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We find ourselves surrounded by a rapidly increasing number of autonomous and semi-autonomous

systems. Two grand challenges arise from this development: Machine Ethics and Machine Explain-

ability. Machine Ethics, on the one hand, is concerned with behavioral constraints for systems, so

that morally acceptable, restricted behavior results; Machine Explainability, on the other hand, en-

ables systems to explain their actions and argue for their decisions in a way that human users can

understand and justifiably trust them.

In this paper, we try to motivate and work towards a framework combining Machine Ethics

and Machine Explainability. Starting from a toy example, we detect various desiderata of such a

framework and argue why they should and how they could be incorporated in autonomous systems.

Our main idea is to apply a framework of formal argumentation theory both, for decision-making

under ethically motivated constraints and for the task of generating useful explanations based on

these constraints given only limited knowledge of the world. The result of our deliberations can

be described as a first version of an ethically motivated, principle-governed framework combining

Machine Ethics and Machine Explainability.

1 Introduction

(Semi-)Autonomous systems are pervading the world we live in. These systems start to deeply affect our

lives and we, in turn, become more and more dependent on their operations. Several important questions

arise: How should machines be constrained, such that they act morally acceptably towards humans? And

how should conflicts between such constraints and the traditional means-ends based decision-making

be resolved? These questions concern Machine Ethics – the search for practically implementable be-

havioral constraints for systems, enabling them to exhibit morally acceptable behavior. Although some

researchers believe that implemented Machine Ethics is a sufficient precondition for humans to reason-

ably develop trust in autonomous systems, we want to discuss why this is not true in cases of imperfect

information of the systems. We instead see the need to supplement Machine Ethics with means to enable

justified trust in autonomous systems. We argue that there is at least one feasible supplement for Machine

Ethics doing the job: Machine Explainability – the ability of an autonomous system to explain its actions

and to argue for them in a way comprehensible for humans. In this paper we try to demonstrate how these

two fields, Machine Ethics and Machine Explainability, are intertwined, and we propose the nucleus of

a formal framework combining Machine Ethics and Machine Explainability. This work thereby goes

beyond the rough thoughts and ideas we presented in [8].
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Related Work. Machine Ethics is becoming a serious research field, as first systematic works have

been published in the last years (cf. [3, 38], see also [16] for a short overview of techniques and chal-

lenges). As James H. Moor pointed out (cf. [34]), Machine Ethics can be understood as a rather broad

term, ranging from ethically motivated restrictions on the behavior of complex and possibly autonomous

systems to the implementation of full-fledged moral capacities, involving deep, philosophical concepts

of autonomy and deliberation, as well as free will. Following the systematizing ideas from [38] regarding

different degrees of moral artificial agents, we think that for now Machine Ethics should not aim directly

for true ethical decision-making. The most pressing task of Machine Ethics is rather to find a way of

describing and implementing ethically constrained instrumental decision-making.1 This should allow

for principle-based, unambiguous and formal guarantees that restrict the autonomous system’s behavior

in a way that makes the system significantly morally better, without necessarily implementing any moral

theory and still allow it to do what it was designed for. Hence, the goal is an overall morally acceptable

and desirable system that remains useful.

In contrast to Machine Ethics, Machine Explainability aims at equipping complex and autonomous

systems with means to make their decisions understandable to different groups of addressees (cf. [1,

9, 25, 26, 31]) enabling a sufficient amount of transparency and perspicuity for these systems. Doing

so becomes more and more urgent: For instance, the software doping cases that surfaced in the context

of the VW diesel emissions scandals made obvious that the behavior of complex systems can be very

hard – if not practically impossible – to comprehend even for experts (cf. [6, 7, 19]). These cases make

clear that explainability plays a crucial role in regard to trust and whenever it comes to accountability

questions where one needs to tell apart intentional misconduct from genuine malfunction. Especially in

context of autonomous systems – which often promise positive, societal effects –, black box systems for

which nobody is able to explain their decisions, predictions or behavior will plausibly lack trust in the

long run. Also, many applications of computational intelligence systems – for instance as advisors of

politicians and judges – presuppose more than naked numbers and probabilities, at least in context of lib-

eral democracies. They need to be scrutinizable and their outputs must be justifiable at least in principle

and upon request. Thus, even under the premise that the deployment of some systems is desirable from

a moral point of view (thanks to their overall effects) and even if these systems would in fact behave as

morally good as logically and conceptually possible (thanks to future advances in Machine Ethics): As

long as people cannot justifiedly trust the systems and cannot understand the reasons for their decision,

their implementations are threatened even where desirable, and they cannot be promoted with good con-

science in many areas of potentially promising application. However, Machine Explainability still is a

young field and especially formal frameworks supporting explanations are rare (cf. [12] for a simple one).

With this paper, we take first steps towards a method to perform ethically constrained decision making –

Machine Ethics – in a way that in itself grounds the very possibility of Machine Explainability.

2 Developing a General Framework

In the last decades and especially in recent years, researchers have made enormous progress in the devel-

opment of autonomous systems. The knowledge and the tools to create artificial agents in the sense of

autonomous problem solvers and good instrumental autonomous decisions-makers are broadly available.

These agents are instrumental decision-makers insofar, as they decide instrumentally rationally (cf. [30]).

The goal of Machine Ethics is to extend these methods such that the resulting agents not only solve their

problems instrumentally well, but also in a morally acceptable way. That being said, it has to be admitted

that, as of yet, there is not much foundational research pertaining to those topics available. For instance,

1Instrumental decision-making is means-ends oriented decision-making that tries to find the right means to achieve specific

ends, where “right” here means as much as being most efficient or cost-effective. Philosophically speaking, it is a kind of

instrumental rationality.
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we lack the possibility to spell out problems in Machine Ethics in a formal way. We especially lack a for-

mally precise, fruitful and unambiguous way to state moral constraints and principles. As one aspect of

this paper we try to undertake steps to change that. Since we are still at the beginning of this admittedly

ambitious research project, we impose some restrictions for now. For instance, while we do not need

to assume a deterministic evolution of the environment, we resort to a probabilistic interpretation, for

instance derived from past statistical evidence. Thus, our methods are made with aleatoric uncertainty in

mind. We leave the question of how to handle cases involving epistemic uncertainty to future research.

2.1 The World of a Medical Care Robot

We start our discussion by describing a toy example that serves as an example context for motivating

a formal framework and bringing it to life. The example is deliberately kept simple, but sufficiently

complex and general to exemplify the challenges arising with respect to Machine Ethics.

R1 R2 R3

CS

1 1 1

1

2

2 1

Figure 1: The medical care robot’s realm

We consider a medical care robot working in a hospital. There are up to three patients the robot has to

take care of. Each of these patients is in a separate room (R1, R2, R3), and the rooms are connected by

several hallways. The spatial layout of the scenario is depicted in Fig. 1. The robot spends energy when

traveling along a hallway. The energy costs depend on the distance traveled (distances are written next

to the hallways). For one unit of distance, the robot needs one unit of energy. At some point the robot’s

battery will be depleted. To prevent this, there is a charging station (CS) where the robot can recharge its

battery. Once the recharging process is started, it will not stop before the battery is full again. The robot

‘knows’ its current position and its energy level.

In our scenario, the robot listens to requests. At each point in time, each of the three patients may

issue a request to the robot, asking for a task of a specific priority. Although each request has a priority

when issued, this priority is deliberately not transmitted to the robot. Instead, the robot is assumed to

know appropriate and justified probability distributions regarding the tasks associated with the requests.

This is necessary, as otherwise the patients could get tempted to always issue tasks of the highest priority

in order to get preferential treatment. We further assume that there is only a limited number of possible

tasks which can be concealed by a request. Such tasks can range from simply fetching water to doing a

reanimation. In the following we use the example to highlight a couple of central points.

2.2 Towards a General Framework

In this section, we work towards a general framework in which autonomous systems, including the above,

can be described. We then extend it to be applicable to Machine Ethics in the next section.

World States and (Partial) Knowledge. We assume the autonomous system’s world to be fully speci-

fiable by assignments of a finite number of variables. Thus, a state of the world (short: ω) is represented

by a tuple of variables ω := 〈ω1, . . . ,ωn〉 with corresponding domains D1, . . . ,Dn. We call the set of all

possible world-states Ω ⊆×n
i=1 Di, and we let |ω | denote the number of elements in a tuple ω .

At each state, the system knows some, but not necessarily all, facts about the current world state.

In fact, the set of known variables may vary from state to state. For instance, our robot may know
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the brightness and temperature in some room if and only if it is in this room. Thus, a subset of a

complete world state represents the variables the system has knowledge of. For the sake of readability,

we conveniently assume the first k (1 ≤ k ≤ n,n = |ω |) variables 〈ω1, . . . ,ωk〉 of a state of the world

to be known variables at some given moment. We call the set of these (in general) partial world states

Θ ⊆×k
i=1 Di. We do not rule out that the variables spanning Θ are dependent and, thus, the strict

containment ( to hold. Furthermore, we define the possible world states in the light of some knowledge

θ ∈ Θ as Ωθ := {ω ∈ Ω | ω1:k = θ}, where ωi: j for 1 ≤ i < j ≤ n denotes the subtuple
〈

ωi, . . . ,ω j

〉

of

some tuple ω =
〈

ω1, . . . ,ωi, . . . ,ω j, . . . ,ωn

〉

.

Even if the strict inequality k < n holds (as it does in most cases), we assume the system to be not

clueless with regards to the remaining variables 〈ωk+1, . . . ,ωn〉. The system, hence, has justified credence

regarding these variables’ assignments, representable as probability distributions over the variables’ do-

mains Pi: Di → [0,1], k < i ≤ n. The probability of an unknown variable having a specific value might

very well be dependent on the values of known variables. So, for some ωi ∈ Di with k < i ≤ n and some

assignments of the known variables θ ∈ Θ, we have Pi(ωi) 6= Pi(ωi|θ). Call the set of all these distribu-

tions Π. Finally, we can assign the overall credences of the system concerning a specific configuration

ω ∈ Ω as P(ω) = ∏n
i=1 Pi(ωi), where ωi is the ith variable in ω . As the system normally has some

knowledge θ ∈ Θ, we get for every ω ∈ Ωθ the probability P(ω) = P(ω |θ) = ∏n
i=k+1 Pi(ωi|θ).

Example 1 For our robot, a world state would consist of variables encoding daytime, position, energy

level, energy costs for traveling, the requests in its queue and the tasks associated with it as well as some

more. Since by design our robot is quite omniscient, the knowledge subset of these world states would

contain everything except for the tasks associated to the requests.

Options and Actions. At each decision state – that is, in a state where the system given its context

has to decide something, normally after performing an operation or triggered by some incoming event –,

the system has to choose from a number of available operations. Call the operations the options and let

Φ = {φ1, . . . ,φn} be the set of them. The operations available to the system will normally depend on the

current state of the world, but for the sake of simplicity we do not elaborate on this dynamic here any

further. Instead, we assume them to be constant over Ω. An action is an instantiated (i.e., chosen and

performed) option and thus, by assumption, the observable decision the system has made.

Example 2 In case of our robot example, there are just two possible options: it can either serve the

request (AnsReq) or recharge (Charge).

Goal(s), Outcomes and Instrumental Decision-Making. We simply assume here that any system

under consideration not only has at least one unambiguously defined goal, but also a method decΠ
inst of

deciding for the best means to achieve this goal (given the system’s knowledge and a set of candidate

options). Traditionally, the goal is to find an action that maximizes some kind of expected utility. This

utility incorporates both, the uncertainty of the action’s outcomes in the light of the world state’s uncer-

tainty (and possibly even some indeterminacy in the world’s ‘reaction’ to some action) as well as rewards

and penalties associated with the possible outcomes.

Here is, for instance, how such an instrumental decision can be made, if we model the issue as

a Markov decision problem. We assume that there is a function that, given the current world state,

assigns to some action and another world state (i.e., a candidate for an outcome of the action given the

current world state and the action) the probability of that outcome. Formally this can be specified as

Outcome : Ω×Φ×Ω → [0,1]. Using the probability distributions on unknown variables (given some

knowledge state) from above, we can straight-forwardly derive a function OutcomeΠ : Θ×Φ×Ω→ [0,1]

OutcomeΠ(θ ,φ ,ω) = ∑
ω ′∈Ωθ

P(ω ′|θ) ·Outcome(ω ′
,φ ,ω)

that operates on partial world states (i.e., the system’s knowledge at some point). Further, let us suppose

a utility function U : Ω → R, specifying rewards and penalties as incentives for or against a specific
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behavior. This allows us to reformulate the need to achieve our goal as maximization of utility. We thus

arrive at a well-posed Markov decision problem. Given some partial state of the world θ ∈Θ representing

the system’s knowledge and a set of currently available options Φ, following the standard approach to

Markov decision problems, decΠ
inst comes down to:

decΠ
inst(Φ,θ) = argmax

φ∈Φ
EU(φ |θ) =: ChoiceΠ(Φ,θ), where

EU(φ |θ) := ∑
ω∈Ω

OutcomeΠ(θ ,φ ,ω) ·U(ω)

is the expected utility of an option φ ∈ Φ given the system’s knowledge θ . Note that decΠ
inst(Φ,ω) ⊂ Φ.

Up to this point, we described a rather general class of decision problems that, as we showed, can be

solved by methods associated with Markov decision problems. In the current state of our framework, we

can thus, by adjusting the utilities in distinct ways, support or effectively even enforce specific decisions.

Example 3 Instantiating these considerations to the case of our medical care robot it seems plausible

to assign rewards to the fulfilling of tasks and penalties to running out of power. Then, an execution

plan which serves the most (and best rewarded) requests over the longest time possible is what we are

aiming for. By setting the rewards of rescuing a person (through reanimation) higher than the penalty

of exhausting the battery, we would get the result of human lives being more important than robots

operating.

But is this kind of ‘tweakable’ instrumental decision-making sufficient to get a satisfying way of

making decisions in case of our robot? We believe not, because one can construct situations, in which

maximizing the overall utility (for any assignment of utilities) plausibly is not what the robot ought to do.

Assume, for instance, our robot is in room R1 and has to decide to either perform a reanimation there or

to go back to the charging station. Let’s assume further that the robot has enough power to reanimate,

but then cannot make it back to the charging station afterwards. Assume now that with a high enough

certainty, other high priority tasks – say even other reanimations – need to be performed later on. If our

robot performs the reanimation now, it is not able to perform the other reanimations later. We can easily

construct such a case in a way that makes the expected utility of charging higher than the expected utility

of performing the current reanimation task.

At least some ethicists would agree that the robot ought not to recharge now, nevertheless. It should

give preference to rescuing the life at issue at the moment of decision. But even an ethicist that does

not agree with this, would likely subscribe to the claim that a robot should not be constructed in the go-

recharge-way, first and foremost because of the question of trust: Imagine that in such cases the robot

would be witnessed to turn around and leave toward its charging station. People would not develop

trust in that robot – but it is important for people to trust in autonomous systems, as we already made

plausible in the beginning. So, let us suppose that, overall, the robot ought not to weight lives that way.

Instead, explicit and unambiguous constraints are needed that rule out some decisions and enforce

others. Thus, Machine Ethics is a valid research field. This is the first central point we want to make.

3 A Framework of Machine Ethics

We think that we need substantially more than just instrumental decision-making as it is modeled up to

now. In this section, we will give good indicators for this being the case and propose what we exactly

need more.

Assume that Machine Ethics amounted to simply adjusting the utilities and disutilities in such a

way that the induced behavior entirely adheres to a, say, consequentialist picture of morality,2 we ap-

parently could integrate this in an instrumental decision-making procedure as sketched above. Given a

2Consequentialist theories are normative theories – theories about the moral permissibility of actions – that solely focus on
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full-fledged artificial system that is meant to qualify as a moral agent, and adopting such a picture of

morality, adjusting the utilities, then, might very well be everything there is when it comes to implement-

ing Machine Ethics, as such a system would take into account the effects its decisions make with regard

to the question of trust as well.

However, neither does an autonomous system qualify as a full-fledged moral agent, nor is a conse-

quentialist picture of morality common sense.3

Therefore, the decision-making ought to be guided and restricted by explicit social and moral norms.

We, the people, want hard guarantees, forbidden actions and other desirable properties a priori. This is

what is needed for achieving the goal of Machine Ethics. This motivates the essential building block of

our approach to a framework of Machine Ethics: Moral Principles.

Moral Principles. Assume it has been decided that the decision-making process of the system ought

to be constrained by a number of carefully chosen, ethically motivated and ethically justified principles

Ψ = {ψ1, . . . ,ψm}. Their concrete semantic interpretation will be discussed later. However, we already

note that these principles are – in line with how principles are often understood within moral philosophy

(cf. [13]) – meant to be objective in the sense that they are principles about which action ought (not) to be

done with regards to certain states of the world. So, the question what ought to be done is determined by

these principles irrespectively of the agent’s information. We take this to be the most natural way to frame

the core problem of Machine Ethics, because the behavioral restrictions one will need to implement will

be of this kind, too. The restrictions themselves will be given by social or moral norms as well as by

legislation, independent from the concrete design decisions and restrictions the system has.

In order to express a hierarchy of the principles, we define an order on Ψ in two steps. First, an

equivalence relation ≈Ψ on Ψ is assumed which induces t equivalence classes Ψ1, . . . ,Ψt , such that

for 1 ≤ i ≤ t : ψ ,ψ ′ ∈ Ψi : ψ ≈Ψ ψ ′. For any arbitrary principle ψi ∈ Ψ, the class [ψi ] refers to the

equivalence class of ψi. Second, we assume a strict total order ≻Ψ on these equivalence classes. This

order is extended to the level of principles, such that for ψ ,ψ ′ ∈ Ψ : [ψ ] ≻Ψ [ψ ′ ] → ψ ≻Ψ ψ ′, so as

to define an overall (non-strict) weak order ≻Ψ ∪ ≈Ψ =: �Ψ⊂ Ψ×Ψ, thus a total preorder on the

principle set Ψ. We call P := 〈Ψ,�Ψ〉 a principle structure, giving us a hierarchy of moral principles.

Up to this point, we did not say anything about the principles’ inner structure and about their content.

We suggest to think of principles, in general, as functions ψ : Ω →℘(Φ) from a possible world state

and the corresponding set of available options (which in context of this paper is assumed to be constantin

Ω) to a subset of these options, the set of permissible options Perm
ψ
Φ,ω ⊆ Φ. Either such a principle does

shrink – or as we say ‘filter’ – the set of available options, then Permω
ψ 6= Φ, or it does not, and thus

Perm
ψ
Φ,ω = Φ. We say that ψ has grip if and only if Perm

ψ
Φ,ω 6= Φ. The set of worlds ω ∈ Ω in which

ψ has grip, namely {ω ∈ Ω | Perm
ψ
Φ,ω 6= Φ} ∈℘(Ω), can be understood as predicate cψ and we write

ω |= cψ to express that ω ∈ cψ . Correspondingly, in this paper we represent principles as conditionals4

of the form (cψ → oψ) where each oψ is an option structure 〈Φ,�Φ〉, defined in complete analogy to the

principle structures just introduced, but over the action space Φ. Given that representation of principles,

we owe the reader how to determine Perm
ψ
Φ,ω from these option structures.

Given that some ω |= c (for some ω ∈ Ω and some principle (c → o) ∈ Ψ), this induces a (non-

strict weak) permissibility order �
ψ
Φ,ω , a total preorder on the option set Φ. We refer to the topmost

the actions’ outcomes. The consequentialist picture is driven by the idea of maximizing (moral) value and that what has value

(and disvalue) are states of affairs. Hence, what makes an action right (or wrong) is what the action changes (or promise to

change) in the world. The classical source of consequentialism can be found in [10] and a systematic discussion of it in [11].
3The non-consequentialist competitors in the realm of normative ethics are the families of deontological theories (cf. [28,

36]) and virtue theories (cf. [4, 5, 20, 37]). Philippa Foot prominently emphasized the tension between consequentialism and

common sense (in [20]). For a recent consequentialist approach to avoid such clashes, see [35].
4We want to emphasize that we do not mean to imply that principles in fact (whatever that means) need to adhere to such a

structure. We just say that for the purposes at hand principles might be modeled as conditionals. We leave more sophisticated

models for future research.
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class [φ ] of this order (in the sense that ∀φ̂ ∈ [φ ] : φ̂ �
ψ
Φ,ω φ ′ for all φ ′ ∈ Φ) as Permψ(Φ,ω) ⊆ Φ,

the set of permissible options relative to principle ψ given some world state ω . The intention behind

this construction is that the action to perform according to principle ψ in state ω needs to be picked

from Permψ(Φ,ω), the set highest in the permissibility order associated with that principle. Naturally,

if multiple principles apply for a given state of the world (i.e., given some world state, more than one

antecedent is fulfilled), the one highest up in the principle structure 〈Ψ,�Ψ〉 is deemed decisive. But this

does not exclude the probability that different principles of the same (topmost) equivalence class apply.

Given an arbitrary set of principles Ψ̂ ⊆ Ψ of principles and an arbitrary world state ω ∈ Ω, we refer

to the subset of principles which apply in this world state {(c → o) ∈ Ψ̂ | ω |= c} as Ψ̂ω and call Ψ̂ω
max

the set of the maximally ranked principles in Ψ̂ω according to �Ψ. It seems right to identify the set of

the overall permissible options Perm
Ψ̂ω

max

Φ,ω with the intersection of the permissible options according to the

principles ψ ∈ Ψ̂ω
max, as this will result in the set of options permissible according to all these maximally

ranked principles. Thus

Perm
Ψ̂ω

max

Φ,ω :=
⋂

ψ∈Perm
Ψ̂ω

max
Φ,ω

Perm
ψ
Φ,ω .

In general, then, we can identify the set of overall permissible options in light of some principle structure

P, some world state ω ∈ Ω and some corresponding options space Φ as PermP(φ ,ω) := Perm
Ψω

max

Φ,ω .

The question arises, whether this intersection will be guaranteed to be non-empty. The answer obvi-

ously depends on the properties we require for principles in the same equivalence class. If we require our

system both, to only perform permissible options in the above defined sense and to never stop operating

(and thus fulfill liveness), then we should require principles in the equivalence classes to be such that this

intersection is never empty.

This finding, however, echoes that sometimes there seemingly are principles which would result in

what philosophers call true moral dilemmas: situations where no option is permissible at all. Not all

moral theories allow for such dilemmas to exist (for instance, consequentialist theories normally do not

allow them). While we will not rule out that an unsatisfiable (relative to some ω ∈ Ω) subset of principles

of the same equivalence class may be a subset of a valid set of principles for the purposes of Machine

Ethics, we will disregard the question what to do in such a situation.5 We leave an axiomatization of this

requirement for future research.

All this – the principle structure and the method of finding the permissibility relation on the action

– coalesce into a function we call deontic filter. Here, “deontic” indicates that something is about what

ought to be the case according to some standard or norm, such as a social or moral norm. The deontic

filter thus is

dec
P
filter(Φ,ω) = PermP(Φ,ω).

Example 4 We now apply this part of our framework to our robot example. As mentioned before, Φ :=
{AnsReq, Charge}. Below is one plausible way the robot’s deontic filter could look like. Since we want

to use the example just to give a vivid picture of how things would look, we spare applying the whole

formalism here, but for a little more detail, see [8].

decfilter(ω ,Φ) =































{AnsReq} , if the priority of the task associated to the request is high

and the current energy level would suffice to serve it;

{Charge} , if the priority of the task associated to the request is low

and the current energy level would not suffice to serve it

and then to go back to the charging station;

{AnsReq,Charge} , otherwise.

5Another, more permissive, way to define the set of permissible options would be to set PermP(Φ,ω) as the union of

permissible sets regarding the principles in the highest ranked, non-empty equivalence class that have grip in ω .
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In order to determine which options are permissible in the light of these principles, the knowledge of

the current world state is presupposed. For instance, our robot needs to know the associated task to the

current request. But there were good reasons for not equipping the robot with that knowledge.

Notably, deontic filtering presupposes perfect knowledge about the current state of the world. In

full generality, this might still not be enough, since the evaluation of decfilter might even presuppose

knowledge about de facto outcomes. So, what to make out of this result? First, as we shall discuss

in the sequel, given the necessary (but practically impossible) kind of full world knowledge (perfect

information), the task of Machine Ethics becomes quite simple. Second, in the practically much more

interesting case of incomplete knowledge (imperfect information), we must be prepared for morally

suboptimal behavior (as we have already argued in [8]), but also we cannot straightforwardly implement

the notations introduced in this section.

Before we turn to the question of how to incorporate uncertainty in the context of deontic filtering (in

Section 4), we first turn to the idealized case, presenting an easy, sequential way to incorporate deontic

filtering into the overall decision process in case of perfect knowledge.

3.1 An Idealized Overall Decision Pipeline

We believe that the ingredients characterized above are all we need to specify a well-posed problem of

Machine Ethics. But how do we then solve such a problem operationally? There are two possibilities.

Either, one interlocks the two decision modules dec
P
filter and decΠ

inst into one. Or, one applies dec
P
filter

before decΠ
inst. More specifically, decΠ

inst must be applied to the options surviving the deontic filtering.

Given that the deciding system has all it needs to evaluate dec
P
filter , we believe the latter is more natural and

easier to achieve. One just has to concatenate the dec
P
filter and decΠ

inst into one larger decision procedure

dec, such that for each decision PermP(Φ,ω)⊂ Φ becomes the foundation of ChoiceΠ(Φ,θ), rather than

the full set of options Φ. In such a sequential picture, if one wants to ensure liveness of the system, then

true moral dilemmas must be ruled out as aforementioned.

Such an overall decision pipeline would consist of the following steps: deontic filtering, instrumental

decision-making (as already introduced) and, finally and trivially, picking: just picking a random element

out of the options ‘surviving’ the first two steps. The whole decision pipeline dec is visualized as flow

diagram (in Fig. 2).

Deontic

Filtering

Instrumental

Decision-

Making

Picking

Options Φ,

World state ω

PermP,

Knowledge θ ChoiceΠ
Φ Action φout

Figure 2: The sequential decision pipeline dec

However, for realistic applications one needs a dec
P,Π
filter version of the deontic filter that operates with

the de facto knowledge of the system, as decΠ
inst does. As pointed out above, the principles encoded in

the deontic filter are – for good reasons – objective. They only can be applied to determine the set of

permissible options if one has perfect knowledge. That is, one needs full information on the complete

state of the world. In other words, what we have is dec
P
filter(Φ,ω) and what we need is dec

P,Π
filter(Φ,θ).

The framework, as it stands up to this point, thus can be understood only as a partially idealized version

of what we finally long for. We turn to our proposal to tackle this issue in the next section.
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4 Incoporating Uncertainty & Enabling Machine Explainability

4.1 Arguments as Enablers

How do we incorporate uncertainty in the deontic filter function? We want to present an approach that

does not only solve that problem, but also enables Machine Explainability: We envision explanations as

byproduct of an argument-based decision-making process.

We can easily think of the possible cases as ground for argumentation: If this or that case was

true, it would give me, thanks to this or that principle, a reason for the one action rather than for the

other. The probability of the cases together with the importance of the principle in question determines

the strength of the resulting reason. We think that arguments can be understood as encoded reasons.

And, as already proposed by Benjamin Franklin (cf. [21]), a decision-making process (in the sense of

everyday understanding of the term) can be naturally interpreted as the weighing of reasons in order

to determine the right action or decision. In other words, decision-making can be thought of as an

internal argumentation with pro and contra arguments for (or against) the decision or action. Furthermore,

the kind of reasoning involved in our everyday decision-making seems to be non-monotonic – further

information or evidence may require the systems to retract from its decision – and arguments are the tool

for non-monotonic reasoning as pointed out by Dung (cf. [18]).6

But can arguments be the right kinds of explanations? After all, there are many kinds of explanations:

scientific explanations in the form of deductive-nomological models (cf. [23]), causal explanations that

relate causes with their effects, psychological explanations and many more. What we are looking for

primarily are explanations that are, in terms of Davidson ([15]), rationalizations. These rationalizations

are meant to make available to us the reasons of why the explained system decided and/or acted the

way it did. Interestingly, our approach can also be seen as some kind of inductive-statistical explanation

as proposed by C.G. Hempel (cf. [24]). Given probabilities of a particular world state, we are able to

derive the relative probability of each option being chosen. With this we are able to derive the robot’s

behavior both before and after it is witnessed. This is an important property of the kind of explanations

our approach provides: a person can – independently from the robot – arrive at the same result.

If the system comes to its decisions based on an internal, argumentative process, the decision-

making can be made transparent and rationalized in exactly the way explainability longs for. And if the

argumentation-based decision-making models idealize deliberation using traditional human concepts, the

obtained explanations can be expected to be comprehensible explanations (to put it into the terms of [9]:

we have graspable explanations). We, thus, suggest to resort to an argumentation-based approach, since

we believe that such an approach can not only solve the problem of finding principle-based decisions

under uncertainty, but also allows to generate explanations for the resulting decisions as a byproduct.

So, provided argument-based reasoning is an appropriate approach to decision-making in the con-

text of Machine Ethics, and arguments are the right kind of structure to encode explanations, adopting a

framework of formal argumentation theory is the obvious choice for modeling and implementing these

issues.7 Machine Explainability, then, is a byproduct of artificial moral decision making, since the expla-

nations are (or are extractable from) the argumentation graphs that represent what led to a decision.

6A sophisticated framework in the context of decision-making and explanations can be found in [2]
7What if our robot’s decision-making component is a black box, for instance, because decΠ

inst results from some kind of

machine-learning approach? Is achieving explainability hopeless then? We think that this is not necessarily so: in principle,

the argumentation graphs could be derived in hindsight and maybe even “from the outside” (e.g. by some process as sketched

in [9]). This might come with the problem of our justifications being post hoc rationalizations and, thus, not reflecting the true

reasons or reasoning (i.e. one needs to guarantee what [9] calls accuracy). We leave solving this problem for future research.

An interesting starting point, however, could be attempts of falsification starting from inductive-statistical prognoses (cf. [29]).
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4.2 Generating an Argumentation Graph

We propose a three step approach for generating the argumentation graph and introduce this approach in

this section. But before doing so we remark two issues: First, we shall leave out for now the question of

how to generate explanations from the argumentation graph. It will become obvious, we believe, that the

(generic) arguments we describe in this section are a solid ground for spelling out explanations. Second,

we suggest a procedure that is – contrary to the above sketched approach to a framework with idealized

deontic filtering – not a sequential application of decfilter and decΠ
inst. Instead we propose a decision

procedure that interlocks the two decision modules. We elaborate on that point towards the end of this

section.

We return to the three steps and the overall graph generation. They are (in their corresponding order):

Case Distinction, Reason Aggregation and Final Action Determination. Building upon the ingredients

from the above framework – especially Ω,Φ,Π,EU,P –, these three steps result in a bare argumentation

graph Γ := 〈V,E〉 with V :=V1 ∪V2 ∪V3,E := E1,2 ∪E2,3 and a couple of weight-functions

relevanceP : V1 → R+
, forceprotanto : E1,2 → R+ and forceoverall : E2,3 → R+

.

The resulting structure G :
〈

Γ, relevanceP, forceprotanto, forceoverall

〉

then is the complete argumentation

graph. We postpone motivating the three weight functions to the point when they are defined, but shortly

introduce the elements of Γ now. Vi are the vertices (which are or contain arguments) generated in

step i, E is the set of edges representing the influences of arguments from earlier to later steps – thus

E1,2 ⊂V1 ×V2 and E2,3 :=V2 ×V3.

Prior to going through the generation process step by step, we note two things: First, the whole

process has to be performed for each decision that is to be made and, thus, G is a function of the current

knowledge θ and the set of available options Φ. Second, the process results not only in a graph, but also

in a decision for a particular option. The graph is meant to be stored for the purpose of being accessible

later in order to explain (or enable to explain) the corresponding decision.

Step 1: Case Distinction. As we basically aim to model something like a human agent’s inner deliber-

ative process of pondering on what she ought to do, we suggest that the systems need to take into account

all possible cases ω ∈ Ω that respect the systems world-knowledge θ ∈ Θ. Recall that Ωθ ⊂ Ω is the set

that does so. In general, where each world state is defined by n variables and θ contains, by construction,

the first k variables of each world state ω , we need to take into account |Ωθ | ≤∏n
i=k+1 |Di| different world

states. In order to deal with the existing uncertainty, the occurrence probabilities of the cases ω ∈ Ωθ

must be taken into account. Additionally, various cases will plausibly need to be considered not only

once, but with regards to every principle ψ ∈ Ψ that applies to that case. We thus need an argument Argω
ψ

for every ψ ∈ Ψω of every ω ∈ Ωθ . In sum, this makes ∏ω∈Ωθ
|Ψω | arguments for V1. In this sense,

not only the case’s probability has to be considered, but also the relevance of these applying principles,

which correlates with ≻Ψ.

First, to the form and content of the arguments. Each of these arguments consists of three premises,

logically linked by two concatenated modus ponens applications. The first premise, Pω , states plainly

that ω ∈ Ωθ is the case; the second premise, Pψ , consist just of ψ i.e., of some (c → o); the third and

final premise, PPermo
, determines the set of permissible options according to o. By construction of the

argument, obviously ω |= c, since ψ ∈ Ψω . Table 1 shows the general form and generic content of this

first layer’s arguments that we now can define explicitly:

V1 := {Argω
ψ | ω ∈ Ωθ ∧ψ ∈ Ψω}.

The arguments in V1 only result in sets Permψ(Φ,ω), but performing the full deontic filtering is supposed

to give us PermP(Φ,ω). According to our idealized framework above, PermP(Φ,ω) is the intersection

of all sets Permψi(Φ,ω) of the principles ψi ∈ Ψmax (i.e., the maximally ranked equivalence class with a
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principle that applies for ω). But this does not hold under uncertainty, because the de facto obtaining ω is

unknown. For this reason we have done the case distinction in the first place. We suggest to incorporate

the uncertainty in a quantitative aggregation method, respecting the probability P(ω |θ) of the case (the

ω) under consideration (given the system’s knowledge θ ) and the importance or relevance relevanceP

of the corresponding applicable principle ψ ∈ Ψω , correlating with �Ψ given in P. But how should the

relevance relate to �Ψ exactly?

Obviously, the relevance should reflect the priority ranking ≻Ψ over the equivalence classes Ψ1, . . . ,Ψt

induced by ≈Ψ. Hence, relevanceP should be monotone relative to �Ψ: For all ψ ,ψ ′ ∈ [ ψ ] it holds

that relevanceP(ψ)= relevanceP(ψ ′) and for all ψ ,ψ ′ with [ ψ ]≻Ψ [ ψ ′ ] it holds that relevanceP(ψ)>
relevanceP(ψ ′).

However, that leaves a lot of further properties of relevanceP unspecified. Depending on the specific

properties of relevanceP different design decisions of the reasoning process could be made. For instance,

assume we want to allow that a sufficiently large number of lower ranked principles that are fulfilled

(with some probability smaller than 1) can outweigh a few higher ranked principles that are fulfilled

(with the same or a lower probability). That is, we want relevanceP to be archimedean.

In other contexts than health care, reasoning that allows for, e.g., defeater reasons, – roughly: reasons

that silence other reasons, canceling out their strengths – may be needed. Also, one could want to follow

some kind of precautionary principle sometimes. Then a tiny chance of a principle to apply might be

already enough for the system to be morally required to decide in line with this principle, no matter how

improbable the case is (cf. [22] for a discussion of advantages and disadvantages of doing so). If in such

cases one still wants to work with weights, the weights of specific principles might need to be infinite, so

that the underlying principle is enforced. Basically, this would allow then again for true moral dilemmas

as mentioned above in context of perfect knowledge scenarios.

So, if we would disallow any such weighing between principle fulfillments of principles in different

equivalence classes, then we would want relevanceP to map ψ into sets closed under scalar multiplication

(and define an order over these sets in accordance with ≻Ψ).

Independent of how we design relevanceP concretely, it is later assigned to each argument.

Example 5 Turning one last time to our example scenario (the remaining steps are completely generic),

this step is instantiated by constructing arguments for any possible task that might be concealed by a

request (since there are no other unknowns in this case). Given the original decfilter method from section

4, the robot knows what it is permitted to do in each possible case under consideration. Together with

its probability estimates for each such case and in the light of the order of the principles, it can compute

and assign all relevant aspects of this step.

Step 2: Reason Aggregation. In the second step, we aggregate the results from the first step. Thus, we

make an argument for all the actions that ‘survived’ the first step. Let PermV1
(Φ) :=

⋃

Argω
ψ∈V1

Permψ(Φ,ω)
be the set of all options φ ∈ Φ for which it holds that they are permissible according to at least one ap-

plicable principle ψ ∈ Ψ. Vice versa, let Support(φ) be the set of arguments from V1 supporting (in the

sense of permitting) some option φ ∈ Φ. Hence, Support(φ) := {Argω
ψ ∈V1|φ ∈Permψ(Φ,ω)}. For each

of these options, we then need to consider what speaks in favor of it. So we start by defining:

V2 := {Argφ | φ ∈ PermV1
(Φ)}

We will call the output of an argument Argω
ψ ∈V1 that must be taken into account into these arguments

Argφ ∈V2, pro tanto reasons for option φ . Consequentially

E1,2 := {
〈

Argω
ψ ,Argφ

〉

| φ ∈ Permψ(Φ,ω)}.

We use forceprotanto as function for encoding the strength of the pro tanto reason for an option φ

given some argument Argω
ψ It is a function of the case’s probability P(ω |θ) and the involved principle’s
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relevances relevanceP(Argω
ψ). As both quantities are weights, it seems right to aggregate them by multi-

plying. We leave the discussion of other kinds of aggregations, like maxing out, in special contexts for

future research. We thus get:

forceprotanto(
〈

Argω
ψ ,Argψ

〉

) = P(ω) · relevanceP(Argω
ψ)

Since there is no difference in strength between any two options φ ,φ ′ ∈ Permψ(Φ,ω) – that is, be-

tween two options supported by the same argument Argω
ψ ∈ V1 –, we will, as a shorthand, just write

“forceprotanto(Argψ)” in order to refer to that strength.

Now we turn to the generic form and content of the arguments in V2. Fundamentally different from

the arguments in V1, the form of the arguments in V2 is dynamic: The number of premises in Argφ

depends on the number of incoming edges, each representing a reason supporting φ . In other words,

every Argφ ∈V2 contains one premise for any Arg ∈ Support(φ), bringing the contributed strength with

it into the argument. Additionally, one further premise is added, determining the aggregation of all

these incoming reasons’ strengths. So the aggregation is handled within the arguments in V2. The

most intuitive candidate for aggregation is simple summation of the weights. However, it may be even

more controversial, whether a simple summation is the best way to aggregate reasons, than it is how

to incorporate principle relevance with case probability. Answering this question (comprehensively) is

clearly outside this paper’s scope and, again, we leave this highly interdisciplinary question that should

make use of the rich literature on that topic, to future research (cf. [27, 32, 33]). Table 2 shows a generic

version of the arguments in V2.

Step 3: Final Action Determination. The last step is rather simple, but involves a couple of design

decisions nevertheless. The remaining task, after all, is to decide for one of the options given the previous

results. For this, we propose to combine the normative, moral force and the normative, instrumental force

of all the remaining options. That is, we see the remaining problem as a multi-objective optimization

problem where we aim at maximizing the moral reason responsiveness of the system on the one hand

and the instrumental means-end optimality represented by EU maximization on the other. Before we

elaborate on that point, first let us define the third layer of the graph.

First, V3 and E2,3. One only needs one final argument, thus V3 := {Argdec}. Since all arguments of

the second level contribute to the final argument, we have E2,3 :=V2 ×V3.

The final argument Argdec consists of a varying number of premises, one for each φ ∈ PermV1
(Φ),

each importing the strength of the overall reason supporting φ . Additionally, one or more premises are

included which reflect the design-decision one needs to make as mentioned above.

For the importing premises, we define the second strength function forceoverall (i.e., the weights for

the edges from V2 to V3). This strength represents the aggregative normative strength of the supporting

reasons in favor of each option φ ∈ PermV1
(Φ). These are exactly the options φ ∈ Φ for which it is

possible in light of the system’s current knowledge θ ∈ Θ that they are permissible according to some

principle ψ = c → o ∈ Ψ. Here “possible” means that P(ω |θ) > 0 for some ω ∈ Ωθ such that ω |= c.

One could, in principle, filter out options with only tiny overall forces, for instance, in order to make the

argumentation graphs computationally feasible. However, for now, we remain with the general structure

as we do not see sufficient reason for such thresholding on theoretical grounds.

This time, since the aggregation of the strengths was deliberately part of the arguments in V2, we

only need to identify the strength of the edges with the strength in the conclusions of these arguments –

which we denote by Argφ .ConStr8:

forceoverall

(〈

Argφ ,Argdec

〉)

:= Argφ .ConStr = ∑
Arg∈Support(φ)

forceprotanto(Arg)

8We use this (a little bit bulky) way of stating our idea in order to emphasize that the decision of how to aggregate pro tanto

reasons for options is contained in the arguments in V2 and is not part of the argumentation graph generation. Whatever one

plugs into the arguments has to come out as weights of the exiting edges.
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Argument Argω
ψ

(Pω ) ω

(Pψ ) if c then o

(PPermo
) if o, then Permψ(Φ,ω).

(Ci) Thus: Permψ(Φ,ω).

Table 1: Case Distinction Arguments.

The argument exemplifies the general

form and generic content of the first

level arguments (V1). Note that by

construction ω |= c.

Argument Argdec

(Pφi1
) There is an overall reason supporting φi1 with

strength forceoverall(φi1).

...
...

(Pφiw
) There is an overall reason supporting φiw with

strength forceoverall(φiw).

(Pmax) Perform one randomly picked option φout

of those in argmaxφ∈PermV1
(Φ) forceoverall(φ)+

EU(φ |θ).

(Cfinal) Thus: Perform φout.

Table 3: The Final Argument. We set w := |PermV1
(Φ)|.

Argument Argφi

(Pi1) There is a reason r1 with strength forceprotanto(r1) := forceprotanto(Argi1
) for A1

...
...

(Piv ) There is a reason rv with strength forceprotanto(rv) := forceprotanto(Argiv
) for A1

(P∑) For any number of reasons u: If there are some reasons r1, . . . ,ru supporting the same op-

tion φ with strengths forceprotanto(r1), . . . , forceprotanto(ru), then there is an overall reason

supporting φ with strength ∑u
i=1 forceprotanto(ri).

(Cφi
) Thus: There is an overall reason supporting φi with strength

∑Arg∈Support(φi) forceprotanto(Arg).

Table 2: Reason Aggregation Arguments: The argument exemplifies the generic form and content of the

second level arguments (V2). We set v := |Support(φi)|.

Again, we will use a shorthand, this time “forceoverall(φ)”, to refer to the strength supporting a specific

option φ . Table 3 shows the generic argument Argdec, including the final aggregation we suggest.

Let us return to our suggestion of the simultaneous, interlocked decision method. We start by de-

fending our decision. We believe our approach to be superior to sequential approaches in context of the

here discussed quantitative, uncertainty incorporating deontic filter method for two reasons: First, if we

used a sequential approach, we could run into cases like the following. Imagine two options φi and φ j

with forceoverall(φi) = forceoverall(φ j)+ ε for a negligible ε ∈ R+. Presuppose that this difference rules

out forceoverall(φ j) as impermissible. Now, imagine further that EU(φi) ≪ EU(φ j). It seems odd that

such a small difference in the supportive reasons should be decisive against an option which otherwise

is much more suitable for the ends of the system. There might be filter functions operating on the rea-

son’s strengths overcoming this problem, but they will have to be more complicated and meticulously

designed then a simple threshold filtering. Second, as our naming of the strength functions already in-

dicates, we think of strengths of reasons as some kind of (normative) forces. The principles induce

what could be called moral (or maybe societal) normative force, while the instrumental design decisions

encode sources of what could be called instrumental normative force. Normative forces, in our eyes,

are what pulls and pushes an agent into the direction of some option or set of options and should be

combined the same way as forces are combined traditionally, namely by summation. This justifies our

decision to maximize the sum and not, for instance, the product of the two objective functions. This

results in preferring some option φi over some option φ j where forceoverall(φi) = 18,EU(φi|θ) = 3 and
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forceoverall(φ j) = 10,EU(φ j|θ) = 10 respectively (and vice versa, for interchanged forceoverall and EU

values) in contrast to what would be the case if we decided for multiplication instead of summation.

That is, we do not punish differences between the two objectives systematically. As we mentioned, we

have not finally decided whether the suggestion we make here is the right one. Maybe there are good

reasons for modeling this aggregation as linear combination of these forces with weights as functions of

the distances of the different kinds of forces induced by some metric. For now, we stick to the simple

summation and leave further deliberation, again, to future research that will need heavy involvement of

Philosophy and the debate around the question of how to weigh reasons.

There is one potential practical disadvantage of our non-sequential approach. Our approach makes it

rather impossible to get strong guarantees on the system’s behavior. For instance, it will not be verifiable

for a medical care robot (that decides using our method) that it will, whenever there is the smallest

hope, attempt to rescue a life even if running out of power afterwards. There might be cases where the

corresponding case is too improbable, such that the relevance of the corresponding, applicable principle is

outweighed by some much more probable case in combination with a less relevant, applicable principle.

Still, softer properties are possible and are even necessarily given by construction. Using our ap-

proach, the system would be designed such that it chooses an option that, thanks to the construction up

to now, is permissible according to at least one principle applicable to at least one possible world state.

Additionally, it will always choose an option that maximizes the sum of both, the combined strength of

the overall reason supporting the option and the expected utility of the options given the current knowl-

edge. In other words, it will always act upon best reasons and will be able to offer an explanation for its

behavior. Maybe, our system is not verifiably ‘ethical’, but it is such that its behavior always is justifiable.

We believe this result to be the right result for many but not all contexts involving autonomous sys-

tems. For very vital or dangerous situations, so in contexts that need hard regulations – like autonomous

trading systems or even lethal autonomous weapon systems – we, the people, demand harder guarantees.

Deontic filtering then should be able to absolutely override instrumental considerations at cost of losing

liveness. All this seems true to us. But now that we have defined the whole argumentation graph and

finished the sketch of our framework combining Machine Ethics and Machine Explainability, we are con-

fident that we made the corresponding ‘adjusting screws’ evident. Our framework can thus be adapted

to meet also these requirements. We believe that in this area of tension – desired, verifiable properties

on the one side and different possible design decisions on the other side – new promising future research

can be identified.

5 Conclusion

In this paper, we introduced a formal and general framework combining Machine Ethics and Machine Ex-

plainability. We did so in two (major) steps: first, we motivated and introduced a framework of Machine

Ethics. Second, we constructed an instantiation of this framework enabling Machine Explainability.

In our discussion, a couple of details were left for future work. While we characterized the form and

content of the arguments, we omitted a formal characterization of their contents. Obviously, for most

of the practically interesting cases, they consist of first order, modal, temporal or deontic logic formulas.

This being the case, the graph needs to be supplemented by expressive means to draw conclusions: it

needs a logical system, a calculus with inferences rules. Another aspect still to be explored is the space

and time complexity of our approach. Additionally, we postponed a couple of optimization questions.

For instance, there might be significantly fewer world states needing consideration if some variables

that constitute ω are dependent. Also we ignored that some variables might have very large or even

uncountably infinite domains, such that considering all possible cases would be practically infeasible or

even impossible. Here heuristics are needed to restrict the number of options to the most probable or

important ones.
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Additionally, there are at least four interesting and pressing interdisciplinary research questions left

open. First there is the question of how to model the content and ordering of principles in a more

sophisticated way and how to quantify these orderings – and if one even needs to do so. After all, in

light of our results, one could be inclined to switch to a framework genuinely relying on reasons if one

finds a way to decouple reasons from principles ([17] might offer a useful approach here). Second, the

principle order might be context dependent. Basically, this would mean to become a particularist instead

of an generalist, believing that there are no general principles at all governing what ought to be done

and that, rather, what is a normative reasons varies from context to context in an unsystematic way (cf.

[13] and [14]). Third, there is a need to make decisions regarding the question of how to aggregate

and weigh reasons, where the answer, as indicated before, might well be dependent on the context of

application. Fourth, we have not discussed at all how to extract useful explanations of the right kind

from the generated argumentation graphs. Finally, we postponed also the question of how to handle

cases involving epistemic uncertainty (i.e., pure non-determinism) to future research as well. There is

more than enough left to work on in Machine Ethics and Machine Explainability.
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