Journal article Open Access

$\text {L}^2$-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov–Poisson–Fokker–Planck System

Addala, Lanoir; Dolbeault, Jean; Li, Xingyu; Tayeb, M. Lazhar

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20211203014830.0</controlfield>
  <controlfield tag="001">5747811</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0003-4234-2298</subfield>
    <subfield code="a">Dolbeault, Jean</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Li, Xingyu</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Tayeb, M. Lazhar</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">332453</subfield>
    <subfield code="z">md5:ed3b3edc981e5e0e9ae9a01bd61a9b21</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-21</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="v">184</subfield>
    <subfield code="p">Journal of Statistical Physics</subfield>
    <subfield code="n">1</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Addala, Lanoir</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">$\text {L}^2$-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov–Poisson–Fokker–Planck System</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Free for private use; right holder retains other rights, including distribution</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">This paper is devoted to the linearized Vlasov–Poisson–Fokker–Planck system in presence of an external potential of confinement. We investigate the large time behaviour of the solutions using hypocoercivity methods and a notion of scalar product adapted to the presence of a Poisson coupling. Our framework provides estimates which are uniform in the diffusion limit. As an application in a simple case, we study the one-dimensional case and prove the exponential convergence of the nonlinear Vlasov–Poisson–Fokker–Planck system without any small mass assumption.</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s10955-021-02784-4</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 20
Downloads 15
Data volume 5.0 MB
Unique views 13
Unique downloads 15


Cite as