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Abstract

Electrification of transportation is considered as one of the most promising1

ways to mitigate climate change and reduce national security risks from oil and2

gasoline imports. Fast Charging Stations (FCS) that provide high Quality of3

Service (QoS) will facilitate the wide market penetration of Electric Vehicles4

(EVs). In this paper, we analyze the operation of a FCS by employing a5

novel queuing model. Our analysis considers that the various EV models6

are divided into classes based on their battery size; then we compute the7

EVs’ mean waiting time in the queue, taking into account the number of8

Charging Spots (CS) of the FCS, as well as the stochastic arrival process and9

the stochastic recharging needs of the various EV classes. Furthermore, the10

high precision of our analysis is confirmed through simulations. Therefore,11

our model may be utilized by existing FCS operators that need to provide12

high QoS, or by future investors for an efficient installation design.13
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1. Introduction14

The gradual replacement of Internal Combustion Engine (ICE) vehicles15

with EVs is highly promoted within the transportation sector [1] - [9]. A16

review of national targets can be found in [1], which forecasts an annual17

production of over 100 million vehicles by 2050. The main advantage of the18

EVs is their potential to reduce the dependence on fossil fuels, as well as the19

emissions caused by fuel combustion [2] - [4]. In addition, EVs may facilitate20

the integration of renewable energy systems into the grid [5] - [7].21

On the other hand, the main concern over the EV technology is the con-22

frontation of the drivers range anxiety problem, which refers to the EVs’ short23

driving ranges and long charging durations. Therefore, the large deployment24

of FCSs is crucial in achieving the aforementioned ambitious targets [8], [9].25

The Japanese standard CHArge de MOve (CHAdeMO) is currently the most26

popular option for DC fast charging, while the Combined Coupler Standard27

(CCS) is an emerging technology being promoted by Europe Automotive28

Industry [10]. Many manufacturers such as Nissan, Mitsubishi and Kia [11]29

- [13] have equipped their EV models with the former technology, whereas30

other manufacturers such as BMW and Volkswagen use the latter [14], [15].31

Furthermore, Electric Vehicle Supply Equipment (EVSE) manufacturers have32

designed CSs that contain both a CHAdeMO and a CCS outlet in a single33

cabinet [16].34

For EVs, the role of FCSs will be similar to that of gasoline stations for35

ICE vehicles. FCSs provide high power rates and as a result, the duration of36

charging an EV battery up to 80% of its rated capacity ranges between 5 -37

30 minutes [17]. This is a relatively short amount of time when compared38
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to the 6 - 8 hours needed using home equipment. However, fast charging39

duration is considered to be long when compared to the duration of refilling40

ICE vehicles (1 - 3 minutes). This may result in the formation of queues and41

long waiting times, especially during peak-traffic hours when the number of42

charging requests is expected to be high. In turn, long waiting times may43

cause EV drivers’ discomfort and dissatisfaction. It is therefore essential for44

FCS operators to develop mechanisms for queue waiting time estimation,45

through the consideration of the EVs’ stochastic arrival and charging times.46

For the stochastic modeling of the EVs’ charging process, various queuing47

theory models have been utilized, with M/M/s being the most common of48

them [18] - [26]. The advantage of this model is its simplicity, since the49

arrival process of the EVs is assumed to be Poisson (M), while the charging50

times of the EVs follow the exponential distribution (M). Finally, s denotes51

the number of CSs that the charging station facility contains. The main52

target of analysis [18] - [21] is the EVs’ charging demand estimation. On the53

other hand, other studies in the literature target the improvement of QoS54

in charging stations, through the development of control strategies for the55

minimization of the EVs’ waiting time. These strategies are applied either56

to a single charging station ([22]) or to a network of charging stations ([23] -57

[26]). In [27], the M/M/s/c queue is used for modeling a parking lot where58

c denotes the waiting room and s the available CSs. This model considers59

the maximum number of EVs that can be in the parking lot at the same60

time, either being charged or waiting in the queue. The QoS metrics in this61

case are both the queue waiting time and the blocking probability i.e. the62

probability that an EV will not enter the parking lot due to lack of waiting63
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space. A similar model (M/M/s/s) is used in a series of studies [28] - [32]. In64

these cases it is considered that there is no waiting room for the EVs, and65

hence blocking probability is the only QoS metric. A more flexible model66

is employed in [33] where the EVs’ charging times are generally distributed67

(M/G/∞ ). Nevertheless, no QoS metrics are considered in this model since68

the number of CSs is infinite.69

In this paper, we model a FCS as a multiclass M/G/s queuing system in70

order to derive the mean waiting time of the EVs in the queue. Similar to71

the aforementioned studies, the proposed analysis considers that the arrival72

process of the EVs is Poisson, where the EVs are served according to the73

First In First Out (FIFO) discipline. However, a key advantage of our model,74

compared to the state of the art, is that we adopt a more holistic approach75

for the determination of the EVs’ charging time distribution; we take into76

account that the charging time of the EVs is a function of the energy they77

obtain during a fast charging session i.e. the size of their battery, the State78

of Charge (SoC) of their battery upon their arrival in the FCS, and the SoC79

of their battery upon their departure from the FCS. Moreover, we divide the80

EVs into classes taking into account the different battery capacities of the81

various EV models.82

The determination of the mean waiting time in the queue is based on83

the steady state solution of the multiclass M/G/s system. An approximate84

method for the derivation of the steady state solution of a single-class M/G/s85

system is provided in [34]. Single-class consideration (i.e. a system where all86

EVs have the same battery type) entails a single value for the mean arrival87

rate of the Poisson process, as well as independent and identically distributed88
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random service times. This is not the case in our model where the EVs are89

considered to have different types of batteries (multiclass). In a multiclass90

system the mean arrival rates of the various EV classes are different, while the91

charging times of the EVs are not identically distributed random variables. A92

key point in the analysis of the multiclass M/G/s system is the aggregation93

of all EV classes into a single class, in order to obtain a superposed arrival94

process and a superposed charging time distribution. The analysis of a single-95

server multiclass M/G/1 system with a FIFO queue discipline is presented in96

[35]. Furthermore, the concept of multi-server multiclass M/G/s systems has97

been examined in several studies considering various priority queue disciplines,98

other than FIFO [36] - [38]. However, to the best of our knowledge, it is the99

first time that a multi-server multiclass M/G/s queuing system is handled100

considering a FIFO discipline.101

The accuracy of the proposed analysis is verified through simulations and102

found to be completely satisfactory. An additional advantage of the proposed103

analytical model is its pattern-agnostic nature, since the various features of104

the system (EV classes, arrival rates, arrival and departure SoC, number of105

CSs) are considered in a parametric way. To this end, we derive the EVs’106

maximum arrival rates subject to a maximum allowed QoS satisfaction value107

for the waiting time. Furthermore, we propose a charging strategy that can108

enable the FCS operator serve a higher number of EVs, while at the same109

time providing the same QoS level. In both cases we also derive the operator’s110

mean revenue.111

This paper is organized as follows. In Section 2, we present the FCS112

architecture and the analysis of the multiclass M/G/s queue for the derivation113
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of the EVs’ mean waiting time in the queue. In Section 3, we derive the114

upper bound of the EVs’ arrival rates given a corresponding upper bound115

for the waiting time. The charging strategy that allows the FCS operator116

to accommodate even greater arrival rates is formulated in Section 3 as well.117

Section 4 is the evaluation section, where both analytical and simulation118

results are presented and discussed. We conclude in Section 5.119

2. FCS Architecture and Analysis120

We consider a FCS that is located in an urban area and consists of s121

CSs. Each CS contains both a CHAdeMO and a CCS outlet that provide the122

same power rate PCS. Furthermore, each CS is able to provide service to only123

one EV at a time, since the two outlets cannot operate simultaneously [16];124

therefore, in the case where all CSs are occupied, an arrived EV has to wait125

in the same queue, regardless its fast charging option (CHAdeMO or CSS).126

The EVs are divided into C classes depending on the rated capacity of127

their batteries; an EV that belongs to the cth class has a battery capacity of128

Bc. Class c EVs arrive at the FCS by following a Poisson process with mean129

arrival rate λc . Furthermore, their charging time Tc is directly proportional to130

the energy they obtain during a charging session Ec and inversely proportional131

to the CSs’ power rate PCS (Eq. (1)):132

Tc =
Ec

PCS

= (SoCDc − SoCAc)
Bc

PCS

= (0.8− SoCAc)
Bc

PCS

(1)

where SoCDc is the state of charge of the battery upon the EVs’ departure133

and SoCAc is the state of charge of the battery upon the EVs’ arrival.134

The derivation of the charging time Tc is based on the assumption of a135
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constant power rate PCS [17]. Furthermore, all EVs are considered to recharge136

their batteries up to SoCDc = 0.8, which is the maximum possible value137

during a fast charging session [17]. On the other hand, SoCAc is considered138

to be a random variable that follows a Probability Distribution Function139

(PDF) fc(x)=P (SoCAc = x) and a corresponding Cumulative Distribution140

Function (CDF) Fc(x)=P (SoCAc≤x). Based on (1) and the aforementioned141

considerations, the charging time Tc of c-class EVs is also a random variable.142

The CDF, the PDF and the mean of Tc are derived by the following relations,143

respectively:144

Gc(t) = P (Tc ≤ t) = P [(0.8− SoCAc)
Bc

PCS
≤ t] =

= P (SoCAc > 0.8− PCS

Bc
t) = 1− Fc(xc(t))

(2)

145

gc(t) =
d

dt
Gc(t) (3)

146

mc =

∫
tgc(t)dt (4)

where xc(t) = 0.8−(PCS/Bc)t. It should be noted that in a multiclass queuing147

system the product ac = λcmc denotes the load of c-class EVs.148

The determination of the mean waiting time of the EVs in the queue is149

based on the derivation of the superposed arrival process, the superposed150

charging time distribution and the total load of the system. This procedure151

is based on the aggregation of all C classes into a single class [35]. The super-152

posed arrival procedure is determined as a Poisson process, since the arrival153

process of each EV class is Poisson ([39]); therefore, the mean superposed154
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arrival rate is:155

λ =
C∑
c=1

λc (5)

while the total load of the system equals to the sum of the loads of each class156

[39]:157

a =
C∑
c=1

ac (6)

The system’s total load a represents the mean number of busy CSs in the158

steady state [40], while ac represents the mean number of CSs occupied by159

c-class EVs.160

In the next step we derive the analytical expression of the superposed161

charging time distribution as follows. Let T be a random variable that162

denotes the charging duration at an arbitrary CS, given that an EV of any163

class enters for service. The probability that a c-class EV enters for service164

at the aforementioned CS is [35]:165

kc =
λc
λ
. (7)

As a result, the CDF of T G(t)=P (T ≤ t) is equivalent to the probability166

[k1P (T1 ≤ t)
⋃
k2P (T2 ≤ t)

⋃
...
⋃
kCP (TC ≤ t)]. The events kcP (Tc ≤ t) are167

mutually exclusive (only one EV is being charged at a time in the arbitrary168

CS), hence G(t) is determined by:169

G(t) =
C∑
c=1

kcGc(t). (8)

The expression of the CDF can be used for the determination of the PDF,170

8



the mean and the variance of T through the following relations, respectively:171

g(t) =
d

dt
G(t) (9)

172

m =

∫
tg(t)dt (10)

173

v =

∫
t2g(t)dt−m2 (11)

In addition, the following ratio defines the utilization rate of a multi-server174

queuing system:175

ρ =
λm

s
. (12)

It should be noted that a necessary condition for a stable queuing system176

(have a finite queue in steady state) is ρ < 1 [40].177

The derivation of the superposed arrival rate and charging time distribution178

enables the simplification of the considered multiclass system into a single-179

class M/G/s system. Consequently, the mean waiting time W of the EVs180

in the queue can be determined by using the analysis presented in [34], by181

assuming that ρ < 1. Initially, we calculate the mean number of customers182

waiting in the queue in a single-class M/G/s system, LM/G/s. This number is183

approximated by [34]:184

LM/G/s ≈
1 + c2v

2c2v
LM/M/s

+ 1−c2v
LM/D/s

(13)

where LM/M/s and LM/D/s are the mean number of customers waiting in the185

queue in the corresponding M/M/s and M/D/s systems, respectively, while186
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c2v is the square of the coefficient of variation of the service time PDF:187

c2v =
v

m2
. (14)

The mean number LM/M/s of customers waiting in the queue in an M/M/s188

system is obtained by [40] :189

LM/M/s =
ραs

s!(1− ρ)2

[
s−1∑
r=0

αr

r!
+
αs

s!

(
1− α

s

)−1]−1
(15)

while LM/D/s is approximated using the following equations [34]:190

LM/D/s ≈ ψ(s, ρ)LM/M/s (16)

191

ψ(s, ρ) =
1

2

[
1 + Φ(θ)ζ(ρ)

(
1− exp

{
− θ

Φ(θ)ζ(ρ)

})]
(17)

192

ζ(ρ) =
1− ρ
ρ

(18)

193

Φ(θ) =
θ

8(1 + θ)

(√9 + θ

1− θ
− 2
)
, with θ =

s− 1

s+ 1
(19)

Finally, the mean number LM/G/s of customers waiting in the queue in the194

single-class M/G/s system is used for the determination of the mean waiting195

time of customers (EVs) in the queue through Little’s law [40]:196

W =
LM/G/s

λ
. (20)
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3. QoS satisfaction and proposed charging strategy197

The main advantage of public FCSs compared to slow charging at home198

is the short charging duration, due to the high power rates they provide.199

However, for a FCS to provide high QoS, the EVs’ waiting time in the queue200

should be kept to low levels; otherwise, the aforementioned advantage is201

pointless. In this section we initially compute the EVs’ maximum arrival202

rates, so as the mean waiting time in the queue equals to a maximum limit203

Wq. Next, given the aforementioned QoS criterion, we propose a charging204

strategy that can be implemented by the FCS operator, in order to increase205

the maximum arrival rate capacity of the system. Moreover, in both cases,206

we compute the operator’s mean revenue during a time interval τ , by taking207

into account that the EVs’ mean arrival rates are equal to their maximum208

values during the interval τ .209

The mean waiting time of the EVs in the queue depends on the superposed210

arrival rate and the superposed charging time distribution of the system. In211

turn, the superposed charging time distribution is derived based on the212

charging time distribution of each single class, as well as on the probabilities213

kc. In this analysis we assume that the values of k c can be approximated214

based on the market shares hc of the EV classes in the region where the FCS215

is located, so that kc=hc. The aforementioned consideration allows for the216

computation of the maximum superposed arrival rate λmax and the maximum217

arrival rate of each EV class, λc,max by using Algorithm 1. Algorithm 1218

uses as input parameters the QoS criterion for the waiting time, the battery219

capacities, the SoCAc PDFs and the market shares of the EV classes, as220

well as the number of CSs and the power rate they provide. At the first221
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stage it derives the charging time distribution of each class and the system’s222

superposed charging time distribution. The second stage refers to a loop223

that calculates the maximum superposed arrival rate using the waiting time224

upper limit as a termination condition. Finally, Algorithm 1 determines the225

maximum arrival rate of each class based on the result of stage 2 and the226

probabilities kc.227

Algorithm 1

INPUT: The QoS criterion Wq, a set of EV classes (Bc,
hc, fc(x)), the number of CSs s and their power rate
PCS.

for j=1 to C do
kc(j)=hc(j)
calculate Gc(j, t) through Eq. (2).

end for
Calculate G(t), g(t), m and cv through Eqs. (8), (9), (10) and (14),
respectively.
Initialize: λmax = 1, W = 0.
while (W ≤ Wq) do

calculate W through Eqs. (12)-(20)
λmax = λmax + 0.0001

end while
for j=1 to C do
λc,max(j) = λmaxkc(j)

end for

Next, we calculate the operator’s mean revenue R during a time interval228

τ . We assume that during this interval the arrival rates are equal to their229

maximum values. Furthermore, we consider that the duration τ is long enough230

so as the queuing system reaches steady state. The aforementioned concept231

may represent a peak traffic period during a typical day. As it is noticed232

in Section 2, the total load of the system represents the mean number of233
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occupied CSs in steady state. Hence, the mean power drawn by the EVs PEVs234

during the interval τ is given by the product of the mean number of occupied235

CSs, amax = λmaxm by the power rate of each CS, PCS:236

PEVs = amaxPCS (21)

Furthermore, the mean energy that is supplied to the EVs during the interval237

τ is:238

EEVs = τPEVs (22)

Finally, the mean revenue R of the operator is calculated in (23) where r239

(e/kWh) denotes the price that the FCS operator charges the served EVs.240

R = rEEVs (23)

We now proceed with the formulation of a charging strategy, according241

to which the FCS operator provides financial incentives (price discount) to242

those EVs that accept to recharge their batteries up to an arranged departure243

SoC threshold SoCDthr< 0.8. The objective of the proposed strategy is to244

enable the FCS operator to increase the maximum arrival rate capacity i.e.245

λ
′
max > λmax while providing the same QoS level. For the derivation of the246

maximum arrival rates λ
′
max and λ

′
c,max, in this case, we divide each single class247

into two additional subclasses c1 and c2. Subclass c1 contains the percentage248

σc of c-class EVs that accept the operator’s offer, hence, kc1 = σckc. On the249

contrary, subclass c2 contains the remaining 1-σc percentage of c-class EVs250

that do not accept the operator’s offer, hence, kc2 = (1− σc)kc. The charging251
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time CDF Gc1(t) and PDF gc1(t), as well as the mean charging time mc1 for252

the EVs belonging to subclasses c1 , c = (1, 2, ..., C) are derived through Eqs.253

(2) - (4), respectively, by replacing xc(t) with:254

xc1(t) = SoCDthr −
PCS

Bc

t. (24)

Algorithm 2

INPUT: The QoS criterion Wq, a set of EV classes (Bc, hc, fc(x), σc), the
number of CSs s and their power rate PCS, as well as the departure SoC
threshold SoCDthr.

for j=1 to C do
kc(j)=hc(j)
kc1(j)=σchc(j)
kc2(j)=(1-σc)hc(j)
calculate Gc1(j, t) through Eqs. (2) and (24)
calculate Gc2(j, t) through Eq. (2).

end for
Calculate G(t), g(t), m and cv through Eqs. (8), (9), (10) and (14),
respectively.
Initialize: λ

′
max = 1, W = 0.

while (W ≤ Wq) do
calculate W through Eqs. (12)-(20)
λ

′
max = λ

′
max + 0.0001

end while
for j=1 to C do
λ

′
c,max(j) = λ

′
maxkc(j)

end for

Regarding the charging time CDF Gc2(t), the PDF gc2(t) and the mean255

mc2 of the EVs belonging to subclasses c2, they have exactly the same form256

as in the set of Eqs. (2) - (4). Based on the aforementioned analysis,257

the maximum arrival rates λ
′
max and λ

′
c,max, under the proposed charging258
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strategy, are computed using Algorithm 2. Note that compared to Algorithm259

1, Algorithm 2 uses two extra input parameters i.e. σc and SoCDthr.260

The operator’s mean revenue R′ under the proposed charging strategy is261

calculated by:262

R
′
= τ PCS (1− d) r

C∑
c=1

ac1 + τ PCS r
C∑
c=1

ac2. (25)

As it is noticed in Section 2, the load of each class (or subclass) represents263

the mean number of CSs occupied by the EVs that belong to this class264

(or subclass). Under the proposed strategy the load of subclasses c1 is265

ac1 = σcλ
′
c,maxmc1 while the load of subclasses c2 is ac2 = (1− σc)λ

′
c,maxmc2,266

with c = (1, 2, ..., C). Note also that the EVs which belong to subclasses c2267

are charged with r, while the EVs that belong to subclasses c1 are offered268

a discount d i.e. r
′

= (1 − d)r. Therefore, the first product in Eq. (25)269

represents the operator’s mean revenue due to the energy supplied to the270

EVs that belong to subclasses c1, while the second product represents the271

operator’s mean revenue due to the energy supplied to the EVs that belong272

to subclasses c2.273

4. Evaluation274

In this section, we provide analytical and simulation results for the evalua-275

tion of the proposed modeling of a FCS as a multiclass M/G/s system. To this276

end, we consider a FCS that consists of s=5 CSs. A detailed description of277

the technical specifications of these CSs is provided in [16]. Based on [16], the278

power rate of both CHAdeMO and CCS outlets is PCS=50 kW. Furthermore,279
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the multiclass M/G/s system consists of C=3 EV classes which correspond280

to 3 of the most popular EV models of the Spanish market [41]; namely,281

Nissan Leaf (B1=24kWh), BMW i3 (B2=18.8 kWh) and Mitsubishi i-MiEV282

(B3=16 kWh). We also consider that the random variables SoCA1, SoCA2283

and SoCA3 follow the normal PDF with mean 0.25 and standard deviation284

0.059. The value of the standard deviation has been selected such that the285

interval [0.15, 0.4] to be the 95% confidence interval of the PDF; the selection286

of the aforementioned PDF is based on the assumption that the vast majority287

of the EVs seek for fast charging facilities when their batteries’ SoC ranges288

between 0.15 and 0.4.289

The evaluation of the proposed analysis is performed through the compar-290

ison of analytical results with corresponding results from simulation. To this291

end, we built a simulator using Matlab, which considers the aforementioned292

FCS architecture, while it creates events (EV arrivals and departures) based293

on random numbers. In order to simulate the Poisson arrival process, the294

simulator considers a large number of EV arrivals i.e. 106. For each simulated295

EV, we record the time of its arrival, the time of its entering for charging296

and the time of its departure from a CS, in order to determine the EVs’297

mean waiting time in the queue. Simulation results that are presented in298

this Section are obtained as mean values of 20 runs. It should be noted that299

the analytical results are obtained through the proposed analytical model in300

less than 0.2 sec., which is a significantly shorter time compared to 12 min.,301

required in average for a single simulation run.302

Analytical and simulation results for the mean waiting time in the queue303

versus the superposed arrival rate of the system are presented in Fig. 1. For304
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Table 1: Parameters for the 3 evaluation scenarios.

Scenario k1 k2 k3 m (h)

1 0.5 0.25 0.25 0.2277
2 0.25 0.5 0.25 0.2134
3 0.25 0.25 0.5 0.2057

the derivation of the waiting-time results, we consider 3 different scenarios305

regarding the values of the probabilities kc. For each scenario, Table 1306

summarizes the set of values for kc and the system’s mean charging time,307

which is calculated through Eq. (10). Scenario 1 considers that the arrival308

rate of Leaf (class 1), which is the EV model with the biggest battery, is309

twice the arrival rates of i3 (class 2) and i-MiEV (class 3). On the other hand,310

scenario 3 considers that the arrival rate of i-MiEV, which is the EV model311

with the smallest battery, is twice the arrival rates of the other EV models.312

For this reason, scenario 1 is characterized by the longest mean charging time,313

while scenario 3 is characterized by the shortest one.314

As Fig. 1 indicates, despite the different mean charging time values under315

the 3 scenarios, the performance of the system is quite similar for arrival316

rate values up to 14 (EVs/hour). After that point, the waiting time shows317

a sharper rise with the increase of λ. This can be interpreted by mapping318

the arrival rate values to utilization rate values through Eq. (9). The waiting319

time curve becomes steeper as the utilization rate of the system approaches320

its limiting value i.e. 1. This tendency is more intense under scenario 1, which321

is the scenario with the highest mean charging time. Finally, it should also322

be pointed out that the comparison of analytical and simulation results of323

Fig. 1 reveals that the accuracy of our model is very satisfactory; in all cases324
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Figure 1: Waiting-time results for the 3 evaluation scenarios.

the difference between analysis and simulation is smaller than 1%.325

Next, we compute the maximum arrival rates of the EVs given that the326

mean waiting time in the queue is equal to a maximum allowed for QoS327

satisfaction limit Wq=1 min. For the derivation of the ratios kc in this case,328

we take into account market data [41]. For example, dividing the population329

of Leaf by the aggregate population of the 3 EV models, we derive that330

k 1=0.543. Following the same process for i3 and i-MiEV, k 2 and k 3 are found331

to be 0.133 and 0.324, respectively. One of the main contributions of this332

study is the derivation of the superposed charging time distribution g(t). Fig.333

2 presents the charging time distribution of each class and the superposed334

charging time distribution of the whole system. By using Algorithm 1, the335

maximum value for the superposed arrival rate is found to be λmax=13.37336

(EVs/h) while the corresponding maximum arrival rates of each class are337

found to be λ1,max=7.26 (EVs/h), λ2,max=1.78 (EVs/h) and λ3,max=4.33338

18



Figure 2: Charging time PDFs of the EV classes and the resulting superposed charging
time PDF of the whole system.

(EVs/h). Assuming that the operator’s energy tariff is r=0.15 (e/kWh), as339

well as that the arrival rates are equal to their maximum values during a340

period of τ=4 h, the revenue of the operator during this period is R=91.4341

e(Eq. 23).342

In what follows, we investigate the FCS operator’s capability to increase the343

maximum arrival rate capacity of the system by γ = λ
′
max

/
λmax, while keeping344

the same QoS level. This can be achieved by implementing the charging345

strategy proposed in Section 3. Crucial for the effectiveness of the charging346

strategy are the values of parameters σc, c = (1, 2, 3) which determine the347

percentage of the EVs that belong to subclasses c1. Fig. 3 presents analytical348

results of the parameter γ versus the percentages σc. For presentation purposes349

we assume that σ1=σ2=σ3=Σ. Furthermore, we evaluate the performance350

of the proposed strategy by considering two departure SoC thresholds (0.65351
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Figure 3: Effectiveness of the proposed charging strategy in terms of arrival rate capacity
increase.

and 0.7, respectively). As it was anticipated, parameter γ increases with the352

increase of Σ. This is due to the fact that the EVs that belong to subclasses353

c1 obtain less amount of energy than the EVs of subclasses c2. Hence, the354

greater the values of Σ, the shorter the mean charging time of the system355

becomes. As a result, the capability of the FCS operator to serve greater356

arrival rates providing the same QoS level increases. Furthermore, the EVs357

of subclasses c1 obtain less energy when SoCDthr=0.65 compared to the case358

where SoCDthr=0.7. Hence, for the same values of Σ, the performance of the359

proposed strategy is better in the SoCDthr=0.65 case.360

The proposed charging strategy dictates that the operator makes a discount361

d to those EVs that accept to recharge up to an arranged departure SoC level362

lower than 0.8 (i.e. 0.7 and 0.65 in our evaluation examples). Fig. 4 presents363

the maximum discount dmax that the operator is able to make versus the364
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Figure 4: Maximum discount the FCS operator can make under the implementation of the
proposed charging strategy.

parameter Σ. The values of dmax are obtained by setting R
′
=R and solving365

for d. Note that R is calculated through Eq. (23) and represents the revenue366

of the operator during a period where all EVs recharge up to SoCD=0.8 and367

the arrival rates are equal to λmax. R
′

is calculated through Eq. (25) and368

represents the revenue of the operator during the same period; however in369

the latter occasion a percentage of EVs (Σ) recharge up to SoCDthr, while370

the arrival rates are equal to λ
′
max.371

Let us compare the case where all EVs (Σ=100%) recharge up to SoCDthr=0.7372

with the case where all EVs recharge up to SoCD=0.8. In the former case373

each EV obtains less energy than in the latter. However, the total amount374

of energy that the operator provides is higher in the first case than in the375

second due to the increase in the EVs’ maximum arrival rates (by γ=1.28,376

Fig. 3). As a result, the operator can make a discount dmax=4.23% (Fig.377

21



4) in the price that sells energy without financial losses. It is reasonable378

to assume that the EV drivers would more easily accept to recharge their379

batteries up to SoCDthr=0.7 instead of SoCDthr=0.65. However, as Fig. 4380

shows, the FCS operator can make the SoCDthr=0.65 case more attractive by381

providing greater discounts. Finally, Fig. 4 also indicates that the operator’s382

capability to make a greater discount increases with the amount (Σ) of the383

EVs that accept the offer. This is attributed to the fact that higher values of384

Σ correspond to higher maximum arrival rates (Fig.3).385

5. Conclusion386

We present and analyze the operation of a FCS for EVs as a multiclass387

M/G/s system. The various EV models are divided into classes depending388

on their battery capacity, while the charging time distribution of the EVs389

that belong to the same class is derived based on the amount of energy390

they obtain during a fast charging session. The proposed analytical model391

considers the arrival rate and the charging time distribution of each class, and392

determines the expected waiting time of the EVs in the queue. Simulation393

results verify the accuracy of our analysis. The EVs’ waiting time is the394

QoS metric of our study. To this end, we also provide an algorithm that395

uses as input parameters an upper bound for the waiting time, as well as the396

market share of the various EV models, and outputs the upper bound of the397

EVs’ arrival rates. Note that the aforementioned algorithm considers that398

the EVs recharge their batteries up to the maximum possible SoC level (0.8).399

Then, we propose a charging strategy to increase the maximum arrival rate400

capacity. The proposed strategy considers that the EVs are provided with401
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financial incentives, in order to recharge their batteries up to a departure402

SoC threshold lower than 80%. The effectiveness of the proposed strategy403

depends on the departure SoC level which is arranged by the operator, as404

well as the amount of the EVs that accept the operator’s offer. Finally, our405

developed model allows for the calculation of the operator’s mean revenue.406
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