al. 2012, Algorithm 3] especially concerning lines 5, 8–9. In fact, all computations in these lines
are performed while considering the behaviour of an adversarial nature, as detailed in Algorithm 2.
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ALGORITHM 4: Algorithm for solving robust Pareto queries

Input: An IMDP M, reward structures r = (r1, r2), time bounds (k1,k2), ε ∈ R≥0

Output: An ε-approximation of the Pareto curve

1 begin

2 X = ∅;
3 Y : R2 → 2R

2
with initial Y (x ) = ∅ for all x ;

4 w = (1, 0);

5 Find strategy σ maximising ExpTotσ ,k
M [w · r];

6 g := (ExpTot
σ ,k1

M [r1], ExpTot
σ ,k2

M [r2]);

7 X := X ∪ {g};
8 Y (g) := Y (g) ∪ {w};
9 w := (0, 1);

10 while w � ⊥ do

11 Find strategy σ maximising ExpTotσ ,k
M [w · r];

12 g := (ExpTot
σ ,k1

M [r1], ExpTot
σ ,k2

M [r2]);

13 X := X ∪ {g};
14 Y (g) := Y (g) ∪ {w};
15 w := ⊥;

16 Order X to a sequence x1, . . . , xm such that ∀i:x i
1 ≤ x i+1

1 and x i
2 ≥ x i+1

2 ;

17 for i = 1 tom do

18 Let u be the element of Y (xi ) with maximal u1;

19 Let u′ be the element of Y (xi+1) with minimal u ′1;

20 Find a point p such that u · p = u · xi and u′ · p = u′ · xi+1;

21 if distance of p from X↓ is ≥ ε then

22 Find w separating X↓ from p, maximising w · p −maxx∈X↓w · x;

23 break;

24 return X ;

3.5 Multi-objective Pareto Queries

We finally provide an algorithmic solution to compute Pareto queries. As for Algorithm 3, this
algorithm is in fact designed as an adaption of Algorithm 1, as detailed below.

Our algorithm to solve Pareto queries is depicted as Algorithm 4, which is in principle an ex-
tension of its counterpart for MDPs [Forejt et al. 2012, Algorithm 4]. Similarly to Algorithm 3, the
key differences of this algorithm with its counterpart are in lines 5–6 and 11–12. We present the
algorithm with respect to two objectives; note that it can be extended easily to any finite number
of objectives. Since the number of faces of the Pareto curve is exponentially large in the size of
the model, the step bound, and the number of objectives and also the result of the value iteration
algorithm to compute the individual points is an approximation, Algorithm 4 only constructs an
ε-approximation of the Pareto curve.

3.6 PLTL and ω-regular Properties

PLTL formulas, or in general ω-regular properties, allow one to express properties of an IMDP

with respect to its infinite behaviour. Examples of PLTL formulas are: with probability at least 0.95,
the IMDP will never be trapped in an error state (Pr≥0.95[GF¬error]); almost surely, whenever a
request arrives, eventually a response is provided (Pr≥1[G(req ⇒ Fresp)]); with probability at least
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0.99, the system eventually becomes stable (Pr≥0.99[FGstable]). The classical approach to verify a
PLTL formula Pr�p[Ψ], or an ω-regular property, against an MDP M consists in constructing a
deterministic Rabin automaton (DRA) RΨ accepting the same words satisfying Ψ, then construct
the product M × RΨ, find the accepting maximal end components of M × RΨ, and then compute
the probability of reaching the union of such end components. We refer the interested reader
to Baier and Katoen [2008] for more details.

In the remaining part of this section, we present how to analyseω-regular properties against an
IMDPM. In practice, the construction is the extension to IMDPs of the approach for MDPs.

Definition 24 (Product IMDP M × R). For given IMDP M = (S, s̄,A, I ,AP, L) and DRA R =
(Q, q̄, 2AP ,T ,Acc) with Acc = {(A1,R1), . . . , (Ak ,Rk )}, the productM × R is the IMDPM × R =
(S ×Q, s̄ ′,A, I ′,Q, L′) where

• s̄ ′ = (s̄,T (q̄, L(s̄ ));

• I ′((s,q),a, (s ′,q′)) =
⎧⎪⎨⎪⎩

I (s,a, s ′) if q′ = T (q, L(s ′)),

{0, 0} otherwise; and

• L′(s,q) = {q}.

Similarly to the MDP case, we can prove that the probability ofM to satisfy Ψ equals the prob-
ability of reaching accepting SECs in M × RΨ, where a SEC M′ of M × RΨ with states S ′ and
labelling L′ is accepting if there exists 1 ≤ i ≤ k such that Ai ∩ L′(S ′) � ∅ and Ri ∩ L′(S ′) = ∅.

Theorem 25. LetM be an IMDP, Ψ an LTL formula, andU be the union of all accepting SECs in

M × RΨ. Then for each strategy σ forM there exists a strategy σ ′ forM × RΨ such that for each

nature π forM there exists a nature π ′ forM × RΨ such that

Prσ ,π
M [{ ξ ∈ IPathsM | ξ |= Ψ }] = Prσ ′,π ′

M×RΨ
[{ ξ ∈ IPathsM×RΨ | ∃j ∈ N: ξ [j] ∈ U }]

and vice versa.

Proof. The proof is a minor adaptation of the one for MDPs (cf. Baier and Katoen [2008]; Bianco
and de Alfaro [1995]). Intuitively, strategy σ ′ is built out of σ as for the MDP setting, while nature
π ′ is defined to mimic exactly π . �

As an immediate consequence of Theorem 25, we also have that the robust probability of sat-
isfying Ψ under a strategy σ for M coincides with the robust probability of reaching accepting
SECs under some strategy σ ′ forM × RΨ.

Corollary 26. LetM be an IMDP, Pr∼p[Ψ] a PLTL formula, andU be the union of all accepting

SECs inM × RΨ; let Π′ denote the set of natures forM × RΨ. Then for each strategy σ forM there

exists a strategy σ ′ forM × RΨ such that

opt
π ∈Π

Prσ ,π
M [{ ξ ∈ IPaths | ξ |= Ψ }] = opt

π ′ ∈Π′
Prσ ′,π ′

M×RΨ
[{ ξ ∈ IPaths | ∃j ∈ N: ξ [j] ∈ U }]

and vice versa, where opt = min if ∼ = ≥ and opt = max if ∼ = ≤.

By means of Theorem 25 and Corollary 26, we can extend the results about multi-objective
(quantitative) queries (cf. Sections 3.1 and 3.4) and Pareto queries (cf. Section 3.5) to general PLTL
and ω-regular properties, by following a similar approach as shown in Etessami et al. [2007].

4 GENERATION OF RANDOMISED STRATEGIES

In this section, we describe how randomised strategies can be obtained as weighted sum of deter-
ministic strategies. We consider a fixed IMDPM = (S, s̄,A, I ) and a basic multi-objective predicate

([r1]≤k1
≥r1
, . . . , [rn]≤kn

≥rn
). For clarity, we assume that all ki = ∞; we discuss the extension to ki < ∞
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Fig. 3. Computing randomised strategies.

afterwards. In the following, we will describe how we can obtain a randomised strategy from the
results computed by Algorithms 1, 3, and 4. These algorithms compute a set X = {g1, . . . , gm }
of reward vectors gi = (дi,1, . . . ,дi,n ) and their corresponding set of strategies Σ = {σ1, . . . ,σm },
where strategy σi achieves the reward vector gi .

In the descriptions of the given algorithms, the strategies σi are not explicitly stored and mapped
to the reward they achieve, but they can be easily adapted. All used strategies are memoryless (due
to the assumption that ki = ∞) and deterministic; this means that we can treat them as functions of
the form σi : S → A or, equivalently, as functions σi : S × A → {0, 1} where σi (s,a) = 1 if σi (s ) = a
and σi (s, · ) = 0 otherwise.

From the set X , we can compute a set P = {p1, . . . ,pm } of the probabilities with which each
of these strategies shall be executed. If we execute each σi with its according probability pi , then
the vector of total expected rewards is g =

∑m
i=1 pi · gi . Let r = (r1, . . . , rn ) denote the vector of

reward bounds of the multi-objective predicate. To obtain P after having executed Algorithm 1,
we can choose the values pi in P such that they fulfill the constraints

∑m
i=1 gi · pi ≥ r,

∑m
i=1 pi = 1,

and pi ≥ 0 for each 1 ≤ i ≤ m. For the other algorithms, P can be computed accordingly.
To obtain a stochastic process with expected values g, we initially randomly choose one of the

memoryless deterministic strategies σi according to their probabilities in P . Afterwards, we just
keep executing the chosen σi . The initial choice of the strategy to execute is the only randomised
choice to be made. We do not perform a random choice after the initial choice of σi .

This process of obtaining the expected rewards g indeed uses memory, because we have to
remember the deterministic strategy that was randomly chosen to be executed. On the other hand,
we only need a very limited way of randomisation.

We like to emphasise that, indeed, we cannot just construct a memoryless randomised strategy
by choosing the strategy σi with probability pi in each step anew.

Example 27. Consider the IMDP in Figure 3. We only have two possible actions, a and b. The
initial state is s and all probability intervals are the interval [1, 1], which we omit for readability;
thus, there is also only one possible nature π . There is only a single reward structure, indicated by
the underlined numbers. If we choose a in state s , then we end up in t in the next step and obtain
a reward of 1 with certainty, while if we choose b, we will be in u in the next step and obtain a
reward of 0, and accordingly for the other states.

We consider the strategies σa , which chooses a in each state, and σb , which chooses b in each
state. With both strategies, we accumulate a reward of exactly 1. Therefore, if we choose to execute
σa with probability 0.5 and σb with the same probability, this process will lead to a reward of 1 as
well.
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Now, consider a strategy that chooses the action selected by σa in each state with probability 0.5,
and with the same probability chooses the action selected by σb . It is easy to see that this strategy
only obtains a reward of 0.5 · 1 + 0.5 · 0.5 · 1 = 0.75. As we see, this naive way of combining the
two deterministic strategies into a memoryless randomised strategy is not optimal. ♦

Thus, the way to construct a memoryless randomised strategy is somewhat more involved. We
will have to compute the state-action frequencies—that, is the average number of times a given
state-action pair is seen.

At first, we fix an arbitrary memoryless nature π : FPaths × A → Disc(S ); that is, π : S × A →
Disc(S ). The particular choice of π is not important, which is due to the fact that our algorithms
are robust against any choice of nature. We then let xσ

i (s ) denote the probability to be in state s at
step i when strategy σ is used (using nature π and under the condition that we have started in s̄).

For any σ ∈ Σ, we have xσ
i (s ) =

∑
{ ξ ∈FPaths |last (ξ )=s, |ξ |=i } Prσ ,π

M (Cylξ ), which can be shown

to be equivalent to the inductive form xσ
0 (s̄ ) = 1 and xσ

0 (s ) = 0 for s � s̄ , and xσ
i+1 (s ) =∑

s ′ ∈S π (s ′,σ (s ′)) (s ) · xσ
i (s ′).

The state-action frequency yσ (s,a) is the number of times action a is chosen in state s when us-
ing strategy σ . We then have thatyσ (s,a) =

∑∞
i=0 x

σ
i (s ) · σ (s,a). Thus, state-action frequencies can

be approximated using a simple value iteration scheme. The mixed state-action frequency y (s,a)
is the average over all state action frequencies weighted by the probability with which a given
strategy is executed. Thus, y (s,a) =

∑m
i=1 pi · yσi (s,a) for all s,a. To construct a memoryless ran-

domised strategyσ , we normalise the probabilities toσ (s,a) =
y (s,a)∑

b∈A y (s,b ) for all s ∈ S anda ∈ A (s )

(see also the description for the computation of strategies/adversaries below [Forejt et al. 2011,
Proposition 4]).

Example 28. In the model of Figure 3, we have yσa (s,a) = 1, yσa (s,b) = 0, yσa (u,a) = 0,
yσa (u,b) = 0, yσb (s,a) = 0, yσb (s,b) = 1, yσb (u,a) = 0, and yσb (u,b) = 1. If we choose both σa

and σb with probability 0.5, then we obtain the mixed state-action frequencies y (s,a) = 0.5,
y (s,b) = 0.5, y (u,a) = 0, and y (u,b) = 0.5. The memoryless randomised strategy σ we can con-
struct is then σ (s,a) = 0.5, σ (s,b) = 0.5, σ (u,a) = 0, σ (u,b) = 1, which indeed achieves a reward
of 1. ♦

For the general case where ki < ∞ for some ki , we have to work with counting determinis-
tic strategies and natures. Let kmax be the largest non-infinite step bound. The usage of mem-
ory is unavoidable here, because it is required already in case of a single step-bounded objective.
To achieve optimal values, the computed strategies have to be able to make their decision de-
pendent on how many steps are left before the step bound is reached. Thus, we have strategies
of the form σi : S × {0, . . . ,kmax} → A or equivalently σi : S × {0, . . . ,kmax} × A → {0, 1} where
σi (s, j,a) = 1 if σi (s, j ) = a and σi (s, j, · ) = 0 otherwise. For step i with i < kmax, a strategy σ
chooses action σ (s, i ) for state s , whereas for all i ≥ kmax the decision σ (s,kmax) is used. Natures
are of the form π : S × A × {0, . . . ,kmax} → Disc(S ). The computation of the randomised strat-
egy changes accordingly: For any σ ∈ Σ, we have xσ

0 (s̄ ) = 1, xσ
0 (s ) = 0 for s � s̄ , and xσ

i+1 (s ) =∑
s ′ ∈S π (s ′,σ (s ′, i ′), i ′) (s ) · xσ

i′ (s
′) where i ′ = min{i,kmax}. Also, the state-action frequencies are

now defined as step-dependent. For i ∈ {0, . . . ,kmax − 1}, we define yσ (s, i,a) = xσ
i (s ) · σ (s, i,a)

and yσ (s,kmax,a) =
∑

i≥kmax
xσ

i (s ) · σ (s,a).
The mixed state-action frequency is then y (s, i,a) =

∑m
j=1 pj · yσj (s, i,a). Again using normali-

sation, we define the counting randomised strategy σ (s, i,a) =
y (s,i,a)∑

b∈A y (s,i,b ) . Here, for step i with

i < kmax, we use decisions from σ ( · , i, · ), while for i ≥ kmax, we use decisions from σ ( · ,kmax, · ).
The bounded step case can be derived from the unbounded step case in the following sense: We

can transform the IMDP and the predicate into an unrolled IMDP. Here, we encode the step bounds
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in the state space as follows: We copy the state space S a number of kmax + 1 times to a new state

space Sunrolled =
⋃̇

i ∈{0, ...,kmax }Si . We call each set of states Si a layer. For each state s ∈ S and i ∈
{0, . . . ,kmax}, we have si ∈ Si . If we have a transition from a state s to a state s ′, then in the unrolled
IMDP for all i ∈ {0, . . . ,kmax − 1}, we have an according transition from si to si+1 instead. We also
have a transition from skmax

to s ′
kmax

. Formally, for i < kmax, we have I unrolled (si ,a, s
′
i+1) = I (s,a, s ′)

for some states s, s ′ and some action a and zero else, and then I unrolled (skmax
,a, s ′

kmax
) = I (s,a, s ′).

Thus, there are only transitions from a one layer to the next layer, except for layer kmax, which
behaves like the original IMDP.

Reward structures are defined as follows: We assume that each reward property uses a dif-
ferent reward structure. For unbounded reward properties using reward structure r, we just let
runrolled (si ,a) = r(s,a) for all i and states s . For a step-bounded reward property with bound k , we
define a modified reward structure as follows: For layers 0 to k − 1, the reward is obtained as usual;
that is, runrolled (si ,a) = r(s,a) for i ∈ {0, . . . ,k − 1}. However, to simulate the step bound, we let
r(si ,a) = 0 for i ≥ k .

By removing the step bound from predicate, we can now analyse the unrolled IMDP and ob-
tain the same result as in the original IMDP using the original step-bounded predicate. As we are
considering only unbounded properties, we obtain a set of memoryless deterministic strategies.
We can then construct a counting strategy for the original model by mapping the layer number
to the step number; that is, σ (s, i,a) = σunrolled (si ,a). In this way, we can show the correctness of
the above strategy computation for the step-bounded case, because then also the values for the
state action frequencies carry over, that is, e.g., y (s, i,a) = yunrolled (si ,a). Note that for i < kmax

in yunrolled,σ (si ,a) =
∑∞

j=0 x
σ
j (si ) · σ (si ,a) only the summand for j = i is relevant. This is the case,

because by construction of the unrolled IMDP for the other j with j � i , we have xσ
j (si ) = 0. Thus,

yunrolled,σ (si ,a) = xσ
i (si ) · σ (si ,a). Accordingly, foryunrolled,σ (skmax

,a) =
∑∞

j=0 x
σ
j (skmax

) · σ (skmax
,a)

only j with j ≥ kmax are relevant and thus yunrolled,σ (skmax
,a) =

∑∞
j≥kmax

xσ
j (skmax

) · σ (skmax
,a).

5 CASE STUDIES

We implemented the proposed multi-objective robust strategy synthesis algorithms and applied
them to three case studies: (1) simple-task motion planning for a robot with noisy continuous
dynamics, (2) motion planning for a warehouse robot with complex tasks, and (3) autonomous
nondeterministic tour guides drawn from Cantino et al. [2007] and Hashemi et al. [2016]. All
experiments took a few seconds to complete on a standard laptop PC.

5.1 Simple-task Motion Planning under Uncertainty

In robot motion planning, designers often seek a plan that simultaneously satisfies multiple objec-
tives [Lahijanian and Kwiatkowska 2016], e.g., maximising the chances of reaching the target while

minimising the energy consumption. These objectives are usually in conflict with each other; hence,
presenting the Pareto curve, i.e., the set of achievable points with optimal trade-off between the
objectives, is helpful to the designers. They can then choose a point on the curve according to
their desired guarantees and obtain the corresponding plan (strategy) for the robot. In this case
study, we considered such a motion planning problem for a noisy robot with continuous dynam-
ics in an environment with obstacles and a target region, as depicted in Figure 4(a). The robot’s
motion model was a single integrator with additive Gaussian noise. The initial state of the robot
was on the bottom-left of the environment. The objectives were to reach the target safely while
minimising the energy consumption, which is proportional to the travelled distance.

We approached this problem by first abstracting the motion of the noisy robot in the environ-
ment as an IMDPM and then computing strategies onM as in Luna et al. [2014a, 2014b, 2014c].
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Fig. 4. Simple-Task Robotic Scenario. (a) Environment map, where obstacles and target are shown in black

and grey, respectively. (b) Pareto curve for the property ([rp ]≤∞max, [rd ]≤∞
min

).

The abstraction was achieved by partitioning the environment into a grid and computing local
(continuous) controllers to allow transitions from every cell to each of its neighbours. The cells
and the local controllers were then associated to the states and actions of the IMDP, respectively,
resulting in 204 states (cells) and 4 actions per state. The boundaries of the environment were also
associated with a state. Note that the transition probabilities between cells were raised by the noise
in the dynamics and their ranges were due to variation of the possible initial robot (continuous)
state within each cell.

The guarantee that can be provided for the original continuous system is that the computed
bounds (both for the probability of satisfaction and expected travelled distance) on the abstracted
IMDP also hold for the continuous system (cf. Luna et al. [2014b]). For a single robot, these bounds
provide a measure of “goodness” of the robot’s performance. For a swarm of robots, these bounds
provide guarantees on the number of robots that can safety make it to the target while respecting
the distance constraint.

The IMDP states corresponding to obstacles (including boundaries) were given deterministic
self-transitions, modelling robot termination as the result of a collision. To allow for the computa-
tion of the probability of reaching target, we included an extra state in the IMDP with a determin-
istic self-transition and then added incoming deterministic transitions to this state from the target
states. A reward structure rp , which assigns a reward of 1 to these transitions and 0 to all the oth-
ers, in fact, computes the probability of reaching the target. To capture the travelled distance, we
defined a reward structure rd , assigning a reward of 0 to the state-action pairs with self-transitions
and 1 to the rest.

The two robot objectives then can be expressed as: ([rp]≤∞max, [rd ]≤∞min). We first computed the
Pareto curve for the property, which is shown in Figure 4(b), to find the set of all achievable values
(optimal trade-offs) for the reachability probability and expected travelled distance. The Pareto
curve shows that there is clearly a trade-off between the two objectives. To achieve high probability
of reaching target safely, the robot needs to travel a longer distance, i.e., spend more energy, and
vice versa. We chose three points on the curve and computed the corresponding robust strategies
for

φ1 =
(
[rp]≤∞≥0.95, [rd ]≤∞≤50

)
, φ2 =

(
[rp]≤∞≥0.90, [rd ]≤∞≤45

)
, φ3 =

(
[rp]≤∞≥0.66, [rd ]≤∞≤25

)
.

We then simulated the robot under each strategy 500 times. The statistical results of these simu-
lations are consistent with the bounds in φ1, φ2, and φ3. The collision-free robot trajectories are
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Fig. 5. Robot sample paths under strategies for φ1, φ2, and φ3.

Fig. 6. Warehouse Robotic Scenario. (a) Warehouse map, where the product pick-up locations and drop-off

zones are shown in grey and obstacles in black. (b) Pareto curves for the properties (Prmax=?[ψi ], [rt ]≤∞
min

)
for i ∈ {4, 5}.

shown in Figure 5. These trajectories illustrate that the robot is conservative under φ1 and takes
a longer route with open spaces around it to reach the target to be safe (Figure 5(a)), while it be-
comes reckless under φ3 and tries to go through a narrow passage with the knowledge that its
motion is noisy and could collide with the obstacles (Figure 5(c)). This risky behaviour, however, is
required to meet the bound on the expected travelled distance in φ3. The sample trajectories for φ2

(Figure 5(b)) demonstrate the stochastic nature of the strategy. That is, the robot probabilistically
chooses between being safe and reckless to satisfy the bounds in φ2.

5.2 Warehouse Robot Planning with Complex Tasks

In this case study, we consider a warehouse scenario in which a robot is tasked to collect ordered
products and deliver them to a drop-off zone. For optimal productivity, the robot should perform
the tasks in the minimum amount of time and with the minimum amount of damages to itself and
to the products by avoiding obstacles. The robot model is the same as the one in Section 5.1, and
the warehouse map is shown in Figure 6(a). In this figure, the pick-up locations for product i is
marked by pi , and the drop-off zones are marked by D.

We constructed the IMDP model of this robot in the similar manner as in Section 5.1. We labelled
the states of the IMDP with their propositions pi for 1 ≤ i ≤ 4, drop-off, and obstacle. Moreover,
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Fig. 7. Robot sample paths under strategies for φ6–φ11. The robot’s initial position is indicated by a dark-

blue disk and the paths are: (a) down-p1-up-D, (b) mixture of two paths of down-p1-middle-up-D and left-

middle-down-p1-middle-up-left-D, (c) left-middle-down-p1-middle-up-left-D, (d) down-p2-p1-p3-middle-up-D,

(e) mixture of two paths: down-p1-p2-p3-middle-up-right-D and left-middle-down-p3-down-p2-p1-middle-up-

right-D, (f) left-middle-down-right-p1-p2-p3-middle-up-left-D.

we assign a reward of 5 denoting the maximum duration of time (in seconds) it takes the robot to
make a transition from one cell to another. The IMDP had a total of 205 states and 4 actions per
state.

We consider two orders (tasks):

• “Pick up product p1 and deliver it to a drop-off zone and always avoid obstacles,” and
• “Pick up products p1, p2, and p3 in any order and deliver them to a drop-off zone, and avoid

drop-off zones until all three products are gathered, and always avoid obstacles.”

The corresponding LTL formulas, respectively, are:

ψ4 = G¬obstacle ∧ F(p1 ∧ Fdrop-off), ψ5 = G¬obstacle ∧
3∧

i=1

(¬drop-off U pi ) ∧ Fdrop-off.

Therefore, the pair of objectives for each task can be expressed as (Pmax[ψi ], [rt ]≤∞min) for i ∈ {4, 5},
where rt corresponds to the reward structure for time. To compute the Pareto curves, we first
constructed the corresponding Rabin automata and the product IMDPs for tasks ψ4 and ψ5. The
IMDPs had 617 and 2,462 states, respectively, and four actions per state. The Pareto curves for the
above multi-objective formulas are shown in Figure 6(b). Then, we computed the robust strategies
for the following properties (Pareto points):

φ6 =
(
Pr≥0.43[ψ4], [rt ]≤∞≤90

)
, φ7 =

(
Pr≥0.67[ψ4], [rt ]≤∞≤200

)
, φ8 =

(
Pr≥0.80[ψ4], [rt ]≤∞≤270

)
,

φ9 =
(
Pr≥0.41[ψ5], [rt ]≤∞≤130

)
, φ10 =

(
Pr≥0.49[ψ5], [rt ]≤∞≤200

)
, φ11 =

(
Pr≥0.65[ψ5], [rt ]≤∞≤400

)
.

The sample robot trajectories under these strategies are shown in Figure 7, where the initial
position of the robot is indicated by a dark-blue disk. From the figures, it is evident that the robot
chooses longer paths that are safer as more time is allowed. For propertiesφ6–φ8 that correspond to
taskψ4, the robot chooses the shortest path to p1 by first going down through the narrow passage
and then returning on the same path to the drop-off zone when only 90s are allowed (Figure 7(a)).

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 4, Article 27. Publication date: November 2019.



Interval MDPs with Multiple Objectives: From Robust Strategies to Pareto Curves 27:23

This path, however, has a higher risk to incur a damage. When 200s are given, the robot uses a
mixture of two paths that are less risky, as shown in Figure 7(b). One path leads the robot down,
through the narrow passage, between the shelves, and finally straight up to the drop-off zone. The
other path takes the robot left, then down through the middle of the warehouse to the bottom right
p1, returning on the similar path in the middle, and finally to the drop-off zone on the left side.
For the bound of 270s, the robot chooses only the latter path, which is the safest path that has the
most open spaces (Figure 7(c)). A similar trend is observed for φ9–φ11 but at larger time duration,
since task ψ5 requires a collection of three products, as shown in Figures 7(d)–7(f). Finally, we
computed the probability and average time duration for 500 sample paths under each strategy,
and the obtained values were within the bounds for φ6–φ11, validating the proposed approach.

5.3 The Model of Autonomous Nondeterministic Tour Guides

Our second case study is inspired by “Autonomous Nondeterministic Tour Guides” (ANTG)
in Cantino et al. [2007] and Hashemi et al. [2016], which models a complex museum with a variety
of collections. We note that the model introduced in Cantino et al. [2007] is an MDP. In this case
study, we use an IMDP model by inserting uncertainties into the MDP.

Due to the popularity of the museum, there are many visitors at the same time. Different visitors
may have different preferences of arts. We assume the museum divides all collections into different
categories so visitors can choose what they would like to visit and pay tickets according to their
preferences. To obtain the best experience, a visitor can first assign certain weights to all categories
denoting their preferences to the museum, and then design the best strategy for a target. However,
the preference of a sort of art to a visitor may depend on many factors, such as price, weather, the
length of the queue at that moment, and so on, hence it is hard to assign fixed values to these
preferences. In our model, we allow uncertainties of preferences such that their values may lie in
an interval.

For simplicity, we assume all collections are organised in an n × n square withn ≥ 10, with (0, 0)
being the southwest corner of the museum and (n − 1,n − 1) the northeast corner. Let c = n−1

2 ;
note that (c, c ) is at the centre of the museum. We assume all collections at (x ,y) are assigned
with a weight interval [3, 4] if max{|x − c |, |y − c |} ≤ n

10 , with a weight 2 if n
10 < max{|x − c |, |y −

c |} ≤ n
5 , and a weight 1 if max{|x − c |, |y − c |} > n

5 . In other words, we expect collections in the
centre to be more popular and subject to more uncertainties than others. Furthermore, we assume
that people at each location (x ,y) have four nondeterministic choices of moving to (x ′,y ′) in the
northeast, southeast, northwest, and southwest of (x ,y) (limited to the boundaries of the museum).
The outcome of these choices, however, is not deterministic. That is, deciding to go to (x ′,y ′) takes
the visitor to either (x ,y ′) or (x ′,y) depending on the weight intervals of (x ,y ′) and (x ′,y). Thus,
the actual outcome of the move is probabilistic. To obtain an IMDP, weights are normalised. For
instance, if the visitor chooses to go to the northeast and on (x ,y + 1) there is a weight interval of
[3, 4] and on (x + 1,y) there is a weight interval of [2, 2], it will go to (x ,y + 1) with probability
interval [3/(3 + 2), 4/(4 + 2)] and to (x + 1,y) with probability interval [2/(2 + 4), 2/(2 + 3)].

Therefore, a model with parameter n has n2 states in total and roughly 4n2 transitions, a few
of which are associated with uncertain transition probabilities. An instance of the museum model
for n = 14 is depicted in Figure 8(a). In this instantiation, we assume that the visitor starts in the
lower-left corner (marked yellow) and wants to move to the upper-right corner (marked green)
with as few steps as possible. On the other hand, she wants to avoid moving to the black cells,
because they correspond to exhibitions which are closed. For closed exhibitions located at x = 2,
the visitor receives a penalty of 2; for those at x = 5, it receives a penalty of 4; for x = 8, one of
16; and for x = 11, one of 64. Therefore, there is a trade-off between leaving the museum as fast as
possible and minimising the penalty received. With rs being the reward structure for the number
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Fig. 8. The ANTG case study: model and analysis.

Fig. 9. Strategies for different points on the Pareto curve in Figure 8(a).

of steps and rp denoting the penalty accumulated, ([rs ]≤∞≤40, [rp]≤∞≤70) requires that we leave the
museum within 40 steps but with a penalty of no more than 70. The red arrows indicate a strategy
that has been used when computing the Pareto curve by our tool. Here, the visitor mostly ignores
closed exhibitions at x = 2 but avoids them later. We provide the Pareto curve for this situation in
Figure 8(b). With an increasing step bound considered acceptable, the optimal accumulated penalty
decreases. This is expected, because with an increasing step bound, the visitor has more time to
walk around more of the closed exhibitions, thus facing a lower penalty.

In Figure 9, we provide strategies for different points on the Pareto curve in Figure 8(b). The
lowest expected number of steps in which the museum can be left is 30.9665389. To achieve this
number, there is a single optimal strategy sketched in Figure 9(a). As we see, the tourist indeed
leaves the museum as soon as possible, by ignoring any closed exhibitions and thus by receiving
an expected penalty as high as 152.0609886.

In Figure 9(b) and Figure 9(c), we give the tourist somewhat more time—31 steps—so the penalty
of 151.7077821 is a bit lower. Here, with a high probability (0.9894174) the same strategy as for the
previous case is chosen. With a probability of 0.0105826, however, the less reckless strategy of
Figure 9(c) is used, which takes some efforts to avoid the last row of closed exhibitions at x = 11.

If we further increase the time bound to 40, as in Figure 9(d) and Figure 9(e), then the strategies
used become even less risky but more time-consuming to execute.

For a step bound of 76.8658133 and larger, it is possible to avoid receiving any penalty by using
the strategy of Figure 9(f), which circumvents all closed exhibitions.

6 CONCLUDING REMARKS

In this article, we have analysed interval Markov decision processes under controller synthesis
semantics in a dynamic setting. In particular, we discussed the problem of multi-objective robust
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control of IMDPs where our goal is to generate an approximation of the Pareto curve for synthe-
sis, quantitative, and Pareto queries. The approximated Pareto curves for various queries include
all non-dominated solutions, each of which corresponds to a robust strategy that satisfies a given
multi-objective predicate under all resolutions of the uncertainty in the transition probabilities.
The core part of our approach to approximate Pareto curves of the multi-objective queries was
to optimise the weighted sum of objectives, which was in turn achieved through a value itera-
tion algorithm. Our designed value iteration algorithm could handle optimising mixture of time
bounded and unbounded properties simultaneously, which is not the case in standard value itera-
tion algorithms. Additionally, our value iteration algorithm ensures the scalability of our solution
methodology compared to linear programming–based approaches to optimise the weighted sum
of objectives. As we discussed, our proposed approach for optimal control of IMDPs with multiple
objectives can also be applied to approximate Pareto curves for MDPs with convex uncertainty sets
as well as ω-regular properties such as PLTL. We finally presented results obtained with a proto-
type tool on several real-world case studies to show the effectiveness of the developed algorithms.

For future work, we aim to explore the upper bound of the time complexity of the multi-objective
robust strategy synthesis problem for IMDPs, which is left open in this article.

APPENDIX

A PROOFS OF THE RESULTS ENUNCIATED IN THE ARTICLE

This appendix contains the proofs of the results enunciated in the main part of the article.
To prove Theorem 17, we need to define the multiple reachability problem for MDPs. Formally,

Definition 29. Given an MDP M and a reachability predicate described as a vector φ =

(φ1, . . . ,φn ) where φ j = [Tj ]
≤kj

∼pj
for j ∈ {1, . . . ,n}, the multiple reachability problem asks to check

if there exists a strategy σ of M such that M,σ |= φ. The almost-sure multiple reachability problem
restricts to ∼ = ≥ and pj = 1 for all j ∈ {1, . . . ,n}.

The proof also makes use of the following lemma:

Lemma 30 (Complexity of the Multi-objective Reachability Problem for MDPs [Randour
et al. 2015]). Given an MDP M, the almost-sure multiple reachability problem is PSPACE-complete

and strategies need exponential memory in the query size.

Proof of Theorem 17. We reduce the problem in Lemma 30 to the one under our analysis. In
fact, any instance of the multiple reachability problem for MDP M can be seen as an instance of the
multi-objective robust strategy synthesis problem for an IMDPM generated from M by replacing
all probability values with point intervals. Since the multiple reachability problem for MDPs is
PSPACE-complete and the reduction is performed in polynomial time, solving the robust strategy
synthesis problem for IMDPs is at least PSPACE-hard. �

Proof of Theorem 22. The proof follows closely the one in Forejt et al. [2012]. In every iteration
of the loop in Algorithm 1, a point g on a unique face of the Pareto curve is identified. The number
of faces of the Pareto curve PM,φ is, in the worst case, exponential in |M|, k, and n [Etessami
et al. 2007]. Therefore, termination of Algorithm 1 is guaranteed and the correctness is ensured as
a result of the correctness of Algorithm 1 in Forejt et al. [2012]. The soundness and completeness
of the Algorithm 1 is followed by the fact that in every iteration of the algorithm through lines 8–9,
the individual model checking problems can be solved in polynomial time in |M| by formulating
the weighted sum of n objectives as a linear programming problem. To see this, without loss of
generality, assume that ki = ∞ for all i ∈ {1, . . . ,n}. Therefore, following the approach in Puggelli

[2014], the problem of maximising the ExpTotσ ,k
M [w · r] across the range of strategies σ ∈ Σ can be
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formulated as the following optimisation problem:

min
x

xT 1

subject to:
xs ≥

∑n
i=1wi · ri (s,a) + min

has ∈H a
s

xT has ∀s ∈ S,∀a ∈ A (s ).

We now modify the above optimisation problem to simplify derivation of the LP problem. To
this aim, we transform the optimisation operator “min” to “max.” Therefore, we get the following
optimisation problem:

max
x

−xT 1

subject to:
xs ≥

∑n
i=1wi · ri (s,a) + min

has ∈H a
s

xT has ∀s ∈ S,∀a ∈ A (s ).

As it is clear from the set of constraints in the latter optimization problem, the inner optimisation
problem is not linear. To overcome this difficulty and induce the LP formulation, we follow the
techniques in Puggelli [2014] and use dual of the inner optimisation problem. To this aim, consider
the inner optimisation problem with fixed x:

P (x) := min
has ∈H a

s

xT has .

Based on the general description of the interval uncertainty set H a
s = { has | �0 ≤ has ≤ has ≤ has ≤

�1, 1T has = 1 }, we can rewrite the latter inner optimisation problem as:

P (x) := min xT has
subject to:
1T has = 1

has ≤ has ≤ has .

The dual of the above problem is formulated as follows:

D (x) := max
γ s,a

j,1 ,γ s,a
j,2 ,γ s,a

j,3

γ s,a
j,1 + h

a
s

Tγ s,a
j,2 − has

T
γ s,a

j,3

subject to:
x − γ s,a

j,2 + γ
s,a
j,3 − γ

s,a
j,1 1 = 0

γ s,a
j,2 ≥ 0,γ s,a

j,3 ≥ 0 .

Since the latter inner optimisation problem with fixed x is an LP, therefore due to the strong du-
ality theorem [Bertsimas and Tsitsiklis 1997], we have P∗ (x) = D∗ (x) where P∗ (x) and D∗ (x) are
the primal and dual optimal values, respectively. Therefore, we can replace the original inner op-
timisation problem with its dual LP to derive the ultimate LP formulation. Note that the inner
optimisation operator is removed, as the outer optimisation operator will find the least underes-
timate to maximise its objective function. Hence, maximising the expected total reward for IMDP

M with respect to the reward structure w · r is formulated as the following LP, which can in turn
be solved in polynomial time.

max
x,γ

−xT 1

subject to:

xs ≥
∑n

i=1wi · ri (s,a) + γ s,a
j,1 + h

a
s

Tγ s,a
j,2 − has

T
γ s,a

j,3 ∀s ∈ S,∀a ∈ A (s ),

x − γ s,a
j,2 + γ

s,a
j,3 − γ

s,a
j,1 1 = 0 ∀s ∈ S,∀a ∈ A (s ),

γ s,a
j,2 ,γ

s,a
j,3 ≥ 0 ∀s ∈ S,∀a ∈ A (s ). �
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Proof of Proposition 18. Given a state (s,v ) ∈ S ′, let ve = { i ∈ {1, . . . ,n} | s ∈ Ti } \v . By
definition of the transition probability function, it follows that the only successors (s ′,v ′) that can
be reached from (s,v ) must havev ′ = v ∪ve ; moreover, the action performed for such a transition
must be of the form (a,ve ). This means that the sets ve and v ′ are uniquely determined by the
current state (s,v ); let ν : S ′ → 2{1, ... ,n } be the function such that ν (s,v ) = { i ∈ {1, . . . ,n} | s ∈
Ti } \v for each (s,v ) ∈ S ′, νA : S ′ × A → A′ be the function such that νA ((s,v ),a) = (a,ν (s,v ))
for each (s,v ) ∈ S ′ and a ∈ A, and νS : S ′ × S → S ′ be the function such that νS ((s,v ), s ′) = (s ′,v ∪
ν (s,v )) for each (s,v ) ∈ S ′ and s ′ ∈ S .

It is immediate to see that every path ξ ′ of M′, ξ ′ = (s0,v0) (a0,v
′
0) (s1,v1) (a1,v

′
1) (s2,v2) . . . ,

is actually of the form ξ ′ = (s0,v0)νA ((s0,v0),a0) (s1,v1)νA ((s1,v1),a1) (s2,v2) . . . where
(sj+1,vj+1) = νS ((sj ,vj ), sj+1) for each j ∈ N , i.e., vj+1 = vj ∪ ν (sj ,vj ). This means that we
can define a bijection �: Paths → Paths′ as follows: Given a path ξ = s0a0s1a1s2 . . . of M, �(ξ )
is defined as �(ξ ) = (s0,v0) (a0,v

′
0) (s1,v1) (a1,v

′
1) (s2,v2) . . . where v0 = ∅ and for each j ∈ N ,

(aj ,v
′
j ) = νA ((sj ,vj ),aj ) and (sj+1,vj+1) = νS ((sj ,vj ), sj ).

The inverse �: Paths′ → Paths of � is just the projection on M: given a path ξ ′ =
(s0,v0) (a0,v

′
0) (s1,v1) (a1,v

′
1) (s2,v2) . . . ofM′, �(ξ ′) is defined as �(ξ ′) = s0a0s1a1s2 . . . .

Moreover, since the sequence of setsv0v1v2 . . . is monotonic non-decreasing with respect to the
subset inclusion partial order, we have that, for a given i ∈ {1, . . . ,n}, if i ∈ vN for some N ∈ N ,
then there exists exactly one l ∈ N such that i � vj for each 0 ≤ j < l and i ∈ vj for each j ≥ l , i.e.,
sl is the first time a state s ∈ Ti occurs along �(ξ ′). Therefore, it follows that i ∈ ν (sl ,vl ) while i �
ν (sj ,vj ) for each j ∈ N \ {l }. This implies that rTi

(ξ ′[l], ξ ′(l )) = 1 if∼i = ≥ or rTi
(ξ ′[l], ξ ′(l )) = −1

if ∼i = ≤ while rTi
(ξ ′[j], ξ ′(j )) = 0 for each j ∈ N \ {l }, thus

rTi
[k](ξ ′) =

⎧⎪⎪⎨⎪⎪⎩
1 if l < k and ∼i = ≥,
−1 if l < k and ∼i = ≤,
0 otherwise.

Note that, if i � vj for each j ∈ N , then this means that i � ν (sj ,vj ) for each j ∈ N , thus
rTi

(ξ ′[j], ξ ′(j )) = 0 for each j ∈ N and rTi
[k](ξ ′) = 0.

Similarly, for each h ∈ {n + 1, . . . ,m}, we get that r̄h[k](ξ ′) = rh[k](ξ ) if ∼h = ≥ and
r̄h[k](ξ ′) = −rh[k](ξ ) if ∼h = ≤.

We are now ready to prove the statement of the proposition by considering the two implications
separately.

Suppose that φ is satisfiable inM: By definition, it follows that there exists a strategy σ ofM
such thatM�σ |=Π φ; that is,M�σ |=Π [Ti ]

≤ki
∼i pi

for each i ∈ {1, . . . ,n} andM�σ |=Π [rh]
≤kh
∼hrh

for

each h ∈ {n + 1, . . . ,m}. Let σ ′ be the strategy ofM′ such that, for each finite path ξ ′ ∈ FPaths′

and actiona ∈ A,σ (ξ ′) (νA (last (ξ ′),a)) = σ (�(ξ ′)) (a), 0 otherwise. Intuitively,σ ′ chooses the next
action (a,v ) exactly as σ chooses a, since v is uniquely determined by ξ ′. We claim that σ ′ is such
thatM′�σ ′ |=Π φ ′.

Let i ∈ {1, . . . ,n} and consider φ ′i = [rTi
]≤ki+1
≥p′i

: There are two cases depending on the original

bound ∼i .

If ∼i = ≥, then [rTi
]≤ki+1
≥p′i

= [rTi
]≤ki+1
≥pi

;M′�σ ′ |=Π′ [rTi
]≤ki+1
≥pi

if and only if minπ ′ ∈Π′
∫

ξ ′
rTi

[ki +

1](ξ ′) dPrσ ′,π ′

M′ ≥ pi . Since for each path ξ ′ ∈ Paths′, rTi
[ki + 1](ξ ′) = 1 if there ex-

ists l < ki + 1 such that �(ξ ′)[l] ∈ Ti , rTi
[ki + 1](ξ ′) = 0 otherwise, by the way I ′ and

σ ′ are defined, it follows that minπ ′ ∈Π′
∫

ξ ′
rTi

[ki + 1](ξ ′) dPrσ ′,π ′

M′ = minπ ∈Π Prσ ,π
M { ξ ∈

IPaths | ∃l ≤ k : ξ [l] ∈ Ti }. Since by hypothesis φ is satisfiable in M, then it follows that
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minπ ∈Π Prσ ,π
M { ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≥ pi , thus minπ ′ ∈Π′

∫
ξ ′
rTi

[ki + 1](ξ ′) dPrσ ′,π ′

M′ ≥ pi

holds as well, henceM′�σ ′ |=Π′ [rTi
]≤ki+1
≥pi

= [rTi
]≤ki+1
≥p′i

is satisfied, as required.

Consider now the second case: If ∼i = ≤, then [rTi
]≤ki+1
≥p′i

= [rTi
]≤ki+1
≥−pi

; M′�σ ′ |=Π′ [rTi
]≤ki+1
≥−pi

if and only if minπ ′ ∈Π′
∫

ξ ′
rTi

[ki + 1](ξ ′) dPrσ ′,π ′

M′ ≥ −pi . Since for each path ξ ′ ∈ Paths′,

rTi
[ki + 1](ξ ′) = −1 if there exists l < ki + 1 such that �(ξ ′)[l] ∈ Ti , rTi

[ki + 1](ξ ′) = 0 other-

wise, by the way I ′ and σ ′ are defined, it follows that minπ ′ ∈Π′
∫

ξ ′
rTi

[ki + 1](ξ ′) dPrσ ′,π ′

M′ =

−maxπ ∈Π Prσ ,π
M { ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti }. Since, by hypothesis, we have that φ is sat-

isfiable in M, then it follows that maxπ ∈Π Prσ ,π
M { ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≤ pi , thus

minπ ′ ∈Π′
∫

ξ ′
rTi

[ki + 1](ξ ′) dPrσ ′,π ′

M′ ≥ −pi holds as well, henceM′�σ ′ |=Π′ [rTi
]≤ki+1
≥−pi

= [rTi
]≤ki+1
≥p′i

is satisfied, as required.

This completes the analysis of the case φ ′i = [rTi
]≤ki+1
≥p′i

for each i ∈ {1, . . . ,n}.

Leth ∈ {n + 1, . . . ,m} and considerφ ′
h
= [r̄h]

≤kh

≥r ′
h

: There are two cases depending on the original

bound ∼h .

If ∼h = ≥, then [r̄h]
≤kh

≥r ′
h

= [r̄h]
≤kh

≥rh
; M′�σ ′ |=Π′ [r̄h]

≤kh

≥rh
holds if and only if

minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ ≥ rh holds. Since for each path ξ ′ ∈ Paths′, r̄h[k](ξ ′) =

rh[k](�(ξ ′)), by the way the components I ′, r̄h , and σ ′ are defined, it follows that

minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ = minπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M . Since by hypothesis φ is satisfiable

inM, then it follows that minπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M ≥ rh , thus minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ ≥
rh holds as well, henceM′�σ ′ |=Π′ [r̄h]

≤kh

≥rh
= [r̄h]

≤kh

≥r ′
h

is satisfied, as required.

Consider now the second case: If ∼h = ≤, then [r̄h]
≤kh

≥r ′
h

= [r̄h]
≤kh

≥−rh
; M′�σ ′ |=Π′ [r̄h]

≤kh

≥−rh

if and only if minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ ≥ −rh . Since for each path ξ ′ ∈ Paths′,

r̄h[k](ξ ′) = −rh[k](�(ξ ′)), by the way I ′, r̄h , and σ ′ are defined, it follows that

minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ = −maxπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M . Since by hypothe-

sis φ is satisfiable in M, then it follows that maxπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M ≤ rh , thus

minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ ≥ −rh holds as well, hence M′�σ ′ |=Π′ [r̄h]
≤kh

≥−rh
= [r̄h]

≤kh

≥r ′
h

is

satisfied, as required.

This completes the analysis of the case φ ′
h
= [r̄h]

≤kh

≥r ′
h

for each h ∈ {n + 1, . . . ,m}; since

M′�σ ′ |=Π′ φ
′
j for each j ∈ {1, . . . ,m}, it follows that φ is satisfiable inM′, as required to prove

that “if φ is satisfiable inM, then φ ′ is satisfiable inM′.”
Suppose now the other implication, namely “if φ ′ is satisfiable inM′, then φ is satisfiable inM”

and assume that φ ′ is satisfiable inM′: By definition, it follows that there exists a strategy σ ′ of

M′ such thatM′�σ ′ |=Π′ φ
′; that is,M′�σ ′ |=Π′ [rTi

]≤ki+1
≥p′i

for each i ∈ {1, . . . ,n} andM′�σ ′ |=Π′

[r̄h]
≤kh

≥r ′
h

for each h ∈ {n + 1, . . . ,m}. Let σ be the strategy ofM such that, for each finite path ξ ∈
FPaths and action a ∈ A, σ (ξ ) (a) = σ ′(�(ξ )) (a,v ), 0 otherwise, where (a,v ) = νA (last (�(ξ )),a).
Intuitively, σ chooses the next action a exactly as σ ′ chooses (a,v ), sincev is uniquely determined
by ξ ′. We claim that σ is such thatM�σ |=Π φ.

Let i ∈ {1, . . . ,n} and consider φi = [Ti ]
≤ki
∼i pi

: There are two cases depending on the bound ∼i .

If ∼i = ≥, then M�σ |=Π [Ti ]
≤ki

≥pi
if and only if minπ ∈Π Prσ ,π

M { ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≥
pi . Since for each path ξ ∈ Paths, rTi

[ki + 1](�(ξ )) = 1 if there exists l < ki + 1 such that ξ [l] ∈ Ti ,
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rTi
[ki + 1](�(ξ )) = 0 otherwise, by the way I ′ and σ are defined, it follows that minπ ∈Π Prσ ,π

M { ξ ∈
IPaths | ∃l ≤ k : ξ [l] ∈ Ti } = minπ ′ ∈Π′

∫
ξ ′
rTi

[ki + 1](ξ ′) dPrσ ′,π ′

M′ . Since by hypothesis φ ′ is satisfi-

able inM′, then it follows that minπ ′ ∈Π′
∫

ξ ′
rTi

[ki + 1](ξ ′) dPrσ ′,π ′

M′ ≥ pi , thus minπ ∈Π Prσ ,π
M { ξ ∈

IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≥ pi holds as well, hence M�σ |=Π [Ti ]
≤ki

≥pi
= [Ti ]

≤ki
∼i pi

is satisfied, as

required.

Consider now the second case: If ∼i = ≤, thenM�σ |=Π [Ti ]
≤ki

≤pi
if and only if maxπ ∈Π Prσ ,π

M { ξ ∈
IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≤ pi . Since for each path ξ ∈ Paths, rTi

[ki + 1](�(ξ )) = −1 if there
exists l < ki + 1 such that ξ [l] ∈ Ti , rTi

[ki + 1](�(ξ )) = 0 otherwise, by the way I ′ and σ
are defined, it follows that maxπ ∈Π Prσ ,π

M { ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } = −minπ ′ ∈Π′
∫

ξ ′
rTi

[ki +

1](ξ ′) dPrσ ′,π ′

M′ . Since by hypothesisφ ′ is satisfiable inM′, then it follows that minπ ′ ∈Π′
∫

ξ ′
rTi

[ki +

1](ξ ′) dPrσ ′,π ′

M′ ≥ −pi , thus maxπ ∈Π Prσ ,π
M { ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≤ pi holds as well, hence

M�σ |=Π [Ti ]
≤ki

≤pi
= [Ti ]

≤ki
∼i pi

is satisfied, as required.

This completes the analysis of the case φi = [Ti ]
≤ki
∼i pi

for each i ∈ {1, . . . ,n}.
Let h ∈ {n + 1, . . . ,m} and consider φh = [rh]

≤kh
∼hrh

: There are two cases depending on the orig-
inal bound ∼h .

If ∼h = ≥, then M�σ |=Π [rh]
≤kh

≥rh
if and only if minπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M ≥ rh . Since for

each path ξ ∈ Paths, r̄h[k](�(ξ )) = rh[k](ξ ), by the way I ′, r̄h , and σ are defined, it follows that

minπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M = minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ . Since by hypothesisφ ′ is satisfiable

in M′, then minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ ≥ rh , thus minπ ∈Π

∫
ξ
rh[kh](ξ )dPrσ ,π

M ≥ rh holds as

well, henceM�σ |=Π [rh]
≤kh

≥rh
= [rh]

≤kh
∼hrh

is satisfied, as required.

Consider now the second case: If ∼h = ≤, then M�σ |=Π [rh]
≤kh

≤rh
if and only if

maxπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M ≤ rh . Since for each path ξ ∈ Paths, −r̄h[k](�(ξ )) = rh[k](ξ ), by the

definition of the components I ′, r̄h , and σ , it is the case that maxπ ∈Π

∫
ξ
rh[kh](ξ ) dPrσ ,π

M =

−minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ . Since by hypothesis φ ′ is satisfiable in M′, then

minπ ′ ∈Π′
∫

ξ ′
r̄h[kh](ξ ′) dPrσ ′,π ′

M′ ≥ −rh , thus maxπ ∈Π

∫
ξ
rh[kh](ξ )dPrσ ,π

M ≤ rh holds as well,

henceM�σ |=Π [rh]
≤kh

≤rh
= [rh]

≤kh
∼hrh

is satisfied, as required.

This completes the analysis of the case φh = [rh]
≤kh
∼hrh

for each h ∈ {n + 1, . . . ,m}; since
M�σ |=Π φ j for each j ∈ {1, . . . ,m}, it follows that φ is satisfiable in M, as required to prove
that “if φ ′ is satisfiable inM′, then φ is satisfiable inM.” Having proved both implications, the
statement of the proposition “φ is satisfiable inM if and only if φ ′ is satisfiable inM′” holds, as
required. �

Proof of Proposition 15. We prove this proposition by adapting the proof from Forejt et al.
[2011], Proposition 1.

Direction ⇒. Assume that, for a reward structure r, sup{ExpTotσ ,∞
M [r] | M�σ |=Π

([T1]≤k1
∼p1
, . . . , [Tn]≤kn

∼pn
)} = ∞. From Lemma 14, it follows that if state-action pair (s,a) oc-

curs infinitely often, s and a are contained in a SEC EM . Therefore, to satisfy the assumed

condition, there must exist some strategy σ such that M�σ |=Π ([T1]≤k1
∼p1
, . . . , [Tn]≤kn

∼pn
) and a

SEC is reachable, in which σ picks action a at reachable state s with positive probability, and
r(s,a) > 0.

Direction ⇐. Assume that there is a strategy σ such that M�σ |=Π ([T1]≤k1
∼p1
, . . . , [Tn]≤kn

∼pn
), a

SEC EM = (S ′,A′) is reachable, and r(ξ [n], ξ (n)) > 0, where ξ is a finite path of length n + 1

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 4, Article 27. Publication date: November 2019.



27:30 E. M. Hahn et al.

under σ with ξ [n] ∈ S ′ and ξ (n) ∈ A′(ξ [n]) for some n ≥ 0. To complete the proof, it is enough
to show that there is a sequence of strategies {σk }k ∈N under which (i) the probabilistic predicates

[T1]≤k1
∼p1
, . . . , [Tn]≤kn

∼pn
are satisfied and (ii) limk→∞ ExpTot

σk ,k
M [r] = ∞.

(i) Let ξ [n] = s and ξ (n) = a. For k ∈ N consider σk that

• for the paths that do not have the prefix ξ , σk emulates σ .
• when the path ξ is performed, σk forces the system to stay in EM containing (s,a). After

k occurrences of (s,a), the next time s is visited, the strategy σk emulates σ again as if the
performed path segment after ξ [n] was never executed.

Under σk , the reachability predicates are satisfied for any k ∈ N . To see this, consider θk that maps
each path ξ of σ to the paths of σk . We now have θ (ξ ) ∩ θ (ξ ′) = ∅ for all ξ � ξ ′, and for all sets Ω
and two natures π and πk , where πk emulates π the same way σk emulates σ , we have Prσ ,π

M (Ω) =

Pr
σk ,πk

M (θ (Ω)), independent of the choice of πk during the execution of the path segment that σk

forces the stay in EM . The satisfaction of the reachability predicates under each σk follows from
the fact that, for any path ξ of σ , ξ satisfies a reachability predicate iff each path in θ (Ω) satisfies
the reachability predicate.

(ii) To show that limk→∞ ExpTot
σk ,k
M [r] = ∞, recall that the probability of reaching (s,a) under

σk for the first time is some positive value p1. From the properties of SEC, the probability of return-
ing to s within l steps, where l = |S |, is also some positive value p2. By construction, (s,a) is picked

k times, therefore, ExpTot
σk ,k
M [r] ≥ p1p2

k
l
r(s,a), and hence, limk→∞ ExpTot

σk ,k
M [r] = ∞. �
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