Preprint Open Access

EdgeBOL: Automating Energy-savings for Mobile Edge AI

Jose A. Ayala-Romero; Andres Garcia-Saavedra; Xavier Costa-Perez; George Iosifidis


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5734886">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5734886</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5734886"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Jose A. Ayala-Romero</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Huawei Ireland Research Center</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-2005-2222">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0003-2005-2222</dct:identifier>
        <foaf:name>Andres Garcia-Saavedra</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>NEC Laboratories Europe GmbH</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Xavier Costa-Perez</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>NEC Laboratories Europe GmbH, i2cat, ICREA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>George Iosifidis</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Delft University of Technology</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>EdgeBOL: Automating Energy-savings for Mobile Edge AI</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>Mobile networks</dcat:keyword>
    <dcat:keyword>O-RAN</dcat:keyword>
    <dcat:keyword>energy efficiency</dcat:keyword>
    <dcat:keyword>QoS</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/101017109/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-11-29</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5734886"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5734886</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:relation rdf:resource="https://doi.org/10.1145/3485983.3494849"/>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5734868"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/h2020daemon"/>
    <dct:description>&lt;p&gt;Supporting Edge AI services is one of the most exciting features of future mobile networks. These services involve the collection and processing of voluminous data streams, right at the network edge, so as to offer real-time and accurate inferences to users. However, their widespread deployment is hampered by the energy cost they induce to the network. To overcome this obstacle, we propose a Bayesian learning framework for jointly configuring the service and the Radio Access Network (RAN), aiming to minimize the total energy consumption while respecting desirable accuracy and latency thresholds. Using a fully-fledged prototype with a software-defined base station (BS) and a GPU-enabled edge server, we profile a state-of-the-art video analytics AI service and identify new performance trade-offs. Accordingly, we tailor the optimization framework to account for the network context, the user needs, and the service metrics. The efficacy of our proposal is verified in a series of experiments and comparisons with neural network-based benchmarks.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5734886"/>
        <dcat:byteSize>2657316</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5734886/files/conext21-final106.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/101017109/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">101017109</dct:identifier>
    <dct:title>Network intelligence for aDAptive and sElf-Learning MObile Networks</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
247
149
views
downloads
All versions This version
Views 247202
Downloads 149127
Data volume 337.6 MB337.5 MB
Unique views 213184
Unique downloads 135121

Share

Cite as