Dataset Open Access
Le, Kim Tuyen; Rashidi, Gabriel; Andrzejak, Artur
{ "description": "<p>Code Token Type Taxonomy (CT3) is a methodology for refined evaluation of ML-based code completion approaches.</p>\n\n<p>We published the CT3-enhanced dataset with pre-computed token types for each token in the <a href=\"https://www.sri.inf.ethz.ch/py150\">Python150k dataset</a>.</p>\n\n<p>The dataset was obtained from an empirical study of the below paper:</p>\n\n<p>Kim Tuyen Le, Gabriel Rashidi, and Artur Andrzejak. A Methodology for Refined Evaluation of ML-based Code Completion Approaches. In <em>Special Issue on Programming Language Processing, Data Mining and Knowledge Discovery</em>.</p>\n\n<p>Please read the README.txt file for detailed information of structuring the enhanced dataset.</p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "affiliation": "Heidelberg University", "@type": "Person", "name": "Le, Kim Tuyen" }, { "affiliation": "Heidelberg University", "@type": "Person", "name": "Rashidi, Gabriel" }, { "affiliation": "Heidelberg University", "@type": "Person", "name": "Andrzejak, Artur" } ], "url": "https://zenodo.org/record/5733013", "datePublished": "2021-11-28", "keywords": [ "code completion", "accuracy evaluation", "code token types" ], "@context": "https://schema.org/", "distribution": [ { "contentUrl": "https://zenodo.org/api/files/af5de9a9-a02a-4445-9ce7-c15c48aabb9b/CT3-dataset-journal-20211128.zip", "encodingFormat": "zip", "@type": "DataDownload" } ], "identifier": "https://doi.org/10.5281/zenodo.5733013", "@id": "https://doi.org/10.5281/zenodo.5733013", "@type": "Dataset", "name": "A Code Token Type Taxonomy-enhanced dataset with pre-computed token types for Python150k" }
All versions | This version | |
---|---|---|
Views | 50 | 30 |
Downloads | 2 | 2 |
Data volume | 2.1 GB | 2.1 GB |
Unique views | 37 | 23 |
Unique downloads | 2 | 2 |