Journal article Open Access

Continuous Noise Masking Based Vocoder for Statistical Parametric Speech Synthesis

Al-Radhi, Mohammed Salah; Csapó, Tamás Gábor; Németh, Géza


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5729421</identifier>
  <creators>
    <creator>
      <creatorName>Al-Radhi, Mohammed Salah</creatorName>
      <givenName>Mohammed Salah</givenName>
      <familyName>Al-Radhi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3094-6916</nameIdentifier>
      <affiliation>Budapest University of Technology and Economics</affiliation>
    </creator>
    <creator>
      <creatorName>Csapó, Tamás Gábor</creatorName>
      <givenName>Tamás Gábor</givenName>
      <familyName>Csapó</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4375-7524</nameIdentifier>
      <affiliation>Budapest University of Technology and Economics</affiliation>
    </creator>
    <creator>
      <creatorName>Németh, Géza</creatorName>
      <givenName>Géza</givenName>
      <familyName>Németh</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2311-4858</nameIdentifier>
      <affiliation>Budapest University of Technology and Economics</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Continuous Noise Masking Based Vocoder for Statistical Parametric Speech Synthesis</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>noise masking</subject>
    <subject>continuous vocoder</subject>
    <subject>speech synthesis</subject>
    <subject>phase distortion</subject>
    <subject>kernel density functions</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-02-10</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5729421</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1587/transinf.2019EDP7167</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ai4eu</relatedIdentifier>
  </relatedIdentifiers>
  <version>1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In this article, we propose a method called &amp;ldquo;continuous noise masking (cNM)&amp;rdquo; that allows eliminating residual buzziness in a continuous vocoder, i.e. of which all parameters are continuous and offers a simple and flexible speech analysis and synthesis system. Traditional parametric vocoders generally show a perceptible deterioration in the quality of the synthesized speech due to different processing algorithms. Furthermore, an inaccurate noise resynthesis (e.g. in breathiness or hoarseness) is also considered to be one of the main underlying causes of performance degradation, leading to noisy transients and temporal discontinuity in the synthesized speech. To overcome these issues, a new cNM is developed based on the phase distortion deviation in order to reduce the perceptual effect of the residual noise, allowing a proper reconstruction of noise characteristics, and model better the creaky voice segments that may happen in natural speech. To this end, the cNM is designed to keep only voice components under a condition of the cNM threshold while discarding others. We evaluate the proposed approach and compare with state-of-the-art vocoders using objective and subjective listening tests. Experimental results show that the proposed method can reduce the effect of residual noise and can reach the quality of other sophisticated approaches like STRAIGHT and log domain pulse model (PML).&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825619/">825619</awardNumber>
      <awardTitle>A European AI On Demand Platform and Ecosystem</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
32
17
views
downloads
Views 32
Downloads 17
Data volume 19.8 MB
Unique views 30
Unique downloads 16

Share

Cite as