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Abstract

Software testing is a crucial part of the software engineering process. A part of software testing is building
test suites which contain unit tests. These unit tests are written by developers. As projects grow the test
suite grows along. Maintaining and monitoring these test suites is important as they influence the cost
of maintenance. For example, a project with a smaller test suite may have a higher maintenance cost as
the effect of change has to be measured manually, which can be a time consuming process. Monitoring
the quality of test code has shown that tests with lower quality lead to more defect-prone production
code. A technique to measure the quality of test code is by measuring the test effectiveness.
Measuring the effectiveness of test suites detecting faults is part of the monitoring process. A technique
to measure the test effectiveness is mutation testing. Mutation testing is a computationally expensive
technique that requires the ability to run tests. Different techniques have been proposed to reduce the
cost of mutation testing. One of these techniques is the clustering of mutants. By clustering mutants we
can execute less mutants to reduce the cost.
Our research consists of two parts in which we cluster mutants. The first part consists of a white box
approach and the second part of a black box approach. We conducted a state of the art comparison
between three mutation testing tools for Java. Based on this research we selected a mutation testing
tool to use in our research.
We identified characteristics to represent the mutants such that we can cluster them. For our white box
approach we used hierarchical clustering and for our black box approach we trained the fuzzy c-means
model. We calculated a weighted mutation score and compared this with the mutation score of a full
set of mutants executed. Results show that with hierarchical clustering we can reduce the amount of
mutants executed while maintaining the effectiveness. The clusters generated by the machine learning
model were less accurate and showed a significant decrease in effectiveness. The machine learning model
did not perform as well as the hierarchical clustering. However, more can be done by researching different
approaches for training the FCM model and finding the right parameters.
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Chapter 1

Introduction

Software testing is a critical part in the software engineering process. It is a standardized in the industry
and is used for quality assurance[1]. Software testing can detect software bugs during the development
process and can also serve for regression purposes[2]. During the software testing process developers
write automated tests called unit tests. These tests can be run by testing frameworks such as JUnit and
TestNG[3, 4]. Monitoring the quality of test code has shown that tests with lower quality leads to more
defect-prone production code[5]. Research has also found that if the production code grows, the test
code grows along with it[6]. Quality control on test suites is therefore important as the maintenance on
tests can be difficult and generates risks if done incorrectly[7].
The growing complexity and size of code bases consequently lead to incomprehensible tests. As a result
test bugs can occur. A test bug is a test that fail even tough the program is correct(false positive). An-
other bug, which is even worse, are tests that do not fail when the program is not working as desired(false
negative). The false negative is a problem when breaking changes are not detected by the test suite.
To solve this issue we can measure the fault detecting capability of a test suite, this is called the test
suite effectiveness. Test suite effectiveness is measured by the number of faulty versions of a System
Under Test (SUT) that are detected by a test suite. Real faults are unknown in advance, we can use
mutation testing as a proxy measurement. Existing research has found statistically significant evidence
which correlates mutant detection with real fault detection[8].
Mutation testing tools create small faulty versions of the program. The test suite is then run to verify if
these faults are detected. These faults are called mutants and are created by mutators. Mutators mutate
specific expressions or statements in the source code. To prevent changing the overall functionality of
the program, mutants are represented as very small changes[9].
After all the mutants are executed the mutation score can be calculated. The mutation score is the per-
centage of mutants killed divided by the total amount of mutants executed. If a large amount of mutants
survives, it might be an indication that the quality of the test suite is poor as programming errors remain
undetected. Mutation testing has considerable drawbacks[10], such as the equivalent mutant problem
and being resource expensive.

1.1 Problem statement

Mutation testing requires a significant amount of computational resources[11]. The high cost require-
ment is often a barrier for adopting mutation testing [10]. A lot of techniques and methods have been
developed to improve the performance, however, most of these approaches are not as effective as muta-
tion testing a full set of mutants[10, 12].
A technique to reduce the number of mutants or the number of test case executions is mutation cluster-
ing. Mutation clustering aims to reduce the amount of mutants to be executed by clustering mutants[13,
14]. The clustering of mutants has been researched with promising results[13, 15, 16]. For example Ma
et al., [13] clustered the mutants for expressions. However in their paper they indicate that the choosing
expressions as the domain of their cluster is a limitation. A recurring problem in the research of mutation
clustering is to determine the means of domains as the centre of a cluster[13, 15–17].
To reduce the cost of mutation testing, we try to find a solution that can cluster mutants while main-
taining the accuracy of the same complete set of mutants. Our goal is to cluster any mutant that is
generated within the Java programming language. This research aims to remove the scoping limitations
present in existing research. There should be no requirements for which mutants can be clustered. We
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CHAPTER 1. INTRODUCTION

do this with two different techniques: qualitative and quantitative. We devise a white and black box
approach for clustering mutants. Our white box approach contains a qualitative analysis on mutants
and a methodology to cluster them. The black box approach makes use of a machine learning model to
cluster mutants. We structure our research on the following research questions:
Research Question 1: What set of characteristics can we identify for clustering generated mutants to
reduce the amount executed, while maintaining effectiveness?
Research Question 1.1: How do the existing mutation testing tools for Java compare to each other?
Research Question 2: How can we train a machine learning model to recognize and cluster generated
mutants to reduce the amount executed, while maintaining effectiveness?
We start with comparing existing mutation testing tools. We will use the existing literature as a starting
point and research what would be the best tool to use for this thesis.
After we have selected a tool we will research existing clustering techniques. Based on the results of this
research we select and implement a clustering algorithm that will cluster one ore more characteristics
of the mutants. We will randomly select on mutant per of each cluster to be executed by the mutation
tooling. We will then compare the mutation score of the clustered mutants with the mutation score of
a full set of mutants.
To answer our second research question we will train a machine learning model to cluster mutants. We
can then repeat the comparison we did for research question one.
We want to see how the algorithm/model performs on big and small projects. These project must also
require a test suite.
We chose to focus on projects that use Java as main programming language because it is one of the most
popular languages[18].

1.2 Contributions

Our research makes the following contributions:

1. A white box methodology to cluster generated mutants based on chosen characteristics to reduce
the cost of mutation testing.

2. A black box methodology to cluster generated mutants based on chosen characteristics to reduce
the cost of mutation testing.

3. A proof-of-concept (POC) which implements the qualitative methodology chosen and elaborated
within the thesis.

4. A proof-of-concept (POC) which implements the quantitative approach to cluster mutants and is
elaborated within the thesis.

1.3 Outline

In Chapter 2 we describe the background information of this thesis. Chapter 3 compares the different
mutation testing tools to decide on a tool to use for this research. In chapter 4 we identify characteristics
to represent mutants and design an experiment to cluster them. In chapter 5 we select a machine learning
model and design an experiment to cluster mutants with this model. Results are shown in Chapters 7.1
and 7.2 for the experiments described in Chapters 4 and 5 respectively. The results are then discussed
in Chapter 8.
Chapter 9, contains the work related to this thesis. Finally, we present our concluding remarks in
Chapter 10 together with future work.

Page 5 of 62



Chapter 2

Background

This chapter presents the necessary background information for this thesis. First, we define some basic
terminology that will be used throughout this thesis. This thesis relies on clustering techniques. We
review the state of the art on clustering algorithms and secondly the state of the art on machine learning
models specialized in clustering.

2.1 Terminology

Mutation testing a form of white box testing in which testers change specific components of an
application’s source code to ensure a software test suite will be able to detect the changes. Levenshtein
distance the minimum number of single-character edits (insertions, deletions or substitutions) required
to change one piece of text into the other. Maven build tooling for Java software projects. Gradle
build tooling for Java and Android software projects. Mutator definition of how the original source
code is transformed into a mutant. test engine a test engine facilitates discovery and execution of
tests. Examples for Java are TestNG and JUnit. weighted mutation score mutation score calculation
designed to be comparable with the mutation score of a full set(see Chapter 6.3 for a detailed explanation).

2.2 Statistics

The terminology of statistics may lead to confusion if not understood correctly. Thus we discuss some
basic terminology and principles in statistics. When performing a statistical test we have two hypotheses;
a null hypothesis and an alternative hypothesis. A test contains a specific null and alternative hypothesis.
The goal of such a test is to reject the null hypothesis. Rejecting a null hypothesis can be done by looking
at the resulting p-value. The p-value is the chance that the value of the statistical test occurs if the null
hypothesis is true on a zero to one scale. We can reject a null hypothesis if we think that this chance
is below a certain threshold. This threshold is determined beforehand and named the alpha-value. A
commonly used value for alpha is 5%. We cannot reject the null hypothesis if the p-value is below the
alpha-value. This does not necessarily mean that the null hypothesis is true. This can have different
reasons, for example, the data set used to validate the hypothesis is too small.

2.3 Clustering algorithms

This research focuses on clustering mutants and use of existing clustering algorithms. Many different
types of clustering algorithms have been proposed[19]. While there is a lot of diversity, some methods
are more frequently used than others[20]. Rodriguez et al., compared the performance of nine different
clustering algorithms. We provide a summary of these algorithms in the following paragraphs.

K-means

The K-means algorithm identifies k number of centroids, and then allocates every data point to the
nearest cluster, while keeping the centroids as small as possible[21].
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CHAPTER 2. BACKGROUND

CLARA

CLARA uses multiple fixed samples of the data set to minimize sampling bias and, select the best medoids
among those samples[22]. A medoid is defined as the object i for which the average dissimilarity to all
other objects in its cluster is minimal[22].

Hierarchical clustering

Hierarchical clustering groups similar objects into groups called clusters[23]. The endpoint is a set of
clusters or groups, where each cluster is distinct from each other cluster, and the objects within each
cluster are broadly similar to each other[23].

EM

EM(expectation maximization) clustering technique is similar to the K-Means technique[24]. Instead of
assigning examples to clusters to maximize the differences in means for continuous variables, the EM
clustering algorithm computes probabilities of cluster memberships based on one or more probability
distributions[24].

Spectral clustering

Spectral clustering is a technique with roots in graph theory. It identifies communities of nodes in a graph
based on the edges connecting them[25]. Spectral clustering uses information from the eigenvalues of
special matrices built from the graph or the data set to perform dimensionality reduction before clustering
in fewer dimensions[25]. The similarity matrix is provided as an input and consists of a quantitative
assessment of the relative similarity of each pair of points in the data set[25].

Subspace

Subspace clustering algorithms consider the similarity between objects with respect to distinct subsets
of the attributes[21]. Different subsets of the attributes might define distinctions between each other.
The algorithm can identify clusters that exist in multiple, possibly overlapping, sub spaces[26].

Dbscan

Dbscan is a density-based clustering non-parametric algorithm[27]. Given a set of points in some space,
it groups together points that are closely packed together, marking outliers as points that lie alone in
low-density regions[27].

OPTICS

The OPTICS(Ordering Points To Identify the Clustering Structure) algorithm starts with a data point
and expands its neighborhood using a similar procedure as in the Dbscan algorithm[28]. The difference
is that the neighborhood is first expanded to points with low core-distance[28]. The optics algorithm can
detect clusters having large density variations and irregular shapes[28].

The goal of their study was to guide researchers, who have little experience in data mining techniques,
to the application of clustering methods. They evaluated the algorithms in three distinct situations:
default parameters, single parameter variation and random variation of parameters. They used 400
generated artificial data sets which were normally distributed.
The results reported in their research are respective to specific configurations of normally distributed
data and algorithmic implementations. Nonetheless they do give a good overview on how the algorithms
compare to each other.
For the default parameter experiment, the spectral clustering algorithm had the best performance and
the hierarchical algorithm had the worst performance.
Regarding single parameter variations, for data sets containing 2 columns, the hierarchical, optics and
EM methods showed significant performance variation.
With respect to the multidimensional analysis for data sets, the performance of the algorithms for
the multidimensional selection of parameters was similar to that using the default parameters. They
conclude their research with observing that, for data sets with 10 or more columns the spectral algorithm
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CHAPTER 2. BACKGROUND

consistently provided the best performance. However the EM, hierarchical, k- means and subspace
algorithms can also achieve similar performance with some parameter tuning. The optics and dbscan
algorithms aim at different data distributions than performed in this study. There different results could
be obtained for non-normally distributed data.

2.4 Machine learning models for clustering

There are many different types of machine learning models with their respective applications. For this
thesis we will focus on machine learning models designed for clustering.
Machine learning algorithms are divided in supervised and unsupervised learning algorithms[29]. Super-
vised learning is the machine learning task of learning a function that maps an input to an output based
on example input-output pairs[29]. In contrast to supervised learning, unsupervised learning shows self-
organization that captures patterns as neuronal predilections or probability densities[29]. Unsupervised
learning algorithms are commonly used for classification and categorization[29]. Unsupervised learning
is a type of algorithm that learns patterns from untagged data[29]. These machine learning algorithms
are commonly used for clustering and dimensionality reduction[29].
K.L. Du surveyed different machine learning models used for clustering[30]. We provide a summary of
these models in the following paragraphs.

Self organizing map.

The self organizing map (SOM) is a neural network-based dimensionality reduction algorithm generally
used to represent a high-dimensional data set as two-dimensional discretized pattern[30]. Reduction in
dimensionality is performed while retaining the topology of data present in the original feature space[30].
The self organizing map computes the Euclidean distance of the input pattern x to each neuron k, and
finds the winning neuron using the nearest-neighbor rule[30] . The winning node is called the excitation
center.

Fuzzy C-means clustering.

Fuzzy C-means clustering works by assigning membership to each data point corresponding to each
cluster center on the basis of distance between the cluster center and the data point[30]. The more
the data is near to the cluster center more its membership towards the particular cluster center. The
weighting parameter m is called the fuzzifier[30]. M determines the fuzziness of the partition produced,
and reduces the influence of small membership values[30].

Learning vector quantization.

One or more prototypes are used to represent each class in the data set, each prototype is described as a
point in the feature space[30]. New (unknown) data points are then assigned the class of the prototype
that is nearest to them[30]. In order for nearest to make sense, a distance measure has to be defined[30].
An example of such a distance measure is the Euclidean distance. Learning vector quantization(LVQ) is
a supervised classification model. The LVQ can be treated as a supervised version of the SOM[30].

Mountain and subtractive clustering.

The mountain and subtractive clustering models are an effective method for estimating the number of
clusters[30]. The subtractive clustering model is an extension of the mountain model[30].
The method grids the data space and computes a potential value for each grid point based on its distance
to the actual data points. Each grid point is a potential cluster center. The potential for each grid is
calculated based on the density of the surrounding data points. The grid with the highest potential
is selected as the first cluster center and then the potential values of all the other grids are reduced
according to their distances to the first cluster center[30].

Neural gas.

The neural gas is a topology-preserving network, and can be treated as an extension to the C-means[30].
A data optimal topological ordering is achieved by using neighborhood ranking within the input space
at each training step[30]. To find its neighborhood rank, each neuron compares its distance to the input
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CHAPTER 2. BACKGROUND

vector with those of all the other neurons to the input vector[30]. Unlike the self organizing map(see
Chapter 5.1.6, which uses predefined static neighborhood relations, the neural gas network determines a
dynamical neighborhood relation as learning proceeds[30]. A benefit of the neural gas network is that it
is able to spawn neurons. This means that it is not necessary to know the number of clusters in advance.

ART networks.

ART models are characterized by systems of differential equations that formulate stable self-organizing
learning methods[30]. The stability and plasticity properties as well as the ability to efficiently process
dynamic data make the ART attractive for clustering large, rapidly changing sequences of input pat-
terns[30].

K.L. Du describes the mathematical principles on which the machine learning algorithms are based
as well as the origin, pros and cons of each model.
He also touches on subjects relevant to clustering and machine learning models such as the under-
utilization problem, fuzzy clustering, robust clustering, clustering based on non- Euclidean distance
measures, supervised clustering, and hierarchical clustering. Machine learning model variants and their
references are also discussed.
He closes his paper with computer simulations of some of the machine learning models he surveyed.
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Chapter 3

Mutation testing tools

To cluster mutants we need to select a tool that generate mutants and executes mutants. Such tools are
called mutation testing tools. Our goal is to find the tool that generates the most amount of mutants.
First, we review existing literature. Second, we extend the comparison by adding information about the
current state of the tools. With the combination of the information gathered we make a decision on what
tool to use for this thesis.

3.1 State of the art documented

The literature used several criteria for comparing mutation testing tools for Java:

• Execution time of each tool.

• The cost as the number of test cases that needs to be generated and the the number of equivalent
mutants that would have to be inspected.

• Effectiveness of the mutation adequate test suite of each tool. Every test of the suite adds to the
effectiveness score. If a test is removed less than 100% effectiveness can be achieved. To evaluate
the effectiveness of each tool’s mutation adequate test suite, a cross-testing technique is applied.
The adequate test suite per tool is run on the set of mutants generated by the other tools.

Kintis et al. analysed and compared the performance of PIT, MuJava and Major[31]. They started
out with performing a mini literature survey on mutation testing tools used in existing research on test
effectiveness in Java. With a data set of twelve methods and six Java projects they evaluated each tool
using a cross-testing technique. As a result they found that the most effective mutation adequate test
suite was from MuJava, followed by Major and PIT. The score of the application cost was the inverse of
the previous ranking: PIT generated the smallest set of equivalent mutants and required the least test
cases. During their research they also compared the different mutant operators the tools supported. An
overview of mutant operators(also known as mutators) per tool was created. They compared the mutant
operators and reported overlapping operators.
Marki and Lindstrom performed their research on the same three mutation testing tools.[32]. The
same cross-testing technique used by Kintis et al., was applied for three small Java programs. These
programs are popular programs used in testing literature. They found that the mutation tools do not
subsume each other. ”one mutant subsumes a second mutant if every test that kills the first mutant is
guaranteed also to kill the second [33]” According to the research a ranking of the tools would be as
follows; MuJava generated the strongest mutants followed by Major and PIT. Furthermore they found
that MuJava generated significantly more equivalent mutants[32]. MuJava also had an execution time
twice the amount of that of Major and PIT combined.
Laurent et al., introduced PIT+, a version of PIT with extended set of mutators[34]. They used the
same tests suites that were generated by kintis et al., and combined these into an adequate test suite that
would detect the combined set of mutants generated by PIT, MuJava and Major. They discovered that
the set of mutants generated by PIT+ was stronger than the combined sets generated by the other three
tools. Fortunately the extended set of mutants used in PIT+ is now integrated in the PIT project[35].
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CHAPTER 3. MUTATION TESTING TOOLS

3.2 State of the art tools

The literature is clear about how the mutation testing tools compare to each other. However the most
recent study is from 2017. At the time of writing this thesis these studies are at least four years old.
Some of the tools were updated or are still under active development[36, 37].
There are three candidate tools; Major, MuJava and PIT. We extend the existing mutant operator
comparison for these tools with the operators that have been added since the publishing date of the
literature. We also research the overlap for the new mutant operators. Table 3.1 shows the mutant
operators that were developed after the publication of the literature. The amount of mutant operators
for MuJava and PIT have increased significantly while there were no new mutant operators for Major.

MuJava PIT

IHD Hiding variable deletion EM Empty Returns

IHI Hiding variable insertion FR False Returns

IOD Overriding method deletion NR Null Returns

IOP Overriding method calling position change TR True Returns

IOR Overriding method rename PR Primitive Returns

ISI Super keyword insertion ER Experimental Switch

ISD Super keyword deletion BI Big Integer

IPC Explicit call to a parent’s constructor deletion NRC Naked Receiver

PNC New method call with child class type N Negation

PMD Member variable declaration with parent class type AOR Arithmic Operator Replacement

PPD Parameter variable declaration with child class type AOD Arithmic Operator Deletion

PCI Type cast operator insertion CR Constant replacement

PCC Cast type change BO Bitwise Operator

PCD Type cast operator deletion ROR Relational Operator Replacement

PRV Reference assignment with other comparable variable UOI Unary Operation Insertion

OMR Overloading method contents replace

OMD Overloading method deletion

OAC Arguments of overloading method call change

JTI This keyword insertion

JTD This keyword deletion

JSI Static modifier insertion

JSD Static modifier deletion

JID Member variable initialization deletion

JDC Java-supported default constructor deletion

EOA Reference assignment and content assignment replacement

EOC Reference comparison and content comparison replacement

EAM Acessor method change

EMM Modifier method change

Table 3.1: Current mutators supported.
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CHAPTER 3. MUTATION TESTING TOOLS

Tools sometimes implement the same mutator differently, resulting in different mutant sets. Table
3.2 shows an overview over the relations between the mutators of MuJava and PIT. Some of the new
mutators from the tools map to the already existing mutators of the other tools. To get a complete
overview we include the mutators that have been reviewed in the studies of Kintis et al., and Marki and
Lindstrom.

MuJava mutator PIT mutator

AORB Arithmetic Operator Replacement Binary

M Math
ASRS Short-Cut Assignment Operator Replacement

SOR Shift Operator Replacement

COR Conditional Operator Replacement

AOIU Arithmetic Operator Insertion Unary
UOI Unary Operation Insertion

AOIS Arithmetic Operator Insertion Short-cut

ODL Operator Deletion AOD Arithmic Operator Deletion

AODS Arithmetic Operator Deletion Short-cut RI Remove Increments

ROR Relational Operator Replacement CB Conditionals Boundary

AORS Arithmetic Operator Replacement Short-Cut I Increments

COD Conditional Operator Deletion RC Remove Conditionials

Table 3.2: Overview of mutator overlaps between MuJavav and PIT

Next we try to generate mutants with all three tools. All of the sources that we used for generating
mutants are build with the build tools Maven or Gradle. Marki and Lindstrom[32] mention that Major
includes support for Maven, but it is not documented anywhere. For this reason we can not generate
mutants with Major. Table 3.3 shows the amount of mutants generated per project and per tool. The
results show that in all of the cases PIT generates more mutants than MuJava. In some cases the
difference is significant. This difference can partially be explained by the fact that MuJava does not
support source projects with Java version 1.7 or higher[38]. All the code that uses the of features from
this version of Java and above resulted in an error during mutant generation.

version
LOC

(Lines of code)
MuJava PIT

Commons-numbers.core 1.0-beta1 450 988 4384

Jodatime 2.10.10 28811 52925 112772

Zxing 3.4.1 3.4.1 24792 65983 161409

Google Auto Common 0.11.0 2338 20 5219

Google Auto Factory 1.0-beta9 1507 69 5832

Google Auto Value 1.7.5 7466 745 16746

Google Auto Service 1.0-rc6 750 0 475

ScribeJava-Core 8.1.0 5709 1358 5746

Checkstyle 8.41.1 38491 4529 100952

Fastjson 1.2.75 43405 70577 116188

Jfreechart 1.5.3 91876 0 350741

Commons-lang 3.12.0 29836 31145 134764

Commons-codec 1.15.0 9656 21719 54804

Commons-text 1.9.0 9781 10403 48490

Commons-io 2.8.0 13947 13245 44631

Gson 2.8.6 8078 9198 28485

Commons-cli 1.4.0 2782 831 7193

Commons-csv 1.8.0 1855 2081 6906

Table 3.3: Amount of mutants generated by MuJava and PIT
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3.3 Selecting mutation testing tool

We studied literature on three different tools and extended the research with the current state of the
art. MuJava is not actively maintained and has not been updated in the last few years. It does not
support JUnit 4 and all versions of TestNG[38]. These are test engines and are crucial for executing
tests. MuJava also does not support source projects with java version 1.7 or higher[38]. Conforming to
these requirements would reduce the set of projects we could use in or experiments.
While Major supports JUnit 4, we did not succeed in generating mutants with this tool. It would be
too time consuming to customize all source projects to work with Major. Furthermore there is not much
documentation available for this tool.
PIT targets the industry, is actively maintained and is open source[31]. It supports Maven, Gradle, has
a Command Line Interface (CLI) and has a faster execution time than the other tools. For example PIT
provides a plugin system in which you can inject your own code in various stages of mutation testing
process[39]. PIT also generated significantly more mutants in every project we have tested. Based on the
information presented in this chapter we decide that PIT is the best choice for generating and executing
mutants.
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Chapter 4

Qualitative clustering approach

The following sections describe the white box approach for clustering mutants. We perform a qualitative
analysis on mutants to identify characteristics. These characteristics represent the mutants. With the
mutants represented we devise a methodology for clustering mutants. Our goal is to cluster every mutant
that is generated while maintaining effectiveness.

4.1 Identifying characteristics

Our goal is to cluster any mutant that fit the requirements of the selected mutation testing tools.
We want to solve the scoping problem in existing research[13, 15–17]. To achieve this we need to
identify characteristics that every mutant contains. As part of our white box methodology we perform
a qualitative analysis on mutants and identify characteristics that are relevant for defining the means of
domains as the centre of clusters.

4.1.1 Overview of characteristics

Zhang et al., identifies several mutant characteristics[40]. The goal of their research is detecting as
accurate as possible whether a mutant survives or not before executing the mutant. The mutant char-
acteristics identified by Zhang et al., have been used in other research with promising results[41]. While
the goal of their research is different than ours, we can still use the characteristics they identified. We
select characteristics relevant to our research from the research of Zhang et al., and Oonk[41]. We extend
the list of characteristics with data we can extract from the selected mutation testing tool.
PIT generates and executes mutants on byte code level[42]. By mutating in Java byte code we can
identify characteristics specific to Java byte code. PIT also gathers mutant metadata. We can extract
this mutant metadata and identify characteristics. With the combination of information extracted from
PIT and characteristics selected from existing research we identify the following characteristics:

1. Mutant similarity.

2. Amount of tests the mutant is challenged by.

3. Mutator identifier.

4. Mutant opcode.

5. Mutant return type.

6. Mutant contains local variables.

7. Mutant is in try catch block.

8. Mutant is in finally block.

9. Name of class that contains the mutant.

10. Name of function that contains the mutant.

11. Line number of the start of the block that contains the mutant.

12. Line number on which the mutation occur.

In the following sections we elaborate on these characteristics.
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4.1.2 Mutant similarity

A piece of code is a textual representation of instructions for a computer. A mutant is a transformation
of a piece of code. This transformation is predefined. The difference between a mutant and its parent
can be defined as similarity. We identify the similarity between a mutant and parent as a characteristic.
To measure this characteristic we select a similarity measure. There are existing similarities measures
that base their similarity in different ways[43].
The Levenshtein distance defines the distance between two strings by counting the minimum number of
operations(create/edit/delete) needed to transform one string into the other[43]. The more the textual
representation of a mutant differs from its parent the bigger the Levenshtein distance will be. A unit
test tests a small piece of code. The more this piece of code differs from its original the more likely it is
the test will fail. The Levenshtein distance measures this difference. We select the Levenshtein distance
as similarity measure for our research[43]. This could be a useful characteristic because mutants that
have the same similarity may be grouped together.

4.1.3 Amount of tests challenged by mutant

A mutant may be challenged by tests. If the test fails, the mutant is considered killed. If the test passes,
the mutant is considered survived. If the mutant is not challenged by any tests it is also considered sur-
vived. The amount of tests a mutant is challenged by is dependant on the coverage and test effectiveness
of the test suite. We identify this number as a characteristic. Every test the mutant is challenged by is
an occasion for the mutant to be killed or not. This could be a useful characteristic because mutants
that have more chances to be killed may be grouped together.

4.1.4 Mutator identifier

At the time of writing the selected mutation testing tool PIT supports more than 100 mutators[44].
A mutator is the definition of how the code is mutated from its original[45]. Each mutator mutates
the source code in a dfferent way. PIT assigns identifiers to their mutators for execution and reporting
purposes. Each mutant has a mutator identifier that matches with how the mutant is mutated from
the source code. We can extract this data from PIT and use it as a characteristic. It could be a useful
characteristic because mutants that are changed in the same predefined way may be grouped together.

4.1.5 Mutant opcode

“A Java Virtual Machine instruction consists of a one-byte opcode specifying the operation to be per-
formed, followed by zero or more operands supplying arguments or data that are used by the operation.”
(Java 12 SE docs ch.12). When PIT mutates the source code it uses Java opcodes to alter the original
byte code. A record of which opcode is being used is stored in memory during the mutation testing
process. This opcode can differ per mutator and is dependant on how the code is written. During the
mutation testing process of PIT we can extract the opcode. We identify the opcode as a characteristic.
The opcode is a characteristic that influences the end result of the mutant in byte code representation
which in turn can influence other characteristics, for example the Levenshtein distance. The opcode
could be a useful characteristic because mutants with the same opcode may be grouped together.

4.1.6 Mutant return type

A mutant may contain a return statement. This is dependant on the source code that is mutated. A
return statement can be identified as a characteristic. If a mutant contains a return statement, we can
extract its type from PIT. There is the possibility that a mutant does not contain a return statement, in
this case we set the mutant return type to a default value. The return type is a distinctive property of
a piece of code, this distinction a useful characteristic because mutants with the same return type may
be grouped together.

4.1.7 Mutant location

The location of a mutant in PIT is defined by multiple properties; the name of the class, the name of
the function, the line number of the start of the block the mutant is located in and the line number
the mutation occurs on. These properties refer to the location in Java byte code. The location can be
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identified as a characteristic of a mutant. PIT uses this location during the mutation testing process and
for reporting purposes. We can extract the location as defined by the properties in PIT. Each property
is identified as a characteristic. The location of a piece of code is a distinctive property. The same
piece of code in a different location may have a different effect on the source code or unit tests. For
example two mutants with the same byte code may have a different result in two different locations of
a software project. This is dependent on different factors one of which being the unit tests the mutant
is challenged by. A mutant may not be unique if the location is not taken into account. It could be a
useful characteristic because mutants that are in the same location may be grouped together.

4.1.8 Error handling capability

A technique to handle errors in Java is to use try-catch blocks[46]. The presence of try-catch blocks are
an indication of the error handling capabilities of certain pieces of code. An addition to the try-catch
blocks are finally blocks. A finally block is executed after a try and catch block[46]. There is a possibility
that a mutant may be generated inside these blocks. If a mutant is located in a try, catch or finally
block can be defined as a characteristic. It could be a useful characteristic because the mutants that are
located in the same type of block may be grouped together.

4.1.9 Local variables

A mutant may be located in a location(see Chapter 4.1.7) that may contain local variables. There is a
chance a mutant modifies a local variable. A variable modified by a mutant may increase the chance for a
mutant to be killed. This is because a unit test may check for a specific value for a specific local variable.
The amount of local variables a location contains can be identified as a characteristic. We can extract the
amount of local variables a location contains from PIT. This could be a useful characteristic as mutants
with the same amount of local variables may be grouped together. It could also be possible that there
is a relation between the amount of local variables and the result of a mutant(killed or survived).

4.1.10 Extracting characteristics

To extract all the characteristics we identified we need to run PIT and configure it to generate all
mutants that are possible within the tool. PIT works in phases, the first phase is the generation phase
where mutants are generated. The second phase is the execution phase where mutants are challenged
by the test suite. The last phase is the reporting phase where a report is generated based on the users
preferences and data generated by PIT. During the various stages we can extract characteristics by using
PIT’s plugin system. The plugins are executed after each other and per class. In other words first plugin
A will make changes or analyse all classes then plugin B etc.
PIT offers a plugin system in which developers can inject their own code in PIT[47]. There are two
main types of plugins; a Mutation Result Listener and a Mutation interceptor[47]. A mutation result
listener receives the details of analysed mutations as they arrive[47]. A Mutation interceptor is passed a
complete list of all mutation that will be generated to each class before the mutation are challenged by
tests[47]. The implementation of our experiment makes use of this plugins system.
We developed two plugins to extract characteristics. The first plugin is of type Mutation interceptor. It
is provided a list of details per class. We can extract all characteristics but the Levensthein distance and
the amount of tests a mutant is challenged by. To calculate the Levensthein distance we need the byte
code of the original code and the mutated code. We generate the byte code of the original code based on
the location provided in the list of details. We make use of existing functionality in PIT for generating
byte code. The mutator is also provided in the list of details. With the combination of location and
mutator we can generate the byte code of the mutant. With both the mutated byte code and original
byte code available we can calculate the Levenshtein distance.
The characteristics gathered until this phase of the mutation testing process are written, together with
a unique identifier, to a CSV file.
The second plugin is a mutation result listener. This plugin gets passed a list of the results per mutant.
This list contains data about the mutant survival status. It also contains data about the number of tests
the mutant is challenged by. We store this data together with the identifier to a different CSV file.
When the mutation testing process has finished we need to merge the characteristic gathered in from
the plugins. We add the characteristic; the number of tests the mutant is challenged by to the data file
containing all the other characteristics. All the files contain the same unique identifier per mutant on

Page 16 of 62



CHAPTER 4. QUALITATIVE CLUSTERING APPROACH

which we can merge the data. We do not add the information about the survival of a mutant. We only
need this data to validate our results.

4.2 Clustering mutants

We identified characteristics to represent mutants in Chapter 4.1. With this representation of the mutants
we can devise a methodology to cluster them. The following sections describes the methodology for our
white box approach of clustering mutants.

4.2.1 Hierarchical clustering

Clustering Levenshtein distances has been done before with hierarchical clustering with promising re-
sults.[48, 49]. Research shows that hierarchical clustering performs better when clustering with at least
ten features[19]. It also states that varying the parameters of hierarchical clustering improves the per-
formance compared to that of the default settings of the algorithm[19]. We identified more than ten
characteristics and can use them as features. We adjust the parameters of the algorithm based on the
characteristics in our data set. Bases on these observations and the research of Rodriguez et al., we select
hierarchical clustering as it gives us the best performance in terms of partitioning. Next we explain the
configuration we use for clustering the mutants.
Hierarchical clustering is subdivided into agglomerative and divisive. The agglomerative hierarchical
technique follows bottom up approach whereas divisive follows top-down approaches. Hierarchical clus-
tering uses different metrics which calculates the euclidean distance between two clusters and the linkage
criteria[48]. The linkage criteria specifies the dissimilarity in the sets as a function of the pair-wise
distances of observations in those sets[48]. We reviewed the different linkage criteria and concluded the
following.
Research shows that the complete linkage outperforms the single linkage method[50]. The ward linkage
and complete linkage methods perform the same when clusters are well separated[50]. However if the
clusters overlap the ward linkage outperforms the complete linkage[50].
We identify all characteristics per mutant as a separate cluster. Starting out with each mutant as a
separate cluster we can use the agglomerative form of hierarchical clustering. Since we cannot assume
that our clusters are well separated we chose to use the ward linkage method for our clustering algorithm.
In summary, we select the agglomerative hierarchical clustering algorithm with ward linkage to cluster
mutants represented by the characteristics we gathered.

4.2.2 Levenshtein distance on Java byte code

A mutant is a piece of code that differs in a predefined way from its parent. Java source code compiles
into Java byte code. During the compilation of Java code certain context is abstracted away[51]. Optimi-
sations are applied which also changes the Java byte code[51]. As a result the textual similarity between
a Java code mutant and its parent is different from the similarity between a Java byte code mutant and
its parent. While the textual similarity may be different between the Java code and Java byte code the
functionality remains the same. Java byte code reflects more of the semantic nature of the source code
than the source code itself does. PIT generates and executes mutants on byte code level[42]. In other
words PIT executes the unit tests of a source against the byte code of a mutant.
By calculating the distance on byte code we filter out the context that is present in Java code. This gives
us a Levenshtein distance that represents more of the semantic difference, between a mutant and parent,
than calculating the distance for Java code. For this characteristic we use the Levenshtein distance
between a Java byte code mutant and its parent.

4.2.3 Levenshtein distance implementation

There are different implementations of the Levensthein distance. For our experiment we need to calculate
the Levenshtein distance on the byte code generated in PIT. Since we make use of the plugin system
we also choose to use an implementation that is written in Java. The Levenshtein distance can be
calculated in different ways for example with recursion. The implementation with recursion is has a
complexity of O(Nˆ2) and a memory need of O(Nˆ2). There is also an improved implementation that
does not use recursion. While the complexity is the same the memory need is reduced to O(N). This last
implementation is the implementation we selected for our experiment. The implementation described
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above is also offered by a library. This library is the Apache Commons Text library[52], in our experiment
we make use of this implementation for calculating the Levenshtein distance.

4.2.4 Categorical data

There are different categorical variable encoding techniques available[53]. The categorical characteristics
we use have no particular ranking compared to each other. There is also no specific order to the
characteristics. I.e. a return type void is not better or worse than a return type string. The same goes
for the location characteristics, there is no location that should have a bigger weight than the other
locations. The individual characteristics do contain a finite set of values. For example multiple mutants
may contain the same class name. The hierarchical clustering algorithm needs all characteristics in a
numerical form[50]. The characteristics mutator identifier, class name, method name and return type are
non numerical. To deal with this problem we apply categorical variable encoding to these specific features.
Taking into account the properties of our categorical characteristics the nominal variable encoding fits
our requirements. Nominal encoding comprises a finite set of discrete values with no relationship between
values[53]. Therefore we implement this type of encoding in the experiment.

4.2.5 Number of clusters

Agglomerative hierarchical clustering can continue to cluster until there is one cluster left. Naturally
this cluster will contain all the mutants. We can cut off the clustering algorithm at any point. We decide
on the number of clusters based on the amount of mutants generated in a full set. We select the number
of clusters from a performance increasing perspective. Mutation clustering increases the performance
by reducing the amount of mutants executed[10]. By reducing the amount of mutants, for example by
half, we increase the performance by 50%[8]. As a starting point we perform three experiments where
the cluster size is 25%, 50% and 75% of the total amount of mutants respectively. We can evaluate
the results and can decide to cut off the clustering at different points. The amount of mutants inside a
cluster is be decided by the clustering algorithm.
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Chapter 5

Quantitative clustering approach

In the following sections we devise a black box approach for clustering mutants. We make use of the
characteristics identified in Chapter 4.1. While our goal remains the same as in Chapter 4, the method
to achieve it is different.
We start by selecting a machine learning algorithm. Next we select a training strategy and an imple-
mentation. Last we select the parameters required by the algorithm.

5.1 Selecting a machine learning model

In this section we select a machine learning model. We start by choosing between supervised or unsu-
pervised learning. Then we look at the machine learning models that are discussed in the survey done
by K.L. Du. Based on the choice of supervised or unsupervised learning we review the corresponding
models and decide if they fit our use case by a process of elimination.

5.1.1 Supervised or unsupervised learning

In this subsection we decide on supervised or unsupervised learning. The application and description of
these two types of learning are described in Chapter 2.
Supervised machine learning models require a labeled data set. We can argue that we can label our data
set with the results of our first experiments. Each mutant would then be labeled with the identity of the
cluster it is clustered in by the hierarchical clustering model. If we would train a supervised model with
the data labeled as described, it may result in a model that can do the same as hierarchical clustering.
Our research is not to prove if we can train a model to cluster mutants the same way as hierarchical
clustering. We want to train a model to find the relations between the characteristics without having to
define these relations manually.
Unsupervised learning models do not need a labeled data set and can recognize relations or discover
hidden patterns in the characteristics we identified. This corresponds to what we want to achieve with
this experiment. Therefore we choose unsupervised learning to continue with in our experiment.

5.1.2 Mountain and subtractive clustering

As described in Chapter 2.4 the mountain and subtractive clustering models calculate the amount of
clusters needed for a specific data set. Subtractive clustering is designed for learning fuzzy systems
models from data[54]. If it is required to find out the number of clusters we need for our model we can
make use of these models.

5.1.3 ART models

While the ART models are good at what they do, they do not fit our purpose of clustering mutants.
As described in Chapter 2.4 the ART models expect rapidly changing sequences of input patterns. Our
data does not contain binary input patterns and it is also not rapidly changing. Therefore we do not
select an ART model.
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5.1.4 Neural gas

The neural gas network is a learning network. One of the properties of a learning network is that it is
not designed to fit new data points[29]. For this reason we cannot use the neural gas network to predict
in what cluster a new mutant should be placed. Therefore we do not select the neural gas network.

5.1.5 Learning vector quantization

The learning vector quantization model is a supervised learning model. We established that we will use
an unsupervised learning model to cluster mutants. Therefore we do not select the supervised learning
vector quantization model.

5.1.6 Self organizing map, C-means and fuzzy c-means

The self organizing map (SOM), C-means and fuzzy c-means (FCM) models are all models that would
fit our purpose. To choose between these models we look at the performance of each model. Mingoti et
al., compared the performance of these three models [55]. They did a Monte Carlo simulation where the
cluster sizes and amount of random numbers in the data set varied each simulation[55]. Other variables
such as cluster boundaries and overlap were also controlled variables in the experiment. They observe
that the C-means and fuzzy c-means had good performance for non overlapping situations[55]. The
best results for average recovery and internal dispersion rates were found for fuzzy c-means which was
stable in all situations achieving recovery averages over 90%[55] The C-means method was affected by
the presence of a large amount of outliers. They conclude that the SOM did not perform well in many
cases being affected by the amount of variables and clusters even for the non overlapping cases[55]. They
also observe that their results partially overlap with other research in the same domain.
Based the conclusions made by Mingoti et al., we can conclude that the FCM model has the best
performance overall. Thus for this experiment we select the FCM model.

5.2 Training strategy

Our data set consists of mutants represented by their characteristics. The characteristics of the mutants
are generated per project and have a project specific context. For example, a mutant with a mutator in
a certain project can have a different effect on the source code and can give other results than a mutator
in a different project. The relations between the mutants are scoped to their own project. In other words
if a specific mutant has a relation to another mutant in the same project, this relation may not exist
between the same mutant and a mutant from a different project. To preserve these relations and context
we decided to train a separate model per project.
To validate the model we need to split our data set into a training set and a validation set. Research
has shown that if the data set is big enough a ratio of 80/20 is sufficient[56]. We divide each source
projects into training and validation groups to reflect the 80/20 ratio as best as possible. Depending
on the amount of mutants per project we might not achieve a perfect 80/20 ratio. The division of the
mutants is be done randomly. To make our results reproducible we select a random division based on a
generated seed. The seeds generated for each run will be included in the results and can be found in the
Github repository in the file hierarchical-clustering/main.py at line 182[57].

5.3 Implementation of algorithm

The research paper of the FCM algorithm is referenced in the survey of Du et al.[30]. The FCM algorithm
is developed by Bezdek et al.[58]. Based on their research an implementation can be developed. There
are existing libraries that contain the implementation of the FCM algorithm. Developing our own version
of the FCM algorithm would be valuable if we want to make adjustments to the algorithm itself. For this
experiment we do not require to make adjustments to the FCM algorithm. Therefore we choose to use
a library that implements the FCM algorithm. The library we will use for this experiment is the fuzzy
c-means implementation build by Dias et al.[59]. The theory developed by Bezdek et al., is implemented
in this library. The library is actively maintained and has been used before in other research[60–62].
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5.4 Algorithm parameters

The FCM algorithm has to initialize the centroids of the clusters. The library we selected does this
based on a random number. It also allows us to control this random number. To make the initialization
of the centroid reproducible we will use the same generated seeds as in our first experiment. The seeds
generated are included in the Github repository in the file hierarchical-clustering/main.py at line 182[57].
Bezdek et al., also researched cluster validity for the FCM model[63]. They researched what effect which
parameters could have on the validity of the clusters. They specifically analyzed the role of weighting
exponent m(fuzziness parameter). They concluded that the best choice for m is in the interval [1.5, 2.5],
whose mean and midpoint is m=2. Wu proposed a new guideline for selecting parameter m[64]. His
point of view was that a large m value will make the fuzzy c-means more robust to noise and outliers.
He suggests implementing fuzzy c-means with m=[1.5, 4]. When the data set contains noise and out-
liers, the fuzzifier m=4 is recommended in a theoretical upper bound case. Since our data set does not
contain noise(all mutants consists of every characteristic) we choose to select the midpoint concluded in
the research of Bezdek et al.[63]. The value of m in this experiment is 2.
Finding the correct amount of clusters has been an ongoing problem for clustering algorithms[30]. For-
tunately there are techniques available to estimate the number of clusters. During model selection we
discussed the mountain and subtractive models. These models are designed to estimate the number
of clusters in a data set. The subtractive clustering model is specifically designed to approximate the
number of clusters for fuzzy system models[54]. It approximates the centroids and amount of the clusters
based on the data points in the data set[54]. We select and implement the subtractive clustering model
to estimate the number of clusters. We use this number as the value for the number of clusters parameter
in the FCM algorithm.

5.5 Implementation of subtractive clustering

For the same reasons as in Chapter 5.3 we select a library that implements the subtractive clustering
algorithm. The research paper of the mountain and subtractive algorithms are referenced in the survey
paper of Du et al.[30]. Based on the paper of the theory of the subtractive algorithm[54] we found an
existing implementation[65]. The implementation is professionally build and maintained by Matlab[65].
Matlab is a tool designed for the academic world and is professionally maintained for this reason we
decided to use their implementation of subtractive clustering[66].
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Chapter 6

Experiment design

In this chapter we design an experiment to validate our research. We execute the following steps:

1. Gather all mutant characteristics from PIT.

2. Execute full set of mutants to gather baseline measurement.

3. Cluster the mutants according the black and white box methodologies.

4. Execute one random mutant per cluster and gather result.

5. Calculate weighted mutation score.

Both research questions have the same goal, but with different approaches. We can devise one hypothesis
for both research questions. We hypothesise that we can cluster mutants with the set of characteristics we
identified while maintaining effectiveness and reducing the amount executed when executing one mutant
from each cluster that is randomly selected. Our goal is to achieve a weighted mutation score that is as
close as possible to the mutation score of a full set of executed mutants. We repeat the experiment for
each approach we devised in Chapters 4 and 5.

6.1 Project selection

We choose three main requirements for selecting software projects; the projects should have a test suite,
the test suite should not contain failing tests and the mutation testing tool should be able to execute
mutants for the sample project. We selected projects that were also used in other research within the
mutation testing and testing domain[10, 14, 17, 34, 40, 67].
We extend our sample by selecting projects from the first six pages of the most popular Java projects
on GitHub1. The unfiltered sample contains 50+ projects. From there we filter out all the projects that
contain failing tests and that are not libraries or applications. The result consists of a sample with fifteen
projects in total.

6.2 Baseline measurement

The baseline for our experiment is the mutation score of the set of all mutants generated by the selected
mutation testing tool. To extract this score we need to execute a full set of mutants within PIT. For
each source we have added the PIT plugin and required configuration in the pom.xml, this code instructs
PIT to generate and execute mutants with all mutators available, an example of such code can be found
in Appendix A. We can then use the Command Line Interface (CLI) and a maven command(see Listing
6.1) to execute PIT.

mvn −U org . p i t e s t : p i t e s t−maven : mutationCoverage

Listing 6.1: Command used to execute full set of mutants with PIT.

1https://github.com/search?p=7&q=language%3Ajava+stars%3A%3E10000&type=Repositories
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CHAPTER 6. EXPERIMENT DESIGN

6.3 Weighted mutation score

Our hypothesis states that each mutant executed should represent that whole cluster. With a mutant
executed from each cluster we can calculate a mutation score. This mutation score is a weighted mutation
score. This weighted mutation score is the product of the result of a mutant(1 for killed and 0 for survived)
and the amount of mutants in the cluster it represents. The weighted mutation score is then comparable
to the score of a full set as the total number of mutants will be the same.
For example, take a full set with a score of 75/100 killed mutants. This gives us a mutation score of 75%.
We then cluster the mutants in four clusters consisting of 12, 30, 38 and 20 mutants, respectively. We
randomly select four mutants of each cluster and execute them. The mutants representing cluster one
and four survive and two and three are killed. If we calculate the weighted score we get 68/100 which is
68%. We can then compare this to the score of a full set because the amount of mutants executed is the
same: 75/100(75%) and 68/100(68%).

6.4 Validation

The most efficient way to measure test effectiveness with mutation testing is by executing all mutants
that a mutation testing tool can possibly generate. The goal of this research is to reduce the amount
of mutants executed while maintaining effectiveness. To reduce the amounts executed we cluster the
mutants. We can measure this by counting the number of clusters we generate and compare it to the
number of total mutants generated by the selected tool.
To validate how effective our method of clustering is we can compare the weighted mutation score(see
Chapter 6.3) of the clustered set to the mutation score of the full set. The closer the weighted score is
to that of a full set the more effective our set of characteristics and clustering algorithm proves to be.
In other words we want achieve a mutation score that is as close as possible as to that of a full set. We
select a statistical significance level of ≤ 0.05. This is the conventional threshold for declaring statistical
significance[68].
Depending on the effectiveness of our clustering algorithm we may loose accuracy. This can happen if a
cluster contains mutants of both results. We can measure the accuracy inside a cluster by calculating a
percentage of all mutants that have survived against the ones that have been killed in a cluster. If the
majority of the mutants in a cluster is killed then we consider that cluster to represent a killed cluster
and the other way around for survived mutants. We consider the mutants that are not in the majority
of the cluster as inaccuracy.
If the weighted mutation score of our clustered set deviates more than 5% from the score of a full set we
reject our hypothesis.

6.5 Random mutant selection

As stated in our hypothesis we randomly select a mutant from each cluster to be executed. To validate
our sample we make use of statistical hypothesis testing[69]. Our null hypothesis states that there is no
relation between the characteristics identified and the results of a mutant with the chosen methodology.
To test this hypothesis we select an alpha value of 0.05. To translate; if more than five percent of the
values in a sample deviates more than the significance level(see Chapter 6.4) we cannot reject the null
hypothesis. To make our results reproducible we select the random mutant based on a generated seed.
The seed generated for each run will be included in the results and can be found in the Github repository
in the file hierarchical-clustering/main.py at line 182[57]. We repeat our experiment 30 times with 30
different seeds. Achieving consistent results while applying random selection contributes to the validity
of the experiment.
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Chapter 7

Results

In this chapter we present the results of our experiments. We divide the results in two sections. The
first section displays the results of clustering with hierarchical clustering. The second section displays
the results of clustering with the FCM model.
During the process of extracting the characteristics we found that calculating the Levenshtein distance
took a long time. Calculating the Levenshtein distance for the four biggest projects in the data set
cost days. Even for the smaller projects the extraction of the characteristics cost hours. Including
the Levenshtein distance defeats the purpose of increasing performance as every bit of performance we
increase would be replaced by the cost of calculating the Levenshtein distance. To see if it is possible to
mitigate this risk we repeat the experiment without the Levensthein distance characteristic.

7.1 Hierarchical clustering

In the this section we present the results of the experiment with hierarchical clustering. We divide the
results in two variants. The first variant displays the results of clustering with all characteristics. The
second variant displays the results of clustering without the Levensthein distance.
For each variant and project we display the weighted mutation score to create box-plots. There are a
total of eleven projects and thus also eleven box-plots per variant. In a box-plot the box is from the first
quartile till the third quartile and a line at the median. The dots are measurement points laying outside
the fences, which are located at Q1 1.5(Q3 Q1) and Q3+1.5(Q3 Q1). The whiskers show the range of
points that are outside the box but inside the fences.
Due to the limitation of resources and time we had to omit four source projects from these results. The
hardware was not equipped to store the amount of generated mutants for these projects, we did not have
enough memory. Trying to cluster these mutants this resulted in a out of memory error.
The results displayed are the average of the results of the 30 repetitions of the experiment. The result
of each single repetition can be found in our Github repository in the folderexperiment results[57].

7.1.1 Clustering with all characteristics

This section displays the results of our clustering algorithm when executed with data that consists of all
characteristics. The results are be grouped based on the percentage in reduction of mutants executed.
We also display the accuracy of the clusters per reduction. The results displayed are the average of the
results of the 30 repetitions of the experiment. The result of each single repetition can be found in our
Github repository in the folder experiment results[57].
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Figure 7.1: Box-plots containing weighted mutation score of clustering mutants with all
characteristics and cluster size of n*0.25

Project
Mutation score

full set

Mutation score

clustered set

Avg. cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 33.52% 33.63% 93.29% 50.00% 100.00%

Google Auto Factory 48.41% 48.58% 94.18% 50.00% 100.00%

Google Auto Common 59.59% 60.14% 91.12% 50.00% 100.00%

Google Auto Value 61.42% 62.89% 94.33% 50.00% 100.00%

Google Gson 66.83% 66.87% 91.61% 50.00% 100.00%

commons-io 69.70% 66.18% 90.36% 50.00% 100.00%

commons-cli 79.07% 79.01% 91.35% 50.00% 100.00%

commons-text 79.29% 79.33% 89.95% 50.00% 100.00%

commons-codec 84.56% 84.71% 94.44% 50.00% 100.00%

commons-csv 85.16% 85.42% 92.08% 50.00% 100.00%

Table 7.1: Results of clustering mutants with all characteristics and cluster size of n*0.25

Figure 7.1 displays the box-plots of the weighted mutation score obtained from each individual sample.
We can observe that for every box-plot the p-value is below 0.05 or 5%. To view the box-plots separately
and in more detail see Appendix B.1. Table 7.1 displays the results of clustering mutants with all
characteristics and the number of clusters equal to the total amount of mutants* 0.25. The maximum
and minimum differences between the score of a full set and clustered are is 3.52% and 0.04% respectively.
The average of the differences between full set score and clustered score is 0.58%. It is also noticeable
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that the minimum and maximum accuracy are 50% and 100% respectively. This means that there was
at least one cluster that consisted of only mutants that were killed or survived. The minimum accuracy
cannot go below 50%. If the percentage does go below 50% the representation of a cluster will flip from
survived to killed or the other way around.

Figure 7.2: Box-plots containing weighted mutation score of clustering mutants with all
characteristics and cluster size of n*0.5

Project
Mutation score

full set

Mutation score

clustered set

Avg. cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 33.52% 33.54% 96.94% 50.00% 100.00%

Google Auto Factory 48.41% 48.39% 96.12% 50.00% 100.00%

Google Auto Common 59.59% 59.76% 94.49% 50.00% 100.00%

Google Auto Value 61.42% 62.71% 96.09% 50.00% 100.00%

Google Gson 66.83% 66.81% 94.75% 50.00% 100.00%

commons-io 69.70% 66.06% 94.03% 50.00% 100.00%

commons-cli 79.07% 79.17% 94.19% 50.00% 100.00%

commons-text 79.29% 79.29% 93.21% 50.00% 100.00%

commons-codec 84.56% 84.60% 95.92% 50.00% 100.00%

commons-csv 85.16% 85.13% 94.65% 50.00% 100.00%

Table 7.2: Results of clustering mutants with all characteristics and size n*0.50

Figure 7.2 displays the box-plots of the weighted mutation score obtained from each individual sample.
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We can observe that for every box-plot the p-value is below 0.05 or 5%. To view the box-plots separately
and in more detail see Appendix B.2. Table 7.2 displays the results of clustering mutants with all
characteristics and the number of clusters equal to the total amount of mutants* 0.50. The maximum and
minimum differences between the score of a full set and clustered set are 3.63% and 0.02% respectively.
The average of the differences between full set score and clustered score is 0.48% which is smaller than
the average difference than that of the 25% set.

Figure 7.3: Box-plots containing weighted mutation score of clustering mutants with all
characteristics and cluster size of n*0.75
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Project
Mutation score

full set

Mutation score

clustered set

Avg. cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 33.52% 33.52% 97.99% 50.00% 100.00%

Google Auto Factory 48.41% 48.41% 97.46% 50.00% 100.00%

Google Auto Common 59.59% 59.76% 96.16% 50.00% 100.00%

Google Auto Value 61.42% 62.68% 97.31% 50.00% 100.00%

Google Gson 66.83% 66.84% 97.59% 50.00% 100.00%

commons-io 69.70% 66.07% 97.19% 50.00% 100.00%

commons-cli 79.07% 79.10% 96.68% 50.00% 100.00%

commons-text 79.29% 79.33% 97.61% 50.00% 100.00%

commons-codec 84.56% 84.61% 98.84% 50.00% 100.00%

commons-csv 85.16% 85.07% 97.64% 50.00% 100.00%

Table 7.3: Results of clustering mutants with a single characteristic and size n*0.75

Figure 7.3 displays the box-plots of the weighted mutation score obtained from each individual sample.
We can observe that for every box-plot the p-value is below 0.05 or 5%. To view the box-plots separately
and in more detail see Appendix B.3. Table 7.3 displays the results of clustering mutants with all
characteristics and the number of clusters equal to the total amount of mutants* 0.75. The maximum
and minimum differences between the score of a full set and clustered set are 3.63% and 0% respectively.
The average of the differences between full set score and clustered score is 0.48% which is higher than
the average difference than that of the 25% and the same of that of the 50% set.

7.1.2 Clustering without Levenshtein distance

This section displays the results of our clustering algorithm when executed without the Levenshtein
distance. The results are grouped based on the reduced percentage of mutants executed. We also display
the accuracy of the clusters per reduction amount. The results displayed are the average of the results
of the 30 repetitions of the experiment. The result of each single repetition can be found in our Github
repository in the folderexperiment results[57].
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Figure 7.4: Box-plots containing weighted mutation score of clustering mutants without
Levensthein distance and cluster size n*0.25

Project
Mutation score

full set

Mutation score

clustered set

Avg. cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 33.52% 33.72% 92.24% 50.00% 100.00%

Google Auto Factory 48.41% 48.32% 94.21% 50.00% 100.00%

Google Auto Common 59.59% 60.03% 91.19% 50.00% 100.00%

Google Auto Value 61.42% 62.58% 93.90% 50.00% 100.00%

Google Gson 66.83% 66.89% 91.75% 50.00% 100.00%

commons-io 69.70% 66.08% 90.20% 50.00% 100.00%

commons-cli 79.07% 78.97% 91.11% 50.00% 100.00%

commons-text 79.29% 79.30% 90.95% 50.00% 100.00%

commons-codec 84.56% 84.59% 94.56% 50.00% 100.00%

commons-csv 85.16% 85.24% 92.76% 50.00% 100.00%

Table 7.4: Results of clustering mutants without Levensthein distance and cluster size
n*0.25

Figure 7.4 displays the box-plots of the weighted mutation score obtained from each individual sample.
We can observe that for every box-plot the p-value is below 0.05 or 5%. To view the box-plots separately
and in more detail see Appendix B.4. Table 7.4 displays the results of clustering mutants without
Levensthein distance and the number of clusters equal to the total amount of mutants * 0.25. We
observe that the maximum and minimum differences in mutation score between a full set and a clustered
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set 3.61% and 0.09% respectively. The average of the differences between full set score and clustered
score is 0.53%.

Figure 7.5: Box-plots containing weighted mutation score of clustering mutants without
Levensthein distance and cluster size n*0.50

Project
Mutation score

full set

Mutation score

clustered set

Avg. cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 33.52% 33.55% 97.16% 50.00% 100.00%

Google Auto Factory 48.41% 48.44% 97.71% 50.00% 100.00%

Google Auto Common 59.59% 59.86% 96.35% 50.00% 100.00%

Google Auto Value 61.42% 62.62% 97.31% 50.00% 100.00%

Google Gson 66.83% 66.81% 95.29% 50.00% 100.00%

commons-io 69.70% 66.05% 95.08% 50.00% 100.00%

commons-cli 79.07% 78.97% 95.55% 50.00% 100.00%

commons-text 79.29% 79.30% 95.34% 50.00% 100.00%

commons-codec 84.56% 84.59% 96.95% 50.00% 100.00%

commons-csv 85.16% 85.11% 95.87% 50.00% 100.00%

Table 7.5: Results of clustering mutants without Levensthein distance and cluster size
n*0.50

Figure 7.5 displays the box-plots of the weighted mutation score obtained from each individual sample.
We can observe that for every box-plot the p-value is below 0.05 or 5%. To view the box-plots separately
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and in more detail see Appendix B.5. Table 7.5 displays the results of clustering mutants without
Levensthein distance and the number of clusters equal to the total amount of mutants * 0.50. The
maximum and minimum differences between the score of a full set and clustered set are 3.65% and 0.03%
respectively. We observe that the average cluster accuracy is higher than the average cluster accuracy
of the 25% set. The average of the differences between full set score and clustered score is 0.49% which
is smaller than the average difference than that of the 25% set.

Figure 7.6: Box-plots containing weighted mutation score of clustering mutants without
Levensthein distance and cluster size n*0.75

Page 31 of 62



CHAPTER 7. RESULTS

Project
Mutation score

full set

Mutation score

clustered set

Avg. cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 33.52% 33.48% 98.63% 50.00% 100.00%

Google Auto Factory 48.41% 48.34% 98.41% 50.00% 100.00%

Google Auto Common 59.59% 59.71% 97.08% 50.00% 100.00%

Google Auto Value 61.42% 62.66% 97.99% 50.00% 100.00%

Google Gson 66.83% 66.84% 97.37% 50.00% 100.00%

commons-io 69.70% 66.07% 97.34% 50.00% 100.00%

commons-cli 79.07% 79.12% 96.83% 50.00% 100.00%

commons-text 79.29% 79.33% 97.60% 50.00% 100.00%

commons-codec 84.56% 84.61% 98.43% 50.00% 100.00%

commons-csv 85.16% 85.07% 97.49% 50.00% 100.00%

Table 7.6: Results of clustering mutant without Levensthein distance and cluster size n*0.75

Figure 7.6 displays the box-plots of the weighted mutation score obtained from each individual sample.
We can observe that for every box-plot the p-value is below 0.05 or 5%. To view the box-plots separately
and in more detail see Appendix B.6. Table 7.6 displays the results of clustering mutants without
Levensthein distance and the number of clusters equal to the total amount of mutants * 0.50. The
maximum and minimum differences between the score of a full set and clustered set are 3.63% and 0.04%
respectively. We observe that the average accuracy is higher than the average accuracy of the other sets.
The average of the differences between full set score and clustered score is 0.49% which is higher than
the average difference than that of the 25% and the same of that of the 50% set.

7.2 FCM model

In this chapter we present the results of our second experiment. We divide the results in two sections.
For each variant and project we display the weighted mutation score to create box-plots. The first section
displays the results of clustering with all characteristics. For the same reason as in Chapter 7.1 we repeat
the experiment without the Levenshtein distance. The second section displays the results of clustering
without the Levenshtein distance.
The results displayed are the average of the results of the 30 repetitions of the experiment. The result
of each single repetition can be found in our Github repository in the folder experiment results[57].

7.2.1 Clustering with all characteristics

This section displays the results of our clustering algorithm when executed with data that consists of all
characteristics. Instead of displaying the reduction amount, which we did with the results of experiment
one, we display the number of clusters that is calculated by the subtractive clustering model.
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Figure 7.7: Box-plots containing weighted mutation score of clustering mutants with all
characteristics.

Project
Number of

clusters

Mutation score

full set

Mutation score

clustered set

Average cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 17 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 32 33.52% 22.91% 76.94% 59.60% 96.42%

Google Auto Factory 22 48.41% 56.59% 59.08% 50.60% 73.80%

Google Auto Common 31 59.59% 37.20% 63.04% 50.78% 87.93%

Google Auto Value 41 61.42% 61.01% 61.42% 50.94% 86.48%

Google Gson 40 66.83% 58.95% 59.22% 50.54% 79.57%

Commons-io 40 69.70% 53.32% 57.28% 50.63% 74.77%

Commons-cli 26 79.07% 84.08% 81.69% 67.87% 94.86%

Commons-text 55 79.29% 75.73% 78.19% 62.08% 93.54%

Commons-codec 17 84.56% 78.82% 77.67% 74.43% 81.08%

Commons-csv 32 85.16% 84.99% 83.41% 67.44% 96.39%

Commons-lang 28 78.31% 72.42% 77.04% 73.73% 81.19%

Jfreechart 28 27.02% 28.49% 74.08% 71.79% 76.30%

Jodatime 25 70.30% 67.51% 64.68% 60.73% 68.68%

Zxing 28 70.64% 81.50% 83.10% 80.20% 86.36%

Table 7.7: Results of clustering mutants with the FCM model with all characteristics

Figure 7.7 displays the box-plots of the weighted mutation score obtained from each individual sample.
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We can observe that for every box-plot the p-value is more than 0.05 or 5%. Table 7.7 displays the results
of clustering mutants with a all characteristics. The maximum and minimum differences between the
score of a full set and clustered set are 22.93% and 0.4% respectively. The average of the differences
between full set score and clustered score is 5.43%.

7.2.2 Clustering without Levenshtein distance

This section will display the results of our clustering algorithm when executed with data that does not
contain the Levenshtein distance characteristic. Instead of displaying the reduction amount, as we did
in the results of experiment one, we display the number of clusters that is calculated by the subtractive
clustering model.

Figure 7.8: Box-plots containing weighted mutation score of clustering mutants without
Levenshtein distance characteristic.
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Project
Number of

clusters

Mutation score

full set

Mutation score

clustered set

Average cluster

accuracy

Min. cluster

accuracy

Max. cluster

accuracy

Google Auto Service 17 0.00% 0.00% 0.00% 0.00% 0.00%

ScribeJava-Core 32 33.52% 23.64% 76.80% 58.77% 96.60%

Google Auto Factory 22 48.41% 57.40% 59.20% 50.67% 73.96%

Google Auto Common 31 59.59% 37.64% 62.95% 50.59% 83.53%

Google Auto Value 41 61.42% 59.61% 61.48% 50.60% 83.53%

Google Gson 40 66.83% 57.61% 59.11% 50.84% 76.68%

Commons-io 40 69.70% 57.95% 57.25% 50.62% 72.70%

Commons-cli 26 79.07% 81.53% 81.77% 67.70% 95.75%

Commons-text 55 79.29% 77.92% 78.22% 61.80% 93.92%

Commons-codec 17 84.56% 79.46% 77.73% 74.39% 81.66%

Commons-csv 32 85.16% 82.84% 83.47% 65.58% 97.80%

Commons-lang 28 78.31% 76.83% 76.99% 73.03% 80.56%

Jfreechart 28 27.02% 26.41% 74.11% 71.83% 76.36%

Jodatime 25 70.30% 65.17% 64.75% 60.82% 69.81%

Zxing 28 70.64% 80.03% 83.11% 80.10% 86.03%

Table 7.8: Results of clustering mutants with the FCM model without Levenshtein distance

Figure 7.8 displays the box-plots of the weighted mutation score obtained from each individual sample.
We can observe that for every box-plot the p-value is more than 0.05 or 5%. Table 7.8 displays the results
of clustering mutants without Levenshtein distance. The maximum and minimum differences between
the score of a full set and clustered set are 21.95% and 0.61% respectively. The average of the differences
between full set score and clustered score is 4.44% which is bigger than the average difference than that
of the results with all characteristics.
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Chapter 8

Discussion

In this chapter, we discuss the results of our experiments on clustering mutants. First, we discuss the
results of the white box approach. The results are discussed as one and are compared between the
variants(with Levenshtein distance characteristic and without). Second we discuss the results of the
black box approach and compare them to those of the white box approach. And last we discuss the
practicality of our research.

8.1 RQ 1: Identifying and clustering mutant characteristics

The maximum deviation from the original mutation score, for all variants(with and without Levenshtein
distance) of the experiment, is below the statistical threshold. We can observe that the distance between
the whiskers of the box-plots do not stretch more than the alpha-value of 0.05. This means that there
is not one sample that deviated more than 5% from the original mutation score. Thus we can reject the
null hypothesis and accept our alternative hypothesis. As hypothesised we observe that it is possible to
cluster mutants with the set of characteristics we identified while maintaining effectiveness and reducing
the amount executed. The hypothesis holds for all the projects and variants of the experiment. 66% of
the displayed results have a deviation of less than 1%. This includes both variants of the experiment.
The results prove that the relations between the mutants represented by the characteristics we identified
can be used to cluster mutants efficiently. This can be explained by the correlation between the result of
a mutant, the calculated euclidean distance and the distance threshold(linkage criteria) used to decide
whether a mutants should be clustered together.
If two mutants are grouped it is n percent likely that the mutants have the same result where n is the
cluster accuracy.

Finding 1: When executing 25% of the total amount of mutants we can still maintain effec-
tiveness.

In both variants of the experiment we observe a reduction in average accuracy when increasing the
performance by reducing the number of clusters. These reductions are 0.1% and 0.04% for clustering
with and without Levenshtein distance respectively. We can also see that the average cluster accuracy
is lower when reducing the amount executed.

Finding 2: The more you reduce the number of mutants executed the more accuracy is lost.

The results show that the average accuracy for reductions of 25% and 50% is the same. This obser-
vation shows true for both variants of the experiment which is remarkable.

Finding 3: We can reduce the number of mutants executed in our data set up to 50% before
losing more accuracy.

It is also remarkable to see the min and max accuracy of the all clusters are 50% to 100% respectively.
Based on these results we can state the following:

• For every project there was at least one cluster that consisted only of killed or survived mutants.
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• For every project there was at least one cluster that evenly divided between killed and survived
mutants.

With the exception of Google Auto Service and Commons Text, a reduction of 25% and all characteristics,
all projects showed an average accuracy above 90%. The combination of hierarchical clustering and the
identified characteristics results in high accuracy clusters.
According the rules of logic, a higher cluster accuracy means a score closer to that of the original. In
other words if all clusters had an accuracy of 100% we will achieve the same mutation score as that of the
full set. However we do not observe this behaviour in our results. This is due to our random sampling
method. If we would select a mutant in the majority of each cluster the accuracy per cluster would
correlate to the deviation in mutation score. Unfortunately we do not know the majority of a cluster as
we do now know if a mutant survives or is killed before execution.

Finding 4: Random sampling a mutant per cluster may result in a bigger deviation between
original score and weighted score.

As stated in Chapter 7.1 the calculation of the Levenshtein distance characteristic took a long time.
For this reason we repeated the experiment without the Levenshtein distance characteristic. Comparing
the results between these variants we can observe a max deviation of 0.05% between average difference
of the mutation scores. In 66% of the results displayed in Chapter 7.1 clustering without the Levenshtein
distance is more accurate. The biggest difference in mutation score measured between all the projects
and their reductions is 3.63%. Clustering without Levenshtein distance characteristic is on average more
accurate.

Finding 5: While clustering without the Levenshtein distance characteristic was more accurate
in our results, the Levenshtein distance characteristic does not significantly increase or decrease
the cluster accuracy.

8.2 RQ 2: Training a machine learning model and clustering
mutant characteristics

The maximum deviation from the original mutation score, for all variants(with and without Levenshtein
distance characteristic) of the experiment, is above the statistical threshold. We can observe that the
distance between whiskers of the box-plots is more than the alpha-value of 0.05. Thus we cannot reject
the null hypothesis and accept our alternative hypothesis. The biggest deviation measured is 22.39%.
This is significantly higher than the biggest deviation measured in the first experiment. 56% of the
results of both variants had a deviation in mutation score bigger than 5%.

Finding 6: Our hypothesis does not hold for the clustering the mutants with the FCM model
trained in our experiment.

We observe that the number of clusters does not have an obvious relation to the total amount
of mutants. This is expected as the subtractive clustering does not look at the total amount of data
points(mutants) but to the contents(characteristics) of the data points. The number of clusters compared
to the that of the hierarchical clustering is significantly lower. While we do not know the exact clusters
centroids the subtractive model calculated, a low number of clusters indicates close relationships between
certain mutants.

Finding 7: The mutants represented as characteristics in our data set per project have, accord-
ing to the subtractive clustering model, close relationships to certain other mutants in the same
data set.

We observe that the minimum lowest minimum cluster accuracy measured over all variants and
projects is 50.54% with and average of 62%. This is higher than the minimum of the hierarchical
clustering. This means that in all project there was not one cluster that was evenly divided. While the
minimum accuracy was higher, the maximum accuracy was lower compared to the maximum accuracy
of the hierarchical clustering results. The highest accuracy measured over all variants and projects is
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97.80% with an average of 83.79% This means that in all project there was not one cluster that consisted
of only survived or killed mutants.

Finding 8: The overall accuracy of the clusters generated by the FCM model in both variants
is lower compared to that of the hierarchical clustering.

When we compare the accuracy per project between the FCM model and hierarchical clustering we
can observe that the lower accuracy of the FCM model clusters have a higher impact on the deviation
in mutation score. This is caused by the relatively low number of clusters. One cluster contains more
mutants which results in a bigger weight per cluster.

Finding 9: The inaccuracy of clusters has a bigger impact on mutation score when the number
of clusters is lower.

8.3 Application

The application of our research is limited to all software projects written in the language Java and the
requirements of PIT[39]. We can repeat our experiment for every java project that can be run by PIT.
The scope of the research done in the domain of mutation clustering(Chapter 9) is a subset of the scope
in our research. With our research it is possible to cluster all the mutants used in other related research.
The extraction of mutants is build within the PIT plugin system which is a plug and play system.
Applying our research can be done in three steps. The first step is to run PIT with the plugin to gather
the characteristics. Gathering the characteristics does not take more than a few minutes depending on
the number of mutants generated. The plugin also makes sure PIT exits without executing mutants
after gathering the characteristics. The second step is to run the script for either the FCM model or the
hierarchical clustering. The last step is to run PIT again with the plugin to filter the mutants based on
the results of the clustering. It is possible to build all these steps into a DevOps pipeline to automate the
process. The plugins and scripts needed for these steps are available in the code repository on Github[57].
The plugins can be found in the directory pitest-clustering-plugin. The scripts used can be found in the
directories FCM-clustering and hierarchical-clustering.

8.4 Threats to validity

In this section, we discuss the threats to internal validity and external validity.

8.4.1 Internal validity

Equivalent mutants

Equivalent mutants are mutants that are syntactically different but functionally identical. These mutants
influence the mutation score while giving the same result as their equivalent counterpart. In our research
equivalent mutants could give a false image of the accuracy of the clusters and the overall accuracy if such
a mutant was randomly selected. PIT contains some functionality for reducing equivalent mutants[39].
We also reduced the chance of inaccuracy by repeating our experiment.

Test set representativity

The software projects we used in our research were systematically selected. Chapter 6.1 provides an
indication but not a wide representation of industrial software projects. The conclusions drawn regarding
the increase in performance by reducing the mutants are based on the comparison between our own
baseline measurements.
Another threat which is the result of the representation of our test set is the representation of the mutants.
While our data set contains around 1 million mutants we do not know if we have seen all mutants that
exist. This will always be a problem as it would be nearly impossible to cluster and mutation test every
piece of Java code, that conforms to the requirements of our research, ever written.
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Project configuration

Some tests may not be recognized by PIT due to some external data required for the test. Another
reason may be that the tests uses global variables that are not available to PIT. We encountered some
of these tests in our data set. While these tests did pass when run with only the unit test framework
they would fail when run by PIT. These projects still met the requirements stated in Chapter 6.1. To
solve this issue we removed these tests from the test suite. By removing these specific tests we may have
slightly, tough negligible, deviated from the individual real-world settings for respective projects.

Expertise

While this research is in the domain of software engineering it borrows techniques from data science.
The researcher’s field of expertise is software engineering. Since the researcher had to use techniques
from different domains we can only guarantee that the research executed was done to the best of their
ability. Thus the research may contain sub optimal design choices which may have been made from a
software engineering perspective.

8.4.2 External validity

We clustered mutants with two different techniques. Our results are not generalisable to projects written
in other programming languages as well as projects that cannot be run by PIT. As a result of using PIT
we limit ourselves to two testing frameworks; JUnit and TestNG. PIT is still under active development
and may expand its applicability, which in turn increases the applicability of this research.
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Related work

Clustering mutants has been done before. The research that exists tries to cluster mutants by defining
the centroid of a cluster and cluster mutants on that definition. Our research extends mutation clustering
by defining a centroid that is dynamic. In other words the centroids of our clusters are defined by the
mutants itself.

9.1 Clustering overlapped mutants

Ma et al., clustered mutants by overlap[13]. They defined the term overlap as as mutants that are
functionally equivalent. This is close to an equivalent mutant but not the same. They explain that an
equivalent mutants is functionally identical to the original source code while an overlapped mutant is
functionally identical to at least one other mutant. If a mutant does not have an overlapped mutant
that mutant would be a cluster on its own. The achieved a reduction, in mutants executed, of 10%.
They write in their research that it is limited to the mutator operators on expression level. If a mutator
did not generate two or more mutants they could not detect overlapping mutants. Their future work
includes adding more mutators and widening the scope level to statements or blocks.
The research does not include efficiency. While they show that they can cluster mutants based on overlap
they do not show how efficient the mutation testing process is compared to executing a full set of mutants.
A threat to their validity, which is not addressed, is the fact that two overlapping mutants may not be
challenged by the same tests and thus can result in different results. Our research solves this problem
by taking into account the location of the mutants. Chapter 4.1.7 describes what characteristics we use.

9.2 Clustering by scope

Yu et al., extended the research about overlapping mutants(see chapter 9.1)[14]. They extended the
scope by adding more mutators. The also extended the research to include statements and blocks. Their
results shows an increase in clustered mutants. The research of Yu et al., suffers from the same limitations
and threats mentioned in Chapter 9.1.

9.3 Clustering Hamming distance

Ji et al., did a qualitative domain analysis on mutants[15]. As a result they identified the Hamming
distance to cluster with. The Hamming distance is, like the Levenshtein distance, a similarity measure.
They use the k-means algorithm to cluster mutants represented by Hamming distance. They write that
the reduced test set in their experiment is still as strong as the original test set[15].
Ji et al., were successful in clustering mutants with Hamming distance and the k-means algorithm. They
do acknowledge that their research still has problems with rationally determining the domains of their
clusters. Our research does not have this problem, as the centre of the domains are decided by the
characteristics of the mutants.
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9.4 Spectral clustering

Wei et al., makes use of an intelligent technique, namely spectral clustering, to improve the efficacy of
mutant reduction[17]. They defined multiple definitions for the mutants; similarity distance, distance
between the mutants and a killing matrix of the mutants. With these definitions they reduced the
mutants based on their proposed reduction method. This method is based on spectral clustering (SCMT),
the determination method of the number of clusters, spectral clustering of mutants, and selection of
representative mutants. The reduced mutants were then clustered with a classical clustering algorithm.
Their results are promising and show high cluster accuracy. They write that there is still work left to do
in optimizing the matrices and clustering algorithms. Our goal overlaps with that of Wei, the difference
is that we used a different methodology to achieve that goal. Another difference is that our research does
not require to know the result of a mutant(killed or survived).

9.5 Clustering similarity

Hussain et al., used the k-means and agglomerative clustering algorithm to cluster mutants according
to a similarity measure. They used the Hamming distance as similarity measure. They calculated the
distance and used this as data to feed into the clustering algorithms. The number of clusters and the
initial position of the cluster center in the k-means algorithm are difficult to determine, and the process
of the agglomerative clustering algorithm makes it difficult to correct the existing cluster formation[70].
They did take into account efficiency. Hussain et al, had the same goals as our research. The difference
is that our research used different and more elaborated methods to cluster mutants. Hussain et al.,
calculated the mutation score by counting one cluster as one mutant. Our research calculated a weighted
mutation score to reflect the clusters more accurately.

9.6 Generalizing mutants

Wilinski et al., tried to generalize the mutants by defining metrics. Each metric is calculated for a
specific mutator. The three metrics are usefulness, frequency and dependency. Combining the results of
usefulness and frequency metrics, they observed that reducing the number of generated mutants gives
noticeable cost reduction without a loss of the mutation score accuracy. Wilinski et al., their research is
narrowly scoped to the specific mutators they decided to do research on. Our research does not contain
this limitation. The mutator is used as a characteristic in our research instead of limiting our research
it helps define a mutant.
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Conclusion

Our research started with comparing three mutation testing tools for Java and found that the state of
the art was outdated. We replicated the state of the art research with current data available on the
mutation testing tools. The state of art showed that two out of three mutation testing tools were not
actively maintained anymore. The mutation testing tool PIT scored best on the metrics measured in
our replication study, this is also the tool we decided to use for our research.
We performed a qualitative analysis on mutant characteristics. As a result we created a list of identified
characteristics based on existing research. We then extended this list by identifying characteristic with
logic and data available. We used the identified characteristics to represent the mutants.
We clustered the mutants with a white box approach and a black box approach. For our white box
approach we selected the hierarchical clustering algorithm. The hierarchical clustering showed that we
can cluster mutants while maintaining effectiveness. We achieved reductions of up to 75% of the total
amount of mutants without significantly reducing the accuracy.
For the black box approach we selected a machine learning model, specifically the fuzzy c-means model.
The FCM model showed a significant reduction in effectiveness. We trained theFCM model with pa-
rameters that were optimal according to existing research. We used a different machine learning model,
specialized in calculating the number of clusters for fuzzy clustering, to calculate the number of clusters.
While the minimum clustering accuracy was higher than that of the hierarchical clustering, the maximum
cluster accuracy was lower than that of the hierarchical clustering. The cluster accuracy had a larger
impact on the clusters of the machine learning model because there was a relatively small number of
clusters. Our research proves that it is possible to determine the means of domains as the centre of a
cluster within a programming language without narrowing down the scope to specific pieces of code. The
centroids our research identified is decided by the characteristics of the mutants. It can be applied to
all Java projects that can be run with PIT. Which is a larger scope than in existing mutation clustering
research.

10.1 Future work

Optimizing parameters of machine learning model

We trained the machine learning model with specific parameters guided by relevant research. These
proved to be non optimal for our purpose. This research can be extended by finding the optimal pa-
rameters for the SOM clustering algorithm. The results showed a higher minimum accuracy which may
indicate that there is potential for clustering the mutants with the machine learning model. Further
research and fine-tuning is required to find out if the model can be trained to achieve more accurate
scores.

Training strategy

Our approach for training the model proved to be non optimal. During the training of the model we
experienced that the more clusters you select the more memory is needed for training. This research
did not have sufficient hardware available. A different approach in training strategy may be explored to
mitigate the hardware limitation.
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Training a single machine learning model

For this researched we trained a model for each source project. A different way is to train a machine
learning model with the combined set of mutants. The model could be continuously trained each time a
new source is added. Further research is recommended in this direction as it will improve the applicability
of this research.

Different sets of characteristics

We have proven that this set of characteristics can achieve accurate results in combination with hi-
erarchical clustering. It would be valuable to find out if it possible to reduce or expand the set of
characteristics and still maintain accurate results. Further experimentation may be done with different
sets of characteristics.
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Acronyms

CLI Command Line Interface. 13, 22

CSV comma-separated values. 16

FCM fuzzy c-means. 1, 20, 21, 24, 33, 35, 37, 38, 42

LVQ learning vector quantization. 8

POC proof-of-concept. 5

SOM self organizing map. 8, 9, 20, 42

SUT System Under Test. 4
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Appendix A

PIT maven code

Example of code used to execute a full set of mutants with PIT.

<plug ins>
<plugin>

<groupId>org . p i t e s t </groupId>
<a r t i f a c t I d>p i t e s t−maven</a r t i f a c t I d>
<vers ion >1.6.4</ vers ion>
<dependencies>

<dependency>
<groupId>com . niverhawk</groupId>
<a r t i f a c t I d>p i t e s t−c l u s t e r i n g −plugin</a r t i f a c t I d>
<vers ion >1.0−SNAPSHOT</vers ion>

</dependency>
</dependencies>
<con f i gu ra t i on>

<exportLineCoverage>true</exportLineCoverage>
<mutators>

<mutator>ALL</mutator>
</mutators>
<threads>6</threads>

</con f i gu ra t i on>
</plugin>
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Appendix B

Box plots

B.1 Box-plots of samples per project with all characteristics
with n*0.25 reduction
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B.2 Box-plots of samples per project with all characteristics
with n*0.50 reduction
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B.3 Box-plots of samples per project with all characteristics
with n*0.75 reduction
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APPENDIX B. BOX PLOTS

B.4 Box-plots of samples per project without Levenshtein dis-
tance characteristic with n*0.25 reduction
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APPENDIX B. BOX PLOTS

B.5 Box-plots of samples per project without Levenshtein dis-
tance characteristic with n*0.50 reduction

B.6 Box-plots of samples per project without Levenshtein dis-
tance characteristic with n*0.75 reduction
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