Preprint Open Access

EdgeBOL: Automating Energy-savings for Mobile Edge AI

Jose A. Ayala-Romero; Andres Garcia-Saavedra; Xavier Costa-Perez; George Iosifidis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Mobile networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">O-RAN</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">energy efficiency</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">QoS</subfield>
  </datafield>
  <controlfield tag="005">20211129134844.0</controlfield>
  <controlfield tag="001">5734886</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NEC Laboratories Europe GmbH</subfield>
    <subfield code="0">(orcid)0000-0003-2005-2222</subfield>
    <subfield code="a">Andres Garcia-Saavedra</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NEC Laboratories Europe GmbH, i2cat, ICREA</subfield>
    <subfield code="a">Xavier Costa-Perez</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="a">George Iosifidis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2657316</subfield>
    <subfield code="z">md5:a6d51d30ccd1187a9a743a6354a65083</subfield>
    <subfield code="u">https://zenodo.org/record/5734886/files/conext21-final106.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-11-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020daemon</subfield>
    <subfield code="o">oai:zenodo.org:5734886</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Huawei Ireland Research Center</subfield>
    <subfield code="a">Jose A. Ayala-Romero</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">EdgeBOL: Automating Energy-savings for Mobile Edge AI</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020daemon</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">101017109</subfield>
    <subfield code="a">Network intelligence for aDAptive and sElf-Learning MObile Networks</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Supporting Edge AI services is one of the most exciting features of future mobile networks. These services involve the collection and processing of voluminous data streams, right at the network edge, so as to offer real-time and accurate inferences to users. However, their widespread deployment is hampered by the energy cost they induce to the network. To overcome this obstacle, we propose a Bayesian learning framework for jointly configuring the service and the Radio Access Network (RAN), aiming to minimize the total energy consumption while respecting desirable accuracy and latency thresholds. Using a fully-fledged prototype with a software-defined base station (BS) and a GPU-enabled edge server, we profile a state-of-the-art video analytics AI service and identify new performance trade-offs. Accordingly, we tailor the optimization framework to account for the network context, the user needs, and the service metrics. The efficacy of our proposal is verified in a series of experiments and comparisons with neural network-based benchmarks.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isPublishedIn</subfield>
    <subfield code="a">10.1145/3485983.3494849</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5734868</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5734886</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
247
149
views
downloads
All versions This version
Views 247202
Downloads 149127
Data volume 337.6 MB337.5 MB
Unique views 213184
Unique downloads 135121

Share

Cite as