

D1.3 Software
Quality and
Architecture Plan

Author(s): Víctor Rodríguez
 Doncel, Khalil Ahmed, Philipp
Cimiano, John McCrae, Maria Pia
di Buono
Date: 28.06.2019

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 825182. The information and views set out in this publication are those of the author(s) and do not
necessarily reflect the official opinion of the European Union.

Ref. Ares(2019)4148966 - 01/07/2019

 H2020-ICT-29b

Grant Agreement No. 825182
Prêt-à-LLOD - Ready-to-use Multilingual
Linked Language Data for Knowledge
Services across Sectors

D1.3 Software Quality and Architecture
Plan

Deliverable Number: D1.3
Dissemination Level:
Delivery Date: 30/06/2019
Version:
Author(s):

Document History

Version Date Changes Authors

11/03/2019 Started initial draft UNIBI

29/03/2019 Completed initial draft
and first peer review

UNIBI, NUIG

15/04/2019 Annexes added UNIBI

18/06/2019 Final peer review All partners

 D1.3 Software Quality and Architecture Plan 2

Table of Contents

Table of Contents 3

1. Document Scope and Overview 5

2. Planning and Management 6
2.1 Project Risk Management 8

3. Architectural Representation and Methods 9
3.1 Logical View 10
3.2 Process View 11
3.3 Component View 11
3.4 Development View 11
3.5 Scenarios 12

4. Quality assessment Criteria 12
4.1 Usability 13
4.2 Sustainability and Maintainability 15
4.3 Linked Open Data Quality 16
4.4 Quality Assessment Methodology 17

References 17
Annex I - Architecture Component and Development Form
Annex II - Quality Assessment Form
Annex III - Linked Open Data Quality Form

 D1.3 Software Quality and Architecture Plan 3

https://docs.google.com/document/d/1Zo4dkzNWkr5HXMbZkTX-UWfha0dFQ7D02x6GeaRdA-M/edit?usp=sharing
https://docs.google.com/document/d/1Mh541bPUhY6evcehmx3f8xZBoV7VnpVPL1yQYTOWpzw/edit?usp=sharing
https://docs.google.com/document/d/1ot_INm34spKJjpFVSwt4qKIkLYmHUlT23Cz06sxuRIc/edit?usp=sharing

D1.3 Software Quality and Architecture
Plan

1. Document Scope and Overview
The development of novel tools for transforming and linking datasets, and the subsequent
application of these to both data and metadata allow to provide multi-portal access to
heterogeneous data repositories. The merits of these new language technologies can be
found not only in being ‘ready-to-use’ but also underpinned by data value chains applicable
to a wide-range of sectors and applications. The semantic-based integration of language
resources and language technologies relies on the capability of being combined into
complex pipelines to offer sustainable data services.
Achieving interoperability and usability in a multi-developer complex system requires a
structured and quality approach. This guideline encourages such an approach in the
development and management of Prêt-à-LLOD software in order to contribute to system
life-cycle, improving its performance, stability and resilience. Other important benefits include
the decrease of time and resources required for system maintenance and support, and the
enhancement of coordination and effectiveness of the collaboration.
This guideline is intended to be used by all the stakeholders involved in the design and
development of Prêt-à-LLOD software, with its primary users being who develop and test the
technical components.
Figure 1 provides a summary of Prêt-à-LLOD technical components and Table 1 presents a
summary of stakeholder involvement into each task of Prêt-à-LLOD software development.

Figure 1: Overview of the Prêt-à-LLOD technical components (“toolkit”) and their interaction
with the data value chain

 D1.3 Software Quality and Architecture Plan 4

Table 1 - Stakeholder involvement
Prêt-à-LLOD task Stakeholder
T3.1 Transforming language resources and
language data

GU, UZAR, UPM, UNIBI, SEM

T3.2 Linking conceptual and lexical data for
language services

UZAR, NUIG, UPM, UNIBI, GU, DFKI,
OUP, SWC

T3.3 Workflows for Portable and Scalable
Semantic Language Services

NUIG, UZAR, UNIBI, GU, SEM

T5.2 Policy-driven language resource discovery
and access

UPM, NUIG, UZAR, DFKI

T5.3 Repositories for Resources and Metadata NUIG, UZAR UPM, GU,DFKI, DLX

It is worth ensuring that during the development process, software requirements are
considered for each stakeholder and task. In order to maximise outcomes, partners should
carry out all the activities by taking into account interactions between people, technology,
and organizational aspects.
Such interactions, which guarantee outcome enhancement, can be supported addressing
quality criteria and management aspects, together with a risk assessment, that need to be
considered within the project.

The scope of this document is to provide a set of procedures and guidelines for Prêt-à-LLOD
partners and developers to adhere to in order to develop a product usable, sustainable and
maintainable.
Three main aspects in software development are considered: planning and management
strategies, including risk management, a description of software architecture, and quality
assessment criteria.

In order to fully document all the aspects of software architecture and quality, this guideline
contains the following subsections:

● Section 1: introduces guideline scope and structure;
● Section 2: describes agile methodology for planning and management in software

development, and a methodology to prevent and reduce related risks;
● Section 3: presents the software architecture providing different view, namely

Logical, Process, Component, Deployment;
● Section 4: describes both Usability, and Sustainability and Maintainability criteria

used to assess software quality.

2. Planning and Management

With reference to project planning and management, we introduce an agile methodology
to provide techniques suitable for reaching project's goals more effectively. Agile
methodology, implemented by using Scrum framework, allows for changes and modifications
during the project process in case some components cannot be delivered on time. Scrum , 1

developed by Jeff Sutherland in 1993 and based on iterative and incremental practises,
focuses on "strategy, a flexible holistic product development where the development team

1 https://www.scrumguides.org/

 D1.3 Software Quality and Architecture Plan 5

worked as a unit to achieve common goals" as opposed to "traditional approaches, a
sequence" (Falls, 2004).
Scrum framework is supported by three pillars: transparency, inspection, and adaptation.
To the intent of optimizing the software development process within Prêt-à-LLOD project, in
this guideline we will focus on inspection and adaptation pillars.
Inspection refers to the need of checking frequently the status of artifacts and progress in
order to detect the possible variances towards the planned activities and deliverables.
When such deviances are revealed the process has to be adjusted through adaptation as
soon as possible to minimize further deviations.
Scrum uses events to describe time-boxed activities, with a duration fixed at the beginning.
All events are represented by a Sprint, a time-box of one month or less, during which a
product increment is created.
According to Scrum prescriptions, four formal events are necessary for inspection and
adaptation: Sprint Planning, Daily Scrum, Sprint Review, and Sprint Retrospective.
Before defining the Sprint Planning, it is worth defining the Product Backlog (PB), which is
a sorted list of all the products needed and the only source of product demand changes. The
Product Backlog list has to be continuously improved in order to be aligned with changes in
the product and development environment. Product Backlog Items (PBIs) should be sorted
by value, risk, priority and necessity, in a sequence of highest to lowest priority. Product
Backlog items, and associated workloads, are detailed into Sprint Backlog and Planning
according to their goals.
Within the development process of Prêt-à-LLOD software, we suggest to produce a PB list
for each product developed in order to create a Sprint Backlog for each WP. While the
coordinator is in charge for the general management and coordination of all WP Sprints that
will lead to the final software development, each WP leader is the owner of their own
software deliverable and related Sprint Backlog and Planning.
Scrum methodology establishes a daily meeting, i.e., Daily Scrum, a time-boxed event for
the development team. It is advisable to leave the management of this type of meeting at
each partner own discretion, as internal meeting for each development group. Considering
activities and meetings within the project, it is suggested to introduce a fortnightly Sprint
Review meeting among all partners involved into a WP in order to proceed with a monitoring
phase for each WP Sprint. The main Sprint Review aim is a review of Product Backlog items
for the next sprint and a possible overall adjustment of Product Backlog, if needed. A general
review and report for each WP Sprint will be presented during the management meeting with
all WP leaders.
The Sprint Retrospective represents the opportunity to revise the Sprint Planning to
improve and adapt work processes, making more effective next sprints. Each WP leader
manage their own Sprint Retrospective, while all Prêt-à-LLOD partners are involved into a
monthly retrospective session to identify overall improvements for the whole project
development.

To ensure a simpler collaboration among partners, ad-hoc tools for software project
management, e.g., Trello, will be adopted.

 D1.3 Software Quality and Architecture Plan 6

Figure 2: Overview of Scrum Construction lifecycle 2

2.1 Project Risk Management
Within a project it is worth to quantify risks, evaluate the probability of its occurrence, and its
potential impact (Huang and Han, 2008). Since the Scrum life cycle is divided into several
iterative Sprints, usually two to four weeks long, it should be easier monitoring the product
being developed and identifying impediments or risks (Tavares et al., 2017).
Furthermore, the use of Sprints also supports risk management, as it limits risk to one
calendar month of cost (Schwaber and Sutherland, 2013).

In compliance with an incremental development approach, a best practice to mitigate project
risks suggests that all the project partners decide what features have to be prioritized to be
delivered, so that the highest priority features are delivered first. Indeed, prioritisation
establishes a forced ranking of features (or deliverables) to guarantee that the highest value
work is completed first. Prioritisation should happen continuously throughout the project to
enable changing priorities and embed new information into the development process.
Among different existing prioritization techniques, we suggest to use the MoSCoW Method,
which is based on four criteria: Must haves, Should haves, Could haves, and Won’t haves.
These four criteria should drive the process of setting requirements by order of priority,
starting from the Product Backlog.
If, for any reason, the overall project schedule turns out to last longer than expected, it is
recommended to prune or delay some of the lower priority features in order to meet the
schedule.

2 https://www.visual-paradigm.com/scrum/what-is-product-backlog-in-scrum/

 D1.3 Software Quality and Architecture Plan 7

3. Architectural Representation and
Methods
According to IEEE Standard Glossary of Software Engineering Terminology , architecture is 3

the fundamental organization of a system embodied in its components, their relationships to
each other, and to the environment, and the principles guiding its design and evolution.
Therefore, the structure of that system, comprising all of its software elements, the properties
of these elements, and the relationships existing among standard them are described in the
architectural representation for a system.
Even if the conclusive software architecture is ultimately expressed in the executable code,
there exist representation models suitable to visualize and represent such an architecture.
These representations models are used in order to describe the public interfaces of software
elements, how these elements are used, relate to each other and interact. There is a clear
distinction between low and high level specifications for software architecture. The former
refers to internal implementation details of software elements, e.g., algorithms, and are
generally omitted from the architectural representation, the latter describes the general and
more relevant specifications of a system from the perspective of a particular set of concerns.
Different sets of concerns define different types of view, namely different representations of
different concerns of multiple subjects involved in or affected by the software development.
The main goal of architectural views is dealing with software complexity by focussing on a
small number of constituents.
Several classifications of architectural views have been proposed. In this guideline we refer
to the 4+1 View Model (Kruchten, 1995), which describes software architecture using four
basic views, i.e., logical, process, component, development. Together with these views,
there is an additional view, called Scenarios, which illustrates the four basic views, proposing
selected usage scenarios from the perspective of a use case view to demonstrate the
software architecture (Figure 3).

3 IEEE 1417-2000 standard https://standards.ieee.org/standard/1471-2000.html

 D1.3 Software Quality and Architecture Plan 8

Figure 3: Illustration of the 4+1 Architectural View Model (Kruchten, 1995)

A description of these views is provided in the following sections to represent Prêt-à-LLOD
software architecture.

3.1 Logical View
The Logical view describes software functionalities as they are provided to end-users,
modeling the translation of software requirements into functional aspects. The main goal is
providing a description about how specific functionalities are satisfied by architectural
abstractions.
As shown in Figure 1, Prêt-à-LLOD software is structured into several distinct layers, which
are in turn distributed through containerization technologies, i.e., Docker.
The high-level Prêt-à-LLOD tiers are:

● Prêt-à-LLOD Discovery. This tier provides tools to share and discover resources
extending the functionality of current metadata repositories for linguistic data. The
main functionality is represented by a data search tool, covering major dataset
sources (EUDAT, Datahub) and language resource repositories (ELRA, LDC,
Metashare, CLARIN, ELG), which allows a faster and better access to resources.

● Prêt-à-LLOD Transform. It focuses on improving the simplicity and transparency of
the transformation process of multilingual language resources into and between
LLOD representations

● Prêt-à-LLOD Data Manager. This functionality provides methodologies for
describing the licenses of data and services with the ability to retrieve and
automatically process provenance and licensing information, and mechanisms for
representing and dealing with trust and confidence, in order to enable smart
contracts and ease exploitation strategies. This contributes to a better and
automated handling of legal constraints and also a search by licenses as part of
Prêt-à-LLOD Discovery.

● Prêt-à-LLOD Linking. It allows cross-lingual integration of datasets coming from
different sources and covering the 24 European official languages, contributing to

 D1.3 Software Quality and Architecture Plan 9

future generations of multilingual solutions being able to process these languages
and operate without cross-border limitations. Prêt-à-LLOD will demonstrate a
qualitative increase in multilingual data integration and data reuse across sectors
relevant to the Digital Single Market. In order to demonstrate this, the project plan
includes four pilots addressing different mission-oriented challenges .

These tiers are integrated into a further tier which allows to improve portability and scalability
of language technology services:

● Prêt-à-LLOD Workflow. This last tier improves the interoperability and
semi-automatic integration of language services in the cloud through exchangeable
NLP components achieving a higher level of portability than previously known, and
allowing the development of multilingual solutions that remain useful and re-usable
in multiple sectors.

Further specifications of key features and technical details will be described at the end of the
project within the Final Software Quality Evaluation (D.1.2.2).

3.2 Process View
This view allows to capture the concurrency and synchronization aspects related to software
design. The Process View can be considered as a set of independently executing logical
processes. A process is a grouping of tasks that form an executable unit and can be
distinguished into major tasks, i.e., architectural elements that can be uniquely addressed,
and minor tasks, i.e., additional tasks introduced locally for implementation reasons.

3.3 Component View
Such a view contributes to describe a software in its physical layers or components, as
opposed to the logical layers in the Logical View, and define communication lines among
layers.
The main components are:

● Vocabularies and Language Resources
● Lexical Data
● LLOD Datasets
● NLP Components and Language Technologies.

Further specifications of key features and technical details will be documented during the
development phase through the duration of the project and described within the Final
Software Quality Evaluation (D.1.2.2).

3.4 Development View
The Development View describes the software module organization in the development
environment. The software is packaged in small chunks - program libraries or subsystems -
organized in a hierarchy of layers, each layer providing a narrow and well-defined interface

 D1.3 Software Quality and Architecture Plan 10

to the layers above it (Kruchten, 1995). This view is represented by module and subsystem
diagrams, showing input and output relationships. It is worth taking into account internal
requirements related to the ease of development, software management, reuse and
constraints imposed by the toolset

3.5 Scenarios
This view encompasses all the previous views, from a use case perspective. In Prêt-à-LLOD
project three different use cases are considered.
Technology Companies: Prêt-à-LLOD will allow this market-leading dictionary data to
become much more interlinked and manageable, greatly improving its application for the use
cases described. The improved efficiency will also allow to focus on the creation and
development of world-leading content, targeted towards speakers of languages worldwide,
especially under-resourced languages through the Oxford Global Language project . 4

Pharma: It consists in gathering evidence for the effectiveness and safety of a drug product,
outside of the controlled settings of a clinical trial, in order to provide a proof of the added
value of a drug in a large population. The solutions developed to address the
mission-oriented technical challenges above will be adopted by Semalytix to develop
multilingual applications that can produce real world evidence by analysing multilingual data
including patient forums, social media, electronic healthcare records and CMS data as
provided by IQVIA 19.
Government Services: In Prêt-à-LLOD, we will address the dual challenges of (i) providing
cross-border public services, which is essential to achieve an inclusive Digital Single Market,
and (ii) the portability of public services and knowledge sharing across jurisdictions for
improved collaboration and cost savings. We will deploy the Prêt-à-LLOD technology stack
to support the provision of multilingual statistical data across a number of member states as
well as the rapid development of integrated urban solutions.
These three scenarios will be implemented by means of four pilots, as specified in the
Business Pilot Specification (D4.1) and described within the Final Software Quality
Evaluation (D.1.2.2).

4. Quality assessment Criteria
Quality is assessed with reference to two aspects: general quality criteria of the
deliverable/software produced and a more specific adhesion to Linked Open Data (LOD)
prescriptions.
Concerning general quality criteria, we refer to Criteria-based Software Evaluation Guide
(Jackson et al., 2011) by the Software Sustainability Institute (SSI), which provides a set of
assessment criteria to be used to evaluate a software, and to the guidelines for software
quality & sustainability for CLARIAH (van Gompel et al., 2016). The proposed 5

assessment criteria are split into sub-criteria, referring to the main aspects useful in software
development: usability, and sustainability and maintainability (Table 2).

4 https://www.oxforddictionaries.com/ogl
5 https://github.com/CLARIAH/software-quality-guidelines

 D1.3 Software Quality and Architecture Plan 11

Table 2 - Assessment Criteria by Jackson, Crouch & Baxter (2011)
Criterion Sub-criterion Notes – to what extent is/does the software…
Usability Understandability Easily understood?

Documentation Comprehensive, appropriate, well-structured user
documentation?

Buildability Straightforward to build on a supported system?
Installability Straightforward to install on a supported system?
Learnability Easy to learn how to use its functions?

Sustainability
and
maintainability

Identity Project/software identity is clear and unique?
Copyright Easy to see who owns the project/software?
Licensing Adoption of appropriate license?
Governance Easy to understand how the project is run and the

development of the software managed?
Community Evidence of current/future community?
Accessibility Evidence of current/future ability to download?
Testability Easy to test correctness of source code?
Portability Usable on multiple platforms?
Supportability Evidence of current/future developer support?
Analysability Easy to understand at the source level?
Changeability Easy to modify and contribute changes to developers?
Evolvability Evidence of current/future development?
Interoperability Interoperable with other required/related software?

The software must be stored in a version control system (VCS). The source code and related
resources must be published. Prêt-à-LLOD has a dedicated repository on Github
(https://gitlab.insight-centre.org/pret-a-llod), it is recommended to host the VCS here.
Since developing semantic web technologies requires the compliance with a certain set of
attributes for the published data, we take into account LOD prescriptions to assess such an
aspect in our software quality assessment.

4.1 Usability
In this section, we refer to all quality assessment sub-criteria for usability, namely
understandability, documentation, buildability, installability, learnability.

Understandability
With reference to understandability, it is necessary:

1. Providing a clear and concise high-level description about the software. These
information have to be stored in both the README files as well as in the project
website.

2. Specifying the intended users for the software. Where appropriate, it would be
advisable offering multiple interfaces (i.e., command-line interface (CLI), graphical
user interface (GUI), web-user interface (WUI))

3. Clarifying how the software works through a high-level description, links to
publications, and a schema offering an architectural overview.

 D1.3 Software Quality and Architecture Plan 12

https://gitlab.insight-centre.org/pret-a-llod

4. Motivating the software
5. Being clear about the stage of software development.
6. Being clear about whether the software is actively supported, and if so until when.

Documentation
Documentation refers to a set of documents available for the software. Those documents
may consist of different type of documentation for different audiences and may include
published papers.
A bare level of documentation includes a README which provides a high-level overview of
the software, makes use of adequate examples for the interface described. For CLIs it is
appropriate providing examples of invocation, input, and output. GUI examples require
screenshots or screencasts. For APIs it is necessary providing source code examples of
usage.
Furthermore documentation should include information about troubleshooting and a
frequently asked question (FAQ) section.
In order to provide a clear documentation it is recommended using step-by-step and
task-oriented instructions and covering the entire software, including advanced features, as
well as documenting all the multiple tools.
Different groups of users require different documentation due to their different level of
expertise.
Documentation should be linked from the project website and it should be under version
control like the source code, alongside the code itself.

Buildability and Installability
Buildability and installability criteria concern the pre-requisites for building and/or installing
the software on a build and/or target platform.
To meet this criterion, instructions for building/installing the software have been provided on
the Web site and in source distributions. Furthermore, buildability and stability of the code-base
should be supported by the use of continuous integration services oriented to build and test projects
hosted on GitHub, e.g., AppVeyor, Travis.
All third-party dependencies that are not bundled, mandatory or optional, along with Web
addresses, suitable versions, licenses have to be currently available and listed in source
distributions and on the Web site. Where appropriate, a dependency management can be
used.
All source and binary distributions should be provided with a README file with project
name, Web site, how to get help, version, date, license and copyright (or where to find these
information), location of entry point into user doc.

Learnability
This criterion focuses on how straightforward it is learning to use the software.
In order to abide by the learnability criterion, it is necessary providing a Getting started guide
to outline a basic and practical example about how to quickly started with the software.
Instructions should be provided for at least basic use cases.
The interface should include help options. For CLIs describing usage and all options through
-h/--help. For GUIs using tooltips/hints for their widgets.

 D1.3 Software Quality and Architecture Plan 13

For programming library, providing API documentation. For software as Web services,
providing a specification about the Web API together with a description of API endpoints,
operations parameters and return values. API documentation should be auto-generated from
comments in the source code and include a description of class/methods with parameters,
expected results and exceptions.
Software configuration options and their effect should be clearly documented.

4.2 Sustainability and Maintainability
Sustainability and maintainability criteria refer to aspects related to both communication and
copyright/licensing elements, and enduring software development processes.

Identity and Copyright & Licensing
With reference to the first group of sub-criteria it is worth stressing the need of a clear and
unique identity, and a distinct name of the project/software, together with the respect of
existing trade-marks.
Copyright and licensing should be clearly stated on the Web site, jointly with authorship and
funding acknowledgment. Each source code file should present a copyright statement and a
license header.

Community
The Community sub-criterion refers to the presence of an active user community for the
software. It is recommended stating in the Website the number of
users/developers/members, success stories, important partners or collaborators, and the list
of the project’s publications and third-part publications that cite the software. Users should
be required to cite a boilerplate citation if publishing papers based on results derived from
the software.

Accessibility
To ensure an enduring software, source code must always kept by under version control to
allow collaboration and maintaining a version history. The version control repository should
be public (read only) to preserve the spirit of open source and as well as scientific methods
of transparency, peer review, and reproducibility. Each release of the software should be
clearly marked with the version number, according to a consistent scheme, and identifiable
tags that marks the state of the repository at the time of his release.

Testability
The software should have unit tests to automatically test individual units of the source code
and verify the data and logic flow, and integration tests to combine individual parts of
modules and see how they function as a group.

Portability
Portability across platforms and browsers should be guaranteed, as well as portable
deployment across machines.
Prêt-à-LLOD relies on Docker, a technology which defines a format for bundling an
application and all its dependencies into a single container. Such a container can be

 D1.3 Software Quality and Architecture Plan 14

transferred to any Docker-enabled machines. Docker guarantees that the execution
environment is the same in the development, testing, and production.

Supportability
It should be clear to what extent the product will be supported currently and in the future. It is
strongly recommended providing a public issue/bug tracker. This tracker allows to post bugs
as well as features request.

Analysability
The sub-criterion of analysability deals with aspects related to the source code. It is
necessary structuring the source code into multiple modules/packages, respecting a clear
relationship to the architecture or design of the software.
The source code should contain comments explaining what major blocks do.
It is advisable that the comments use a mark-up that allows them to be used directly as the
source for the generation of the API reference documentation.
There should be recommended coding standards, consistent with the larger community of
generic coding standards for the programming language, to which contributors should
adhere to.

Changeability & Evolvability
A project, open to outside contributions, should have guidelines, publicly available, for
contributors.
Software still under active develop should present a roadmap, that may be explicit or implicit
in the issue tracker through the assignment of milestones.
It is necessary providing information about when the software is no longer actively
developed.

Interoperability
The software should meet appropriate open standards in order to ensure its interoperability
with required and optional third-part components.

4.3 Linked Open Data Quality
In Prêt-à-LLOD project, we assess LOD quality, referring to LOD data quality dimensions
presented by Zaveri et al. (2016). Starting from the classification introduced by Wang &
Strong (1996), Zaveri et al. identify six groups of main dimensions, formalizing and adapting
their definition to the LOD context . 6

Accessibility
All the dimensions belonging to this group refer to aspects related to data access and
retrieval in order to obtain either the entire or some portion of the data for a particular use
case. Five sub-dimensions are part of this group, namely availability, licensing, interlinking,
security, performance.

6 In this guideline, we report the description of the six main dimensions by Zaveri et al. (2016),
referring to Annex III in this document for the assessment of sub-dimensions within each group.

 D1.3 Software Quality and Architecture Plan 15

https://docs.google.com/document/d/1ot_INm34spKJjpFVSwt4qKIkLYmHUlT23Cz06sxuRIc/edit?usp=sharing

Intrinsic Dimensions
Intrinsic dimensions, independent of the user’s context, focus on whether information
correctly and compactly represents the real world data and whether the information is
logically consistent in itself. Three sub-dimensions belong to this group, which are accuracy,
consistency, conciseness.

Trust Dimensions
This group holds the sub-dimensions which refer to perceived trustworthiness of the dataset,
i.e., reputation, believability, verifiability, objectivity.

Dataset Dynamicity Dimensions
Dynamicity dimensions refer to the capability of datasets to preserve their freshness over
time, and over time for a specific task, together with the capability of enduring over time.
Three sub-dimensions capture these aspects, namely currency, volatility, timeliness.

Contextual Dimensions
Contextual dimensions are those depending on the context of the task. Three
sub-dimensions describe those aspects, which are completeness, amount-of-data,
relevancy.

Representational Dimensions
In this group, the sub-dimensions refer to aspects related to data design, such as
representational-conciseness, representational-consistency, understability, interpretability,
and versatility.

4.4 Quality Assessment Methodology
The methodology used to assess quality in Prêt-à-LLOD project relies on two assessment
forms: a Quality form and a Linked Open Data Quality Form. The former has to be filled in by
each partner involved in the development of Prêt-à-LLOD deliverables, using a
self-assessment of quality level for the produced outcome. The latter, beside the
self-assessment, exploits an automatic procedure to calculate values and degrees of some
LOD dimensions.
Together with the deliverable, each partner has to submit both forms, that will be reviewed
by a compliance committee formed by two members.

References
Ambler, S. W., & Lines, M. (2017). An Executive's Guide to Disciplined Agile:

Winning the Race to Business Agility (Volume 1). CreateSpace Independent
Publishing Platform.

Falls, M. (2004). Inside the minds the software business : how top companies
design, develop & sell successful products & applications, Inside the minds. Boston,
Mass., Aspatore.

 D1.3 Software Quality and Architecture Plan 16

https://docs.google.com/document/d/1Mh541bPUhY6evcehmx3f8xZBoV7VnpVPL1yQYTOWpzw/edit?usp=sharing
https://docs.google.com/document/d/1ot_INm34spKJjpFVSwt4qKIkLYmHUlT23Cz06sxuRIc/edit?usp=sharing

Huang, S.-J., Han, W.-M., 2008. Exploring the relationship between software
project duration and risk exposure: a cluster analysis. Information and Management
45, 3, 175–182.

Jackson, M., Crouch, S., & Baxter, R. (2011). Software evaluation: criteria-based
assessment. Software Sustainability Institute.

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. IEEE software,
12(6), 42-50.

Sutherland, J., & Schwaber, K. (2013). The scrum guide. The definitive guide to
scrum: The rules of the game. Scrum. org, 268.

Tavares, B. G., da Silva, C. E. S., & de Souza, A. D. (2017). Risk management
analysis in Scrum software projects. International Transactions in Operational
Research.

van Gompel, M., Noordzij, J., de Valk, R., & Scharnhorst, A. (2016). Guidelines for
software quality. CLARIAH Task, 54.

Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means
to data consumers. Journal of management information systems, 12(4), 5-33.

Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., & Auer, S. (2016).
Quality assessment for linked data: A survey. Semantic Web, 7(1), 63-93.

 D1.3 Software Quality and Architecture Plan 17

D1.3 Software
Quality and
Architecture Plan
Annex I -
Architectural
Representation

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825182. The information and views set out in
this publication are those of the author(s) and do not necessarily reflect the official opinion of the European Union.

D1.3 Software Quality and Architecture Plan
Annex I - Architectural Representation

1.Logical view

Partner Name

Package Name

Package Description

Classes and other Packages used (list and diagram if possible)

Class name

Class Description

Major Responsibilities

Major Operations

Major Attributes

Relationships

Realized use case

Description of the realized use case

 D1.3 Software Quality and Architecture Plan - Annex I - Architectural Representation 2

Significant descriptions of the Flow of Events - Design of
the use-case realization.

Significant interaction enumeration or class diagrams
related to the use-case realization.

Significant/Derived Requirements of the use-case
realization

2. Process View

Partner Name

Process Name

Processes involved

Interactions between processes (collaboration diagrams if
possible)

Process Behavior

Process Lifetime

Communication Characteristics

 D1.3 Software Quality and Architecture Plan - Annex I - Architectural Representation 3

3. Component View

Partner Name

Component Name

Component Description

Component Scope

Major Responsibilities

Major Operations

Major Attributes

Dependencies

 D1.3 Software Quality and Architecture Plan - Annex I - Architectural Representation 4

4. Development view

Partner Name

System Name

System Type

Development Methodology

Implementation specifications

Subsystems located in the system

Subsystem Name (abbreviation or nickname)

Subsystem Description

Subsystem import dependencies (including a component
diagram, if possible)

Subsystem Properties

If appropriate, indicate subsystem relationship to
elements in the logical or process view.

 D1.3 Software Quality and Architecture Plan - Annex I - Architectural Representation 5

D1.3 Software
Quality and
Architecture Plan
Annex I -
Architectural
Representation

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825182. The information and views set out in
this publication are those of the author(s) and do not necessarily reflect the official opinion of the European Union.

D1.3 Software Quality and Architecture Plan
Annex II - Quality Assessment Form

Note that criteria that are deemed not applicable can be striked through.

Partner Deliverable Date

Criterion No
0

Min
1

Adq
2

Good
3

Perfect
4

Comments

Understandability

Q1 Is it clear what the software does?

Q2 Is there a specification about the
intended users?

Q3 Is it clear how the software works?

Q4 Is there a software motivation?

Q5 Is the development status clear?

D1.3 Software Quality and Architecture Plan - Annex II - Quality Criteria Assessment 2

Q6 Is the support status clear?

Documentation

Q7 Is there a software documentation?

Q8 Is the documentation accessible?

Q9 Is the documentation clear?

Q10 Is the documentation complete and
accurate?

Q11 Has a high-level overview of the
software been provided?

Q12 Does the documentation provide
adequate examples?

Q13 Is there a troubleshooting
information file?

Q14 Is there a FAQ file/section?

Q15 Is the documentation available from
the project website?

Q16 Is the documentation under version
control?

D1.3 Software Quality and Architecture Plan - Annex II - Quality Criteria Assessment 3

Buildability and Installability

Q17 Are there instructions for
building/compiling the software?

Q18 Are the dependencies listed and
available?

Learnability

Q19 Is there a Getting started guide?

Q20 Are there instructions for basic use
cases?

Q21 Is there a help reference?

Q22 Is there API documentation for
developers?

Q23 If the software is configurable, are
the configuration options
documented?

Identity and Copyright & Licensing

Q24 Is there a clear and unique
software identity?

Q25 Does the software have a website?

D1.3 Software Quality and Architecture Plan - Annex II - Quality Criteria Assessment 4

Q26 Does the software name not violate
existing trade-marks?

Q27 Has an appropriate open-source
license been adopted?

Q28 Are copyright, licensing,
authorship, and funders
acknowledgement clearly stated?

Community

Q29 Is there evidence of the software
being in use by others?

Q30 Is there evidence of external
developers?

Q31 Are statistics on software use
available?

Accessibility

Q32 Is the source code maintained under
a version control system?

Q33 Is the source code in a public
version-controlled repository?

Q34 Are formal release of the software
clearly marked?

Q35 Is the software deposited in a
persistent store with a unique DOI?

D1.3 Software Quality and Architecture Plan - Annex II - Quality Criteria Assessment 5

Testability

Q36 Are there unit tests?

Q37 Are there integration tests?

Q38 Are tests run automatically?

Portability

Q39 Is it clear for what platforms the
software is written?

Q40 Is the software portable for multiple
platforms?

Q41 Does the software work multiple
browsers?

Supportability

Q42 Is the support contact clearly
marked?

Q43 Are there public support channels
available?

Analysability

D1.3 Software Quality and Architecture Plan - Annex II - Quality Criteria Assessment 6

Q44 Is the source code structured
adequately?

Q45 Is the source code commented
adequately?

Q46 Do comments generate API
documentation?

Q47 Are sensible names used?

Q48 Are there no blocks of commented
out code or obsolete files?

Changeability & Evolvability

Q49 Is the project open to contributions
from third parties?

Q50 Does the project have guidelines for
contributions?

Q51 Are code changes and their
authorship publicly available?

Interoperability

Q52 Does the software use appropriate
open standards for data?

D1.3 Software Quality and Architecture Plan - Annex II - Quality Criteria Assessment 7

D1.3 Software
Quality and
Architecture Plan
Annex III - Linked
Open Data
Quality

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825182. The information and views set out in
this publication are those of the author(s) and do not necessarily reflect the official opinion of the European Union.

D1.3 Software Quality and Architecture Plan
Annex III - Linked Open Data Quality Form

The definitions in this form are by Zaveri et al., 2016.
Please, note that the metrics marked with * will be assessed by the committee using an automatic checking system. You can add
comments, if needed.

Note that criteria that are deemed not applicable can be striked through.

Partner Deliverable Date

Criterion Self-assessment Comments

Accessibility

Availability
Availability of a dataset is the extent to which information (or some portion of it)is present, obtainable and ready for use.

LQ1 Does the server respond to a
SPARQL query?

LQ2 Is a RDF dump provided? Can it
be downloaded?

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 2

LQ3 Is there a URI returning an error
response code or a detection of
broken links?

LQ4 Are there dead links or a URI
without any supporting RDF
metadata or no redirection using
the status code 303?

LQ5 Are there all local in-links or
back-links?

LQ6 Are there all forward links?

LQ7 Is the content is suitable for
consumption and accessible?

Licensing
Licensing is defined as the granting of permission for a consumer to reuse a dataset under defined conditions.

LQ8 Is there the indication of a license
in the VoID description or in the
dataset itself?

LQ9 Is there a license indicating
whether reproduction, distribution,
modification or reproduction is
permitted?

LQ10 Is the work attributed in the same
way as specified by the author or
licensor?

Interlinking
Interlinking refers to the degree to which entities that represent the same con-cept are linked to each other, be it within or between two or

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 3

more linked data sources.

LQ11* Which are the measures of
interlinking degree, clustering
coefficient, centrality and sameAs
chains, description richness
through sameAs

LQ12 Are there external URIs and
owl:sameAs k=links?

Security
Security is the extent to which access to data can be restricted and hence protected against its illegal alteration and misuse.

LQ13 Are login credentials or SSL or
SSH used?

LQ14 Are data of proprietary nature?

Performance
Performance refers to the efficiency of a system that binds to a large dataset, thatis, the more performant a data source the more
efficiently a system can process data.

LQ15 Are there slash-URIs (wrt large
amount of provided data)?

LQ16* How is the delay between
submission of a request by the
user and a reception of the
response from the system?

LQ17* What is the throughput?

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 4

LQ18* What is the scalability of data
source?

Intrinsic Dimensions

Accuracy
Accuracy is defined as the extent to which data is correct, that is, the degree to which it correctly represents the real world facts and is
also free of syntax errors. Accuracy is classified into (i)syntactic accuracy, which refers to the degree to which data values are close to its
corresponding definition domain and (ii) semantic accuracy, which refers to the degree to which data values represent the correctness of
the values to the actual real world values.

LQ19* Did you detect outliers?

LQ20 Did you detect inaccurate values?

LQ21 Did you detect inaccurate facts?

LQ22 Are there malformed datatype
literals?

LQ23 Are there literal incompatible with
datatype range?

LQ24* Are there erroneous
annotation/representation?

LQ25* Are there inaccurate annotation,
labelling, classification?

Consistency
Consistency means that a knowledge base is free of (logical/formal) contradictions with respect to particular knowledge representation and
inference mechanisms.

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 5

LQ26* Did you detect entities as
members of disjoint classes?
(Please, report the number in the
comment field)

LQ27* Did you detect the usage of
homogeneous datatypes? (Please,
report the number in the comment
field)

LQ28 Are there misplaced classes or
properties?

LQ29* Is there a misuse of
owl:datatypeProperty or
owl:objectProperty?

LQ30 Is there a use of members of
owl:DeprecatedClass or
owl:-DeprecatedProperty?

LQ31 Are there bogus
owl:Inverse-FunctionalProperty
values? (Please, provide a list)

LQ32 Have external classes/properties
been used (ontology hijackings)?

LQ33 Is there a misuse of predicates?

LQ34* Are there ambiguous annotations?

Conciseness

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 6

Conciseness refers to the redundancy of entities, be it at the schema or the data level. Conciseness is classified into (i) intensional
conciseness (schema level) which refers to the case when the data does not contain redundant attributes and (ii)extensional conciseness
(data level) which refers to the case when the data does not contain redundant objects.

LQ35* What is the degree for intensional
conciseness?

LQ36* What is the degree for extensional
conciseness?

LQ37* Are there duplicate instances?

Trust Dimensions

Reputation
Reputation is a judgment made by a user to determine the integrity of a datasource.

LQ38 Please, assign an explicit ranking
to the dataset

LQ39 Have external links or page rank
been analyzed
(semi-automatically)?

Believability
Believability is defined as the degree to which the information is accepted to be correct, true, real and credible.

LQ40 Is the provider/contributor
contained in a list of trusted
providers?

LQ41 Are there title, content and URI of
the dataset (namely provenance
information)?

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 7

LQ42* What is the value of the
trustworthiness of RDF
statements?

LQ43* What is the value of the
trustworthiness of entities?

LQ44* What is the value of the
trustworthiness of entity pairs?

LQ45 Did you acquire content trust from
users?

LQ46 Please, assign trust values to
data/source/rules

LQ47 Did you determine trust value for
data?

LQ48 Did you compute personalized
trust recommendations?

LQ49 Did you detect reliability and
credibility of data source?

LQ50 Did you compute the
trustworthiness of RDF
statements?

LQ51 Please, assign a level of reliability
and credibility of the dataset
publisher

Verifiability
Verifiability refers to the degree by which a data consumer can assess the correctness of a dataset.

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 8

LQ52 Did you verify the authenticity of
the dataset?

LQ53 Did you use digital signatures?

LQ54 Did you verify the correctness of
the dataset?

Objectivity
Objectivity is defined as the degree to which the interpretation and usage of data is unbiased, unprejudiced and impartial.

LQ55 Did you check the objectivity of the
information?

LQ56 Did you check the objectivity of the
source?

LQ57 Is the dataset biased?

Dataset Dynamicity Dimensions

Currency
Currency measures how promptly the data is updated.

LQ58* What is the currency of
documents/statements?

LQ59 What is the time since
modification?

LQ60* Have outdated data been
excluded?

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 9

Volatility
Volatility refers to the frequency with which data varies in time.

LQ61 What is the frequency of change
(wrt changefrequency attribute
in the Semantic Sitemap)?

LQ62* What it the time validity interval?

Timeliness
Timeliness measures how up-to-data data is, relative to a specific task.

LQ63 What is the difference between last
modified time of the original source
and last modified time of the
semantic web source?

LQ64 What is the difference between
current and expiry time of the
resource?

LQ65*

What is the difference between the
idea freshness and the data
source freshness?

Contextual Dimensions

Completeness
Completeness refers to the degree to which all required information is present in a particular dataset. In terms of LD, completeness
comprises the following aspects: (a) Schema complete-ness, the degree to which the classes and properties of an ontology are
represented, thus can be called "ontology completeness", (b) Property completeness, measure of the missing values for a specific
property, (c)Population completeness is the percentage of all real-world objects of a particular type that are represented in the datasets
and (d) Interlinking completeness has tobe considered especially in LOD and refers to the degree to which instances in the dataset are
interlinked.

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 10

LQ66 Schema completeness: Number of
classes and properties
represented / Total number of
classes and properties

LQ67 Property completeness: Number of
values represented for a specific
property / Total number of values
for a specific property

LQ68 Population completeness: Number
of real-world objects represented /
Total number of real-world objects

LQ69 Interlinking completeness: Number
of instances in the dataset that are
interlinked / total number of
instances in a dataset

Amount-of-data
Amount-of-data refers to the quantity and volume of data that is appropriate for a particular task.

LQ70* ratio of no. of semantically valid
association rules to the no. of
non-trivial rules

LQ71* Number poor predicates based on
the occurrence dependencies
among predicates

LQ72 Number of triples present in the
dataset

LQ73 Scope (no. of entities) and level of
detail (no. of properties)

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 11

Relevancy
Relevancy refers to the provision of information which is in accordance with the task at hand and important to the users’ query.

LQ74* What is the usage of
meta-information attributes?

LQ75* What is the relevancy of retrieved
documents for a given query?

Representational dimensions

Representational-conciseness
Representational conciseness refers to the representation of the data which is compact and well formatted on the one hand and clear and
complete on the other hand.

LQ76 Are there long URIs or containing
query parameters?

LQ77 Did you use prolix RDF features
(i.e., RDF reification, RDF
containers, RDF collections?)

Representational-consistency
Representational-consistency is the degree to which the format and structure of the information conforms to previously returned
information as well as data from other sources.

LQ78 Did you use existing terms from
other vocabularies?

LQ79 Did you use established
vocabularies?

Understandability
Understandability refers to the ease with which data can be comprehended, without ambiguity, and used by a human in-formation
consumer.

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 12

LQ80 What is the percentage of entities
having an rdfs:label or
rdfs:comment?

LQ81 Did you use rdfs:label to attach
labels or names to resource?

LQ82 Has the pattern of URIs been
used?

LQ83 Did you use regular expressions
that match the URIs?

LQ84 Have examples of SPARQL
queries been provided?

LQ85 Did you provide a list vocabularies
used in the dataset?

LQ86 Is the usage of the mailing list
and/or the message boards
effective and efficient?

Interpretability
Interpretability refers to technical aspects of the data, that is, whether information is represented using an appropriate notation and
whether it conforms to the technical ability of the consumer.
LQ87 Did you use self-descriptive

formats?

LQ88 Did use various schema languages
to provide definition for terms?

LQ89 Did you use blank nodes?

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 13

LQ90 Is there an atypical use of
collections, containers and
reification?

Versatility
Versatility refers to the availability of the data in an internationalized way,the availability of alternative representations of data and the
provision of alternative access methods for a dataset.
LQ91 Are the data available in different

serialization formats?

LQ92 Are the data available in different
languages?

LQ93 Are the data available as SPARQL
endpoint and for download as RDF
dump?

LQ94 Can the data be retrieved in
accepted formats and languages
by adding a corresponding
accept-header to an HTTP
request?

 D1.3 Software Quality and Architecture Plan - Annex III - Linked Open Data Quality 14

