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Abstract

With the lowered costs of rocket technology and the commercialization of

the space industry, asteroid mining is becoming both feasible and profitable.

Although the first targets fore mining will be Near Earth Asteroids (NEAs),

the Main Belt contains 106 times more material by mass.. The creation and

expansion of this new asteroid mining industry is contingent on minimizing

the cost to match orbits and rendezvous with Main Belt asteroids, dictated

by the necessary velocity change in a mining spacecraft (Delta-V). This paper

develops two different flight burn paths, both starting from Low Earth Orbit

(LEO) and ending with successful rendezvous. These methods are then applied

to the 700,000 asteroids in the Minor Planet Center database to analyze the

Main Belt asteroids to find low Delta-V mining targets. We find that there are

5,211 potential targets with a Delta-V < 8 km s−1, but the distribution is steep

and reduces to 7 with Delta-V < 7 km s−1. We then compare the strengths of

the two burn methods.

1. Introduction

For decades, asteroid mining has been largely dismissed as infeasible and

unprofitable. However in recent years, a combination of technological and eco-

nomic factors have injected new realism into the field, and for the first time,

these hint at a distinct possibility of reliable, profitable, and large scale asteroid

mining, as well as human exploration and science initiatives.

Technologically, the next generation of rockets is in development. Projects

such as SpaceX’s Falcon Heavy and Blue Origin’s New Glenn should serve to
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greatly decrease mission costs. Mission cost is vital to the success of asteroid

mining, as cost clearly affects the profitability of commercial missions.

Economically, the space industry has undergone a great change in recent

years. With the privatization of the industry, commercial organizations no

longer need to rely solely on government programs such as NASA to reach

Earth orbit and beyond. The introduction of Elon Musk’s SpaceX, Jeff Bezos’

Blue Origin, and other private space firms has turned the space market into a

competitive sphere. Such an environment is a prime catalyst in reducing the

cost of space missions including asteroid mining. Mining could be a major mar-

ket for space firms, potentially providing a wide customer base to drive and

sustain the industry.

The base principle of asteroid mining is to launch a vehicle from Earth that

rendezvouses with a target asteroid. After rendezvous, the vehicle extracts eco-

nomically valuable material from the asteroid such as precious metals (gold,

platinum, etc), construction materials (iron, aluminum, copper), and/or water

for use in space [4]. After mining, the spacecraft delivers its cargo either back

to Earth, or to a more exotic location such as a high Earth Orbit, the Moon,

Mars, or a crewed spacecraft.

The critical factor in the asteroid mining market is that the cost per kilo-

gram of mined material must be significantly higher than the transport costs.

While the demand for precious metals on Earth is clear (especially for industrial

applications for platinum and gold), they are hard to extract. Construction ma-

terials and especially water are much easier to extract, but their value depends

on future off-planet projects, where the cost of shipping such materials from

Earth could be much higher than importing them from asteroids.

The first step in the creation of this new industry is an examination of

known asteroids to find profitable, easy to reach targets. While the ∼15,000

known Near-Earth Objects (NEOs) have already been analyzed [5], the asteroid

Main Belt between Mars and Jupiter has not received major attention. While

the Main Belt asteroids are certainly further away and mostly more costly to ac-

cess in propellant, the sheer number of known objects (over 700,000 compared
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to around 15,000 NEOs1, with over 106 times as much mass [4]) offers great

possibilities for the developing industry. Here we seek to identify within this

plethora of objects, those asteroids that are most accessible, resulting in new

targets for this nascent industry.

The energy costs of reaching an asteroid are crucial. The rocket equation [5]

imposes an exponential penalty in mass for a linear change in energy cost. The

energy cost is measured in Delta-V, the total velocity change that a spacecraft

must undergo to match orbits and rendezvous with another body, in this case,

an asteroid. The rocket equation is given by:

∆V = ve ln

(
mi

mf

)
(1)

Where ∆V is Delta-V, ve is the velocity of the rocket’s exhaust, mi is the rocket’s

initial mass, and mf is the rocket’s final mass [6]. This equation governs the

ratio of wet (with propellant) to dry (propellant excluded) mass of a spacecraft

with a given Delta-V rating, limiting the mass of equipment that a spacecraft

can carry on a mission. Solving for this ratio gives:

mi

mf
= exp

(
∆V

ve

)
(2)

This demonstrates that a linear change in Delta-V causes an exponential change

in the necessary propellant for a mission. Or, for a fixed capability rocket, the

delivered payload in reduced comparably. Thus, we seek to minimize the Delta-

V for a mission so as to reserve more mass for equipment and flight systems.

This paper is organized as follows:

• Section 2: Orbital Mechanics - Overview of the mechanics used in deriving

the orbital burns

• Section 3: Multiple Burn Approaches - Discussion of different sets of or-

bital burns

• Section 4: The 3 Burn Method - Derivation of the first orbital burn method

1http://www.minorplanetcenter.net/iau/MPCORB/NEA.txt
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• Section 5: The 2 Burn Method - Derivation of the second orbital burn

method

• Section 6: Data Analysis - Application of the orbital burn methods to the

Main Belt dataset

• Section 7: Results and Analysis - Discussion of the Delta-V results, and a

comparison of the two methods

• Section 8: Conclusions and Future Directions - Summary of the investi-

gation results and relevant future projects

2. Orbital Mechanics

In this analysis, we use the Patched Conics approximation of orbital mechan-

ics, in which the orbiting object is gravitationally affected by only one gravity

well at a time2 [8]. Such an orbit, known as an Osculating Orbit, is charac-

terized by a series of parameters or “orbital elements” [3]. These are derived

from Kepler’s Laws of Planetary Motion, and when all are known, an objects’s

orbit and position on its orbit is completely determined. The six elements are

the semimajor axis a, eccentricity e, argument of the periapsis ω, inclination i,

longitude of the ascending node Ω, and true anomaly ν at epoch ν0. Figure 1

shows these parameters graphically. There are defined as follows:

• Semimajor axis (a): Half of the distance between the highest and lowest

points above the center of mass of the central object.

• Eccentricity (e): Kepler’s first law defines planetary orbits as conic sec-

tions [10]. The eccentricity of an orbit corresponds to the eccentricity of

the orbital conic section.

2For example, in patched conics, an object orbiting Earth will only be subject to Earth’s

gravity, with no interference from the Sun or Moon. Similarly, an object in a solar orbit will

be affected only by the Sun, ignoring the gravitational effects of the Planets and all other

objects.
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• Inclination (i): The angle between the orbital plane and a reference plane

(usually, and here, defined as Earth’s orbital plane around the Sun, the

ecliptic).

• Longitude of the Ascending Node (Ω): The Ascending Node is one of two

(with the Descending Node) intersection points of the orbital plane and

the reference plane. The Longitude of the Ascending Node is the angle

measured in the reference plane between an arbitrary reference direction

and the Ascending Node.

• Argument of the Periapsis (ω): The angle measured in the orbital plane

from the Ascending node to the periapsis (defined below) of the orbit.

• True Anomaly (ν) at Epoch (ν0): The angle in the orbital plane between

the periapsis and the position of the orbiting object at the given time

known as the epoch (J2000, B1950, etc). The True Anomaly while not at

epoch is given by ν.

Figure 1: Illustration of the angular orbital elements.

(By Lasunncty (Wikipedia Contributer), CC BY-SA 3.0.

https://commons.wikimedia.org/w/index.php?curid=8971052)
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In addition to the six traditional orbital elements and the epoch, other derived

elements are useful in calculations.

• Apoapsis: The point on an orbit that is furthest from the central object.

• Periapsis: The point on an orbit that is nearest to the central object.

• Ecliptic Latitude: The angle between a point on the orbit and the ecliptic

plane

The Keplerian equations for orbital motion are given as follows [10]:

r(ν) =
a(1− e2)

1 + e cos(ν)
(3)

Eq. (3) gives the radius r, or distance between the central object and the

orbiting object as a function of true anomaly ν.

v(r) =

√
µ

(
2

r
− 1

a

)
(4)

Eq. (4) gives the orbital velocity of an object as a function of the object’s current

orbital radius. Here, µ is the standard gravitational parameter and is defined as

Newton’s gravitational constant G multiplied by the mass of the central object

M .

µ = GM (5)

These equations and elements, along with vector algebra serve as the basis of our

calculations. This Keplerian approach uses purely classical mechanics and does

not take into account the effects of special or general relativity. Fortunately,

for at reasonable distances from the Sun (at the Earth’s orbit or beyond) the

effects of general relativity on solar orbits are entirely negligible.

Orbital changes are achieved through the operation of reaction engines in

a series of burns. We do not consider continuous low-thrust regimes, such as

ion engines [2] in this work. Instead we assume that all burns are performed

with a high thrust engine, approximating that all changes in velocity due to

burns are instantaneous. Each burn will change the orbital velocity vector of
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the spacecraft, thereby changing its orbit. The six orbital elements provide six

degrees of freedom in an orbit. In this six parameter space an alternate set of

parameters to use could be an (x, y, z) position vector and a (vx, vy, vz) velocity

vector. These six elements can also completely characterize an orbit and an

object’s position on the orbit. Thus, when a spacecraft executes a burn, it

changes its velocity vector and modifies its orbit.

2.1. Delta-V

This manipulation of the velocity vector gives rise to the concept of Delta-V

(∆V ). As previously stated, Delta-V is defined as the change in velocity that a

spacecraft undergoes during a burn or a mission. The Delta-V of a rocket plus

spacecraft determines the total potential velocity change of the spacecraft that

is achievable during burns over the course of a mission. Hence higher Delta-V

implies that a spacecraft can travel to more difficult to reach targets.

In this paper, Delta-V to a celestial object is defined as the total amount

of velocity change necessary for a spacecraft to rendezvous with this object. In

this examination of the Main Belt asteroids, we are searching for the asteroids

with the lowest Delta-V, as they can be reached more easily with current and

future spacecraft.

The Delta-V required to reach a target is highly dependent upon the target’s

orbit. There is no unique set of burns necessary to reach a target, rather, any

number of different burns can be used for a successful rendezvous. To rendezvous

with an asteroid, the spacecraft must match both its velocity and position (and

therefore its orbit) vectorially. This differs from a rendezvous with a planet

or other large body, as the gravity of the target object is then much larger

than that of an asteroid, requiring at least entry into a capture orbit, and a

controlled descent, if desired. For a Main Belt asteroid, even the most massive

Ceres (gCeres = 0.03 g) [9], the effects of the asteroid’s gravity are negligible for

Delta-V calculations.
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3. Multiple Burn Approaches

The restrictions on spacecraft design imposed by the rocket equation moti-

vate the search for the set of burns requiring the least amount of Delta-V to

reach a given target. Achieving the optimal Delta-V to a specific target is de-

pendent on that target’s specific orbit. Thus for a large dataset of objects with

diverse orbital characteristics, a single chosen set of orbital burns will not have

the absolute lowest Delta-V to the object, at the same burns must be easily

adapted and applied to the entire dataset.

For a successful rendezvous starting from the Earth, a space craft must ex-

ecute a minimum of two burns to reach a Main Belt Asteroid, one to escape

the Earth, and one match orbits with the target asteroid. The spacecraft may

perform additional burns additional burns depending on the flight plan, but two

is the absolute minimum for an asteroid that does not cross the Earth’s orbit.

While early studies of NEOs [5] use the Shoemaker-Helin Equations [11],

these equations were developed for use with NEOs and Earth Crossing As-

teroids and as a result make approximations that may not hold to sufficient

precision and efficiency for Main Belt targets. For example, the Shoemaker-

Helin equations disregard the target asteroid’s argument of periapsis ω, which

is important for a precise rendezvous.

In response to this, we have developed two different series of burns capable

of achieving rendezvous with Main Belt asteroids, each with its own strengths

and efficiencies. The first uses 3 burns, the second uses 2 burns. Both methods

assume that the spacecraft starts in a circular equatorial parking orbit around

the Earth, and are designed to end with a successful asteroid rendezvous. The

principles of each are described below.

3 Burn Method

1. Burn 1 is performed when the ecliptic longitude of the Earth is 180 degrees

from the ecliptic longitude of the asteroid at apoapsis. Burn 1 must also

be performed at a time such that both the spacecraft and the asteroid
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will reach the asteroid’s apoapsis at the same time (this will decrease the

Delta-V necessary for Burn 3, as explained later). Burn 1 will cause the

spacecraft to escape Earth with a velocity in excess of the required escape

velocity, such that the apoapsis of the spacecraft above the Sun is the

same distance and ecliptic longitude as the apoapsis of the asteroid. The

orbit of the spacecraft after Burn 1 is in the ecliptic, but it is now much

more eccentric.

2. Burn 2 is performed at true anomoly ν = 90◦ relative to the argument

of the periapsis of the asteroid ω. Burn 2 changes the direction but not

the magnitude of the spacecraft’s velocity, rotating the velocity vector and

orbital trajectory out of the ecliptic plane. This rotation is performed such

that the apoapsides of the spacecraft and asteroid coincide in 3D space.

The location of the spacecraft at the time of Burn 2 then defines the

ascending or descending node of the spacecraft transfer orbit, depending

upon whether the burn causes the spacecraft to move toward positive or

negative ecliptic latitudes. Through the proper planet/asteroid alignment

in Burn 1, after Burn 2 the spacecraft and the asteroid will arrive at the

same place at the same time.

3. Burn 3 is executed near the time when the spacecraft encounters the

asteroid at apoapsis. At initial approach the spacecraft and the asteroid

will have different velocity vectors. Burn 3, by design, is the vector velocity

(magnitude and direction) that must be added to the spacecraft velocity

so that it matches that of the asteroid, thereby matching their orbits and

achieving rendezvous.

2 Burn Method

1. Burn 1 is identical in function to Burn 1 in the 3 Burn Method, except

that the alignment is different. In the 2 Burn Method, Burn 1 is chosen to

place the spacecraft’s apoapsis at the ascending or descending node of the

asteroid. The timing of the launch is chosen such that the spacecraft and

asteroid reach that intersection point at the same time. As the ascending
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and descending nodes are the only points of the asteroid’s orbit that lie

in the ecliptic (assuming non-zero inclination), this combines Burns 1 and

2 of the 3 Burn Method, causing the spacecraft and asteroid to be at the

same position in space for the final burn.

2. Burn 2 is performed at the apoapsis of the spacecraft transfer orbit es-

tablished by Burn 1. By Burn 1’s design and timing, this will also be the

ascending or descending node of the asteroid’s orbit, and the asteroid will

also be at this position when Burn 2 is performed. Burn 2, like Burn 3

above, chooses the burn magnitude and direction to match the spacecraft

and asteroid velocities, thereby achieving rendezvous.

Both methods achieve the same goal, but do so with different flight paths.

The only time these flights paths would be that same is with an orbit with

the argument of the periapsis ω of exactly 0◦ or 180◦. Such an orbit would

cause the two methods to be identical, as each would execute a single escape

burn to apoapsis, and correct inclination and periapsis in a second burn. The

methods were designed with different flight plans to explore how each set of

burns affected the resulting Delta-V to each asteroid. The comparison of the

two provides insight into their relative efficiencies and inefficiencies for different

orbital parameters.

4. Derivation: The 3 Burn Method

We now give the detailed derivation of the equations used to obtain the

Delta-V for the two methods. As Burn 1 is common to both methods apart

from the timing of the launch, we first derive Burn 1 in the context of the 3

Burn Method, and then modify it for the 2 Burn Method in Section 5.1.

4.1. 3 Burn Method: Burn 1

In both methods, the spacecraft starts in a circular parking orbit around

the Earth in the plane of the ecliptic. As the spacecraft is orbiting Earth, the

first burn occurs inside the Earth’s gravity well. Thus, the spacecraft must first
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escape the Earth’s gravity to enter its own solar orbit. To achieve this, the

spacecraft must reach escape velocity.

Escape velocity vesc is reached when the kinetic energy of the orbiting space-

craft is equal to the gravitational potential energy at the spacecraft’s current

distance from the central body.

1

2
mv2esc =

GM⊕m

r
(6)

In Eq. (6), m is the mass of the spacecraft (which is ultimately irrelevant to

the energy comparison), G is Newton’s Gravitational Constant, r is the orbital

radius, and M⊕ is the mass of the Earth.

vesc(r) =

√
2GM⊕
r

=

√
2µ⊕
r

(7)

Eq. (7) solves Eq. (6) for vesc and establishes the standard gravitational pa-

rameter of the Earth.

For example, the escape velocity of a spacecraft in a 100 km orbit above the

Earth’s surface is 11.1 km s−1. If the craft were to burn until its velocity equaled

the escape velocity, then it would enter a parabolic orbit with respect to Earth

such that as the spacecraft travelled far away from Earth, its relative velocity

with Earth would tend to zero satisfying the time independent equivalence of

potential and kinetic energy in Eq. (6). Although the craft’s velocity would be

zero relative to the Earth, the Earth has an orbital velocity around the Sun of

v⊕) = 29.8 km s−1. As the Earth’s orbit is slightly eccentric (e = 0.0167), this

value is not constant over the course of a year. We ignore this minor eccentric-

ity for the purposes of this paper, and assume a perfectly circular orbit for the

Earth. 3 Thus, after reaching escape velocity, when the spacecraft is far away

from the Earth, the spacecraft would have a velocity around the Sun equal to

the Earth’s velocity.

3Another effect of this assumption is that there will be no preferential radial direction in

the Sun-Earth system, so the Longitude of the Ascending Node can be ignored in all Delta-V

calculations.
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However, in the first burn, the spacecraft needs to not only escape from

Earth, but also enter a transfer orbit with the same magnitude apoapsis as the

asteroid it will intercept. Thus, it will accelerate beyond the escape velocity

such that it travels faster than Earth and raises its solar orbit. This is referred

to as the hyperbolic excess velocity v∞. The hyperbolic excess velocity is the

final speed of the spacecraft after it has travelled far away from the Earth’s

sphere of influence. This value is solved for using conservation of energy, where

Kbo is the burn out kinetic energy of the spacecraft after it’s escape burn, Kesc

is the kinetic energy needed to escape the central body, C3 is the characteristic

energy, or velocity at infinity v∞ squared, and vbo is the burn out velocity, the

maximum velocity reached by the spacecraft during the burn.

Kbo −Kesc =
1

2
(C3) (8)

1

2
mv2bo −

1

2
mvesc =

1

2
m(C3) =

1

2
mv2∞ (9)

Solving for v∞:

v∞ =
√
v2bo − v2esc (10)

The burn out velocity vbo will be the vector sum of the velocity of the spacecraft

in its circular parking orbit vp and the Delta-V of Burn 1 vM1. By design, these

vectors are collinear and thus add directly.

vbo = vp + vM1 (11)

Once the spacecraft is far away from the Earth’s sphere of influence, it is useful

to switch reference frames from an Earth-centric reference frame to a solar

reference frame. The Earth’s reference frame orbits the Sun at the Earth’s

orbital velocity. Thus the spacecraft’s orbital velocity around the Sun after

Earth escape will be given by:

v� = v∞ + v⊕ (12)

The purpose of Burn 1 is to establish a transfer orbit apoapsis rAp equal to the

apoapsis of the target asteroid. Using the geometry of an ellipse, the asteroid
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apoapsis is given by:

rAp = a(1 + e) (13)

The periapsis of the transfer orbit rPe will be equal to the distance between the

Earth and Sun r⊕. The semimajor axis of the transfer orbit at is then:

at =
rAp + rPe

2
=
rAp + r⊕

2
(14)

Given this, the orbital velocity equation gives the target velocity around the

Sun v� for such an orbit:

v(r) =

√
µ

(
2

r
− 1

a

)
v� =

√
µ

(
2

r⊕
− 1

at

)
(15)

From these equations, the value of vM1 can be determined as a function of the

asteroid’s semimajor axis and eccentricity.

Burn 1 should be performed when the Earth is 180 degrees around the Sun

away from the apoapsis of the asteroid’s orbit (see Figure 2) such that the

transfer orbits apoapsis will have the same magnitude and ecliptic longitude as

the asteroid’s apoapsis.

Figure 2’s “top-down” two-dimensional depiction of the orbits is misleading

in that it that it fails to represent the orbital inclinations in three-dimensions.

Thus, although the length and the (x, y) direction (ecliptic longitude) of the

apoapsides may match, they are not necessarily aligned in (z) (ecliptic latitude),

as depicted in Figure 3. This misalignment applies to any asteroid with both

a nonzero inclination (i 6= 0) and an argument of periapsis equal to 0◦ or 180◦

degrees (ω 6= 0◦, 180◦). For an asteroid with an orbital inclination of i = 0, the

orbital plane is by definition the plane of the ecliptic, thus the vector pointing

to the apoapsis has no (z) component, and the transfer orbit apoapsis will

align perfectly. If the argument of the periapsis ω is either 0 degrees or 180

degrees, then the periapsis (and, by symmetry, the apoapsis) will coincide with

the ascending/descending nodes. As the ascending and descending nodes are

defined as the points where the asteroid orbit intersects the ecliptic plane (if

inclination is zero (i = 0), then they are not defined, as the orbits are coplanar),
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Figure 2: The orbits of the asteroid (red, dashed) , Earth (blue, dotted), and the

spacecraft (purple, solid) after Burn 1, viewed from the ecliptic pole.

these also would have no (z) component. For a generalized orbit, this offset in

(z) will be corrected in Burn 2.

4.2. 3 Burn Method: Burn 2

Burn 2 is performed during transfer and is designed to align the apoapsides

of the two orbits. Pure inclination changes rely on changing the direction of

the spacecraft’s velocity vector while keeping its magnitude the same. This

preserves the shape of the orbit, while changing the angle that it makes with

the reference plane.

First, we calculate the ecliptic latitude of the apoapsis. By symmetry, this

is simply the negative latitude of the periapsis. We start by defining the plane

of the ecliptic to be the (x, y) plane. We then take the vector (1, 0, 0) and define

it as the vector pointing to the ascending node of the orbit ~x.

~x = (1, 0, 0) (16)
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Figure 3: 3D diagram of the orbits of the Asteroid (solid red), Earth (solid blue), and

the spacecraft (dotted purple) after Burn 1. The ascending and descending nodes of

the asteroid’s orbit are labeled by A.N. and D.N. respectively.

Next this vector is rotated by an angle ω around the z-axis equal to the argument

of the periapsis.

R̂z(ω)~x = (cos(ω), sin(ω), 0) (17)

The resultant vector is then rotated about the x-axis by an angle i to generate

the orbital inclination.

R̂x(i)(cos(ω), sin(ω), 0) = (cos(ω), cos(i) sin(ω), sin(i) sin(ω)) =
−→
Pe (18)

The resultant vector
−→
Pe points to the periapsis in cartesian coordinates. We

are interested in the angle θ that this vector makes with the (x, y) plane, as

this angle is the ecliptic latitude of the asteroid’s periapsis. θ is complementary

to the angle between the periapsis vector
−→
Pe and the z-axis ~z. Taking the dot

product of the periapsis vector
−→
Pe and the z-axis vector ~z gives:

−→
Pe · ~z = |−→Pe||~z| cos(90− θ) (19)

sin(θ) = sin(ω) sin(i) (20)

Eq. (20) gives θ in terms of two known values, ω and i. (See Figure 4 for a

depiction of this derivation).
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Figure 4: The blue vector is ~x, the dashed purple vector is R̂z(ω)~x, and the red vector

is
−→
Pe. The blue circle lies in the ecliptic plane, the red circle lies in the asteroid orbital

plane. θ is the angle between the red vector and the blue circle.

Next we choose the location to perform the burn. By definition, the space-

craft and the central body (the Sun) must always be in the orbital plane. Thus,

inclination changes will result in rotations about the axis formed by a line con-

necting the Sun and spacecraft. Since Burn 2 is designed to align the apoap-

sides of the transfer orbit and asteroid orbit, this burn should be performed at

ν = 90◦. ν being the true anomaly, the angle between the periapsis and current

orbital position. (Sec. 2)) Given ν = 90◦ and defining et as the eccentricity

of the transfer orbit, we calculate the radius from the Sun at which Burn 2 is

performed rM2:

rM2 = r(ν = 90◦) =
a(1− e2)

1 + e cos(90◦)
= at(1− e2t ) (21)

Applying this result to the velocity equation gives the magnitude of the velocity

of the spacecraft immediately before Burn 2 v(rM2):

v(rM2) =

√
µ

(
2

rM2
− 1

at

)
(22)

Next we calculate the flight path angle φ, the angle between the spacecraft’s

velocity vector and the velocity vector of an object at the same radius moving

in a circular orbit about the Sun (see Figure 6).
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Figure 5: The blue vector is the tangential vector to the blue circular orbit, the red

vector is the velocity vector for the red elliptical orbit. The angle between the two

vectors is the flight path angle φ.

This flight path angle φ is important because in an inclination change of θ,

θ is measured between the periapsis vector and the ecliptic plane, not along the

direction of travel for the spacecraft. To correct for this, we derive the actual

angular change Φ for Burn 2. Define ~vi as the spacecraft’s pre-burn velocity

Figure 6: The vectors and angles used in calculating the inclination change angle Φ.

vector in the plane of the ecliptic, ~vf as the spacecraft’s post-burn velocity

vector in the plane of the asteroid,
−−→
Ast as a vector parallel to the asteroid’s
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apoapsis vector in the plane of the asteroid, and
−→
Ecl = (1, 0, 0) as a vector

parallel to the spacecraft’s apoapsis vector in the plane of the ecliptic. With

these vector definitions we solve for Φ:

~vi = R̂y(−φ)
−→
Ecl ~vf = R̂z(θ)~vi (23)

By the definition of the dot product:

~vf · ~vi = cos(Φ) (24)

Substituting in for ~vf and ~vi:

[R̂y(−φ)
−→
Ecl] · [R̂z(θ)~vi] = cos(Φ) (25)

[R̂y(−φ)(1, 0, 0)] · [R̂z(θ)R̂y(−φ)(1, 0, 0)] = cos(Φ) (26)

cos(Φ) = cos(θ) cos2(φ) + sin2(φ) (27)

With the velocity change angle Φ defined, the law of cosines gives the Delta-V

of Burn 2 (see Figure 7).

Figure 7: Triangle for the law of cosines consisting of Burn 2’s Delta-V Vector (red)

with the initial and final velocity vectors (blue and black), separated by the angle Φ.

v2M2 = v(rM2)2 + v(rM2)2 − 2v(rM2)v(rM2) cos(Φ) (28)

vM2 = 2v(rM2) sin

(
Φ

2

)
(29)

Figure 8 depicts the spacecraft, asteroid, and Earth orbits after Burn 2.
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Figure 8: After Burn 2, the apoapsides of the asteroid and transfer orbits (red and

dashed purple) coincide. The blue orbit is Earth’s orbit for reference.

4.3. 3 Burn Method: Burn 3

The third and final burn of the 3 Burn Method is used to completely match

orbits. This burn is performed at the shared apoapsis of the transfer and asteroid

orbits. The burn both corrects any remaining inclination between the two orbital

planes and matches their periapsides at the same time. These two parts of the

orbital correction can be considered separately, and then combined later.

The periapsis correction is relatively simple. The velocity of the asteroid

and spacecraft must be the same at apoapsis to share a periapsis. Using Eq.

(4) the asteroid’s velocity at apoapsis vast(rAp) is given by:

vast(rAp) =

√
µ

(
2

rAp
− 1

a

)
(30)

Similarly, the velocity of the spacecraft before the burn vcraft(rAp) is:

vcraft(rAp) =

√
µ

(
2

rAp
− 1

at

)
(31)
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where at is the semimajor axis of the transfer orbit defined in Burn 1 and cal-

culated in Eq. (14).

Calculating the remaining inclination change is more difficult. As the apoap-

sides and the Sun lie in both orbital planes as a result of Burn 2, they form the

current axis of inclination of the spacecraft relative to the asteroid. Thus, the

apoapsis and periapsis are the ascending/descending nodes. This is by design,

so that the periapsis correction and remaining inclination angle ψ can be cor-

rected with the same burn. ψ is calculated by constructing normal vectors to

the orbital planes. To find these normal vectors, we choose two vectors in each

plane and take their cross product to generate a normal vector.

For the Asteroid’s orbital plane, we first choose the periapsis vector
−→
Pe as

defined in Burn 2. To select the second vector in the asteroid’s orbital plane,

we recall that in our initial determination of the periapsis vector’s position (see

Section 4.2), we applied rotation operators to ~x = (1, 0, 0). In doing so, ~x was

defined as the ascending node of the asteroid’s orbit relative to the ecliptic.

Thus, ~x lies in the orbital plane and can be crossed with
−→
Pe to find a normal

vector to the plane.

~x×−→Pe = (1, 0, 0)× (cos(ω), cos(i) sin(ω), sin(i) sin(ω)) (32)

−−→nast = (0,− sin(i) sin(ω), cos(i)sin(ω)) (33)

Normalizing the normal vector in preparation for a dot product gives:

−−→
Nast = (0,− sin(i), cos(i)) (34)

The transfer orbital plane also contains the periapsis vector, but a second

vector must be identified to find the normal vector. A good choice is the vector

leading to the position at which Burn 2 was performed. Recall that this burn

occurred in the ecliptic (x, y) plane and was performed at ν = 90◦. To recon-

struct this vector, we first project
−→
Pe onto the (x, y) plane, then rotate it −90◦

about the z-axis.

−−→
M2 = R̂z(−90◦)[

−→
Pe · (1, 1, 0)] = (cos(i) sin(ω),− cos(ω), 0) (35)
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The normal vector is given by the cross product:

−−→
M2×−→Pe = (cos(i) sin(ω),− cos(ω), 0)× (cos(ω), cos(i) sin(ω), sin(i) sin(ω))

(36)

−−−→ncraft = (− cos(ω) sin(i) sin(ω),− cos(i) sin(i) sin2(ω), cos2(ω) + cos2(i) sin2(ω))

(37)

Normalizing the normal vector in preparation for a dot product gives:

−−−−→
Ncraft =

 − cos(ω) sin(i) sin(ω)√
cos2(ω) + cos2(i) sin2(ω)

,
− cos(i) sin(i) sin2(ω)√
cos2(ω) + cos2(i) sin2(ω)

,

√
cos2(ω) + cos2(i) sin2(ω))


(38)

The cosine of the angle between the orbital planes ψ is given by the dot product

of the two normal vectors.

−−−−→
Ncraft ·

−−→
Nast = cos(ψ) (39)

cos(ψ) =
cos(i)√

cos2(ω) + cos2(i) sin2(ω)
(40)

Having solved for ψ, the Delta-V for Burn 3 is given by the law of cosines applied

to the two velocity vectors and the angle between them:

v2M3 = v2ast + v2craft − 2vastvcraft cos(ψ) (41)

vM3 =
√
v2ast + v2craft − 2vastvcraft cos(ψ) (42)

The resulting orbit from Burn 3 is shown below.

4.4. The 3 Burn Method: Delta-V

The final Delta-V (∆V ) for the 3 Burn Method is simply the sum of the

Delta-V’s for each burn.

∆V = vM1 + vM2 + vM3 (43)

It should be noted that this Delta-V only reflects the outbound journey to an

asteroid.

In the 3 Burn Method, rendezvous with the asteroid occurs at the asteroid’s
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Figure 9: After Burn 3, the asteroid and spacecraft orbits (red and dashed purple) are

fully aligned. The blue orbit is Earth’s orbit for reference.

apoapsis, after a single half transfer orbit.

In order for this rendezvous to occur, Burn 1 must be executed at the proper

time to ensure that the asteroid and spacecraft meet up at the apoapsis. This

launch window is specific to each individual asteroid, and is reliant upon the

proper alignment of the asteroid and the Earth4.

5. Derivation: The 2 Burn Method

5.1. The 2 Burn Method: Burn 1 Modifications

Burn 1 is nearly identical to Burn 1 of the 3 Burn Method. The only dif-

ference is that it it designed to reach a different transfer apoapsis height at at

a different ecliptic longitude. The burn is designed to cause the spacecraft to

intercept the orbital path of the asteroid without any plane/inclination changes.

4See the Future Directions section for a possible investigation into this and its effect on

mission Delta-V
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The only points in the asteroid’s orbit that lies in the ecliptic plane are the as-

cending and descending nodes. Unlike the singular apoapsis target, this gives a

choice of two targets. It is preferable to choose the higher of the two nodes, as

this will decrease the velocity needed to match orbits in the second burn (see

later discussion on efficiency for a full explanation). To find the heights of the

two nodes, we use Kepler’s orbital radius equation.

r(ν) =
a(1− e2)

1 + e cos(ν)
(44)

The true anomalies ν of the nodes are given by the definition of the argument of

the periapsis ω. Thus, the nodes are located at ν = −ω and ν = 180◦−ω. Using

the Kepler equation, the higher of the two can be determined. Let the height

and true anomaly of the higher node be denoted by r1 and ν1 respectively.

With these values and the new target established, the following equations

(14, 10+12+15, 11) are applied from the first method.

at =
r1 + r⊕

2

√
v2bo − v2esc + v⊕ =

√
µ

(
2

r⊕
− 1

at

)
vbo = vp + vM1

(45)

Just as before, solving these equations for vM1 yields the Delta-V of the first

burn. Figures 10 and 11 illustrate Burn 1.

5.2. 2 Burn Method: Burn 2

Burn 2 of the 2 Burn Method is most similar to The 3 Burn Method’s Burn

3, in that it functions by aligning both orbital velocity and orbital inclination.

Thus, the initial and final velocity vector directions and magnitudes must be

calculated. The velocity magnitudes are calculated using the Keplerian velocity

equation, where rn is the radius of the ascending/descending node at which

Burn 2 is performed.

vcraft =

√
µ

(
2

rn
− 1

at

)
(46)

vast =

√
µ

(
2

rn
− 1

a

)
(47)
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Figure 10: Top view of the orbits of the Asteroid (red), Earth (blue), and the Spacecraft

(dashed purple) after Burn 1.

Next we calculate the directions of the velocity vectors in 3D space. Up until

this point, we have used a coordinate system where the ecliptic plane is defined

as the (x, y) plane. However, we now will define the (x, y) plane as the plane of

the asteroid’s orbit. In this new coordinate system, the asteroid’s orbit can be

written as a simple ellipse.

(x+ c)2

a2
+
y2

b2
= 1 (48)

In this equation, a is the semimajor axis, b is the semiminor axis, and c is the

distance between the center of the ellipse and the foci of the ellipse. The before

mentioned variables are related by the following equations:

c = ae a2 = b2 + c2 (49)
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Figure 11: 3D view of the orbits of the Asteroid (red), Earth (blue), and the Spacecraft

(dashed purple) after Burn 1.

As a and e are givens, b and c can be calculated for any asteroid orbit. By using

the offset of c, the Sun (one focus) is returned to the origin. The velocity vector

in an elliptical orbit is always tangent to its point of origin on the ellipse. To

find a tangent vector to an ellipse, we first take the gradient of the equation of

the ellipse to find the normal vectors at each point on the ellipse.

∇
(

(x+ c)2

a2
+
y2

b2

)
=

(
2(x+ c)

a2
,

2y

b2

)
(50)

Tangent vectors are always orthogonal to normal vectors, thus the tangent vec-

tors to an ellipse are given by:(
−2y

b2
,

2(x+ c)

a2

)
(51)

As we only care about direction, this simplifies to:(
−y
b2
,
x+ c

a2

)
(52)

Converting this equation into cylindrical coordinates yields:

x = r(ν) cos(ν) y = r(ν) sin(ν) (53)
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(
−r(ν) sin(ν)

b2
,
r(ν) cos(ν) + c

a2

)
(54)

Since this vector represents the velocity vector of an asteroid in 3D space, the

vector is given by:

−−→vast =

(
−r(ν1) sin(ν1)

b2
,
r(ν1) cos(ν1) + c

a2
, 0

)
(55)

The velocity vector for the spacecraft is significantly easier to find. Since the

spacecraft intersects the asteroid’s orbit at the transfer orbit apoapsis, the space-

craft’s flight path angle is 0. Thus, its velocity vector points orthogonally to

the vector pointed towards the spacecraft from the central body. The velocity

vector of the craft is thus tangent to a circle, and is given by:

(− sin(ν1), cos(ν1)) (56)

Using the new asteroid based coordinate system, the craft’s velocity vector is

inclined relative to the (x, y) plane. Since the craft is at the ascending node, this

inclination is exactly i. Rotating the vector by i about the radial axis produces

the 3D craft velocity vector.

−−−→vcraft = R̂r(i)(− sin(ν1), cos(ν1), 0) = (− sin(ν1) cos(i), cos(ν1) cos(i), sin(i))

(57)

Taking the dot product of the two normalized vectors produces the angle be-

tween them.
−−−→vcraft
|−−−→vcraft|

·
−−→vast
|−−→vast|

= cos(Ψ) (58)

With both vector magnitudes and the angle known, the Delta-V of Burn 2 vM2

is given by the law of cosines.

vM2 =
√
v2craft + v2ast − 2vcraftvast cos(Ψ) (59)

The execution of this burn once again results in orbital alignment and ren-

dezvous.
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Figure 12: After Burn 2, the asteroid and spacecraft orbits (red and dashed purple)

are fully aligned. The blue orbit is Earth’s orbit for reference.

5.3. The 2 Burn Method: Delta-V

The final Delta-V (∆V ) for the 2 Burn Method is the sum of the Delta-V of

each burn.

∆V = vM1 + vM2 (60)

As before, this expression represents the Delta-V necessary to rendezvous with

an asteroid, not the Delta-V for the round trip back to Earth.

This method also requires a proper alignment of the asteroid and Earth to

execute a proper rendezvous such that the asteroid and spacecraft arrive at the

chosen ascending/descending node at the same time.
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6. Data Analysis

6.1. Input Data

The chosen dataset for the orbital analysis is the Minor Planet Center Orbit

Database (MPCORB) accessed on October 3, 2016.5 This dataset is the product

of individual observers’ data on solar system objects and contains data on over

700,000 asteroid orbits, including both the numbered objects and provisional

objects. Both the numbered and provisional objects were used in this study.

The datafile is an ASCII based text file (see Figure 13). The datafile uses

blank entries for missing data points (as opposed to “–”, “NaN”,“n/a”, etc).

This proved troublesome when reading in the dataset using the Python function

“numpy.genfromtxt”.6 Using “Find and Replace” commands in a text editor,

blanks were identified and replaced with the string “FIX ” to simplify the import

process.

The data read in were: object designation (Des’n), argument of periapsis

(Peri.), inclination (Incl.), eccentricity (e), and semimajor axis (a).

6.2. Code

Both orbital rendezvous methods were implemented in IPython Notebook

(Python 2.7.10). The code consists of three parts, the 3 Burn Method Calcu-

lations (Appendix A), the 2 Burn Method Calculations (Appendix B), and the

Data Analysis code (Appendix C) that creates the final output data file.

The code was run on on a Late 2011 15” MacBook Pro (MacBookPro8,2)

running MacOS 10.12.1 and applied to the dataset, producing a set of two

Delta-V values (one for each method) for each object for the dataset. While

calculating the Delta-V for all 700,000 objects, the code ran for around 10 min-

utes for each burn method and used no more than 2 GB of RAM.

A starting Earth parking orbit height of 100 km (LEO) was used throughout.

A comparison was then applied to the dataset to determine the better optimized

5This dataset is available and updated daily at http://www.minorplanetcenter.org/iau/MPCORB/MPCORB.DAT
6More sophisticated read-in commands can be used to bypass this issue.
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Figure 13: The first few rows and columns of data from MPCORB.DAT. The last few

rows demonstrate the “FIX ” replacement.

Delta-V and each entry was tagged with the method that calculated the lower

Delta-V7. Additional code was used to combine the output datasets from each

method and to analyze the final dataset and produce plots as needed.

6.3. Output Dataset

The resulting output dataset (see Figure 14) writes out for each object:

object designation (Des’n), argument of periapsis (Peri.), inclination (Incl.),

eccentricity (e), semimajor axis (a), Delta-V for the 3 Burn Method (DV1),

Delta-V for the 2 Burn Method (DV2), the lower Delta-V value (DV BEST),

and the number of the Method that produced the lower Delta-V value (Method).

6.4. Comparison of Methods

The two different rendezvous methods provide remarkably similar results

when applied to the dataset.

7In the output file, “1” Corresponds to the 3 Burn Method, “2” corresponds to the 2 Burn

Method
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Figure 14: The first few rows of data from the output file. The heading was added

manually for display purposes, and is not included in the raw output file to increase

readability by computers.

Figure 15 shows the Delta-V distributions for each method. Clearly, the

3 Burn Method is more efficient for some entires in the 8-9 km s−1 range, as

the Best Method distribution is greater than the plot for the 2 Burn Method.

After ∼13 km s−1, the 2 Burn Method and Best Method distributions converge

demonstrating that the 3 Burn Method is comparatively inefficient for these

objects. These objects (especially those with a Delta-V between 13-15 km s−1)

tend to have an argument of periapsis ω between 30◦ − 150◦ or 220◦ − 330◦.

These arguments of the periapsis result in Burn 2 of the 3 Burn Method causing

the majority of the inclination change. This is relatively costly in Delta-V, as

demonstrated in the later discussion of the relative efficiency of each method’s

burns.

The 2 Burn Method showed on average, an 8% decrease in Delta-V relative

to the 3 Burn Method. However, the 3 Burn Method still outperformed the

2 Burn Method in 14.6% of the dataset objects. This 8% decrease in Delta-V
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may appear minor, but finding the minimal Delta-V path for a mission is critical

to the budget and capacity of a mission as previously discussed regarding the

rocket equation. Therefore, we define an efficient burn or method as one that

minimizes Delta-V.

Figure 15: Distributions of Main Belt asteroid (non-Main Belt objects have been filtered

out) Delta-V in the dataset for the 3 Burn Method (blue), the 2 Burn Method (green)

and the best Method for each datapoint (red)

To investigate which objects are preferred by each method, Figure 16 plots

the inclination and semimajor axis of the asteroids best reached by each of the

two methods separately in a heat map. Figure 16 demonstrates that the 3 Burn

Method tends to be preferred only for orbits with low orbital inclination. This

makes sense, as the 3 Burn Method is most efficient in its first and third burns.

The first burn is efficient because it sets the apoapsis of the orbit while at the

periapsis, making maximum use of the Oberth Effect with respect to both Earth

and the Sun. Since a rocket is a momentum engine, the acceleration it generates
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Figure 16: Asteroid inclination plotted against semimajor axis. The left plots shows

the density of asteroids best reached by the 3 Burn Method. The right plot shows the

density of asteroids best reached by the 2 Burn Method.

is independent of the rocket’s current orbital speed. Because kinetic energy is

given by K = (1/2)mv2, accelerating linearly at a high velocity results in a

greater kinetic energy increase than at lower velocity. This is known as the

Oberth Effect, and it explains why the periapsis is the best location from which

to raise the apoapsis [1].

Burn 3 is efficient for three reasons.

1. Burn 3 raises the periapsis at the apoapsis. Ignoring the simultaneous

inclination change, this is efficient because all of the rocket’s Delta-V is

added directly to the current velocity vector. Burns at an angle to the

velocity vector are inherently inefficient, as the magnitude of the resulting

vector is less than or equal to the sum of magnitudes of the original velocity

vector and the burn vector.

2. Orbital inclination is adjusted at the apoapsis. This is important, because
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an inclination change involves changing the direction of the velocity vector.

Thus, it is most efficient to do this when the velocity is minimal. For

example, if the magnitude of the velocity is 500 m s−1, then a 1000 m s−1

burn would be necessary to reverse the orbit direction (the most extreme

inclination change possible). However, if the velocity is only 50 m s−1,

then a 100 m s−1 burn will suffice. This applies to Burn 3 because the

apoapsis is the part of the orbit with the lowest velocity, thus it is the best

place to perform inclination changes. Thirdly, Burn 3 is a combination

of these two burns. Since an inclination change burn is performed at an

angle to the velocity vector and a raising burn is performed parallel to the

velocity vector, performing both at the same time is more efficient than

performing them individually for the same reasoning as above regarding

vector addition.

Each of the 2 Burn Method’s burns carry a degree of efficiency and ineffi-

ciency. Burn 1 is efficient through its use of the Oberth Effect, and it selects the

higher ascending/descending node to get the maximum benefit from this. How-

ever, as it does not establish the full apoapsis of the asteroid’s orbit, this must

be done later in Burn 2, where it will be more costly to raise the apoapsis. Burn

2 is difficult to judge, as it combines several burns in a single burn (setting the

apoapsis, setting the periapsis, and adjusting the inclination) gaining efficiency

through the vector addition theorem, as well as fixing the inclination in a single

burn as opposed to the two burns used in the 3 Burn Method. However, Burn 2

does not set the Apoapsis at the Periapsis and vice versa, leading to inefficiency

in kinetic energy gain. These differences between the two Methods are beneficial

to the investigation because using them together decreases the average Delta-V

of the dataset by 9% compared to the 3 Burn Method alone, and by 1% when

compared to the 2 Burn Method alone.
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7. Results and Analysis

7.1. Delta-V Distribution: All Objects

The MPC dataset contains all known small bodies in the solar system, in-

cluding comets, NEOs, KBOs , Trojans, and other bodies. For this paper, we

define:

• NEOs have a periapsis less than the semimajor axis of Mars. Although

NEOs may not be near the Earth for their entire orbit, they are nearby

at periapsis.

• Main Belt objects have their orbit entirely contained within Mars’ and

Jupiter’s semimajor axes

• Outer objects have an apoapsis greater than the semimajor axis of Jupiter

and a periapsis greater than the semimajor axis of Mars, thus passing

outside of the Main Belt during their orbits.

Table 1 shows the contents of the MPCORB dataset broken down by type.

Table 1: MPC Objects

Object Class Periapsis Apoapsis Objects Median Delta-V

NEOs < aMars < aMars 19743 9.6 km s−1

Main Belt > aMars < aJup 691026 10.0 km s−1

Outer > aMars > aJup 9636 12.0 km s−1

Total – – 720405 10.0 km s−1

Figure 17 plots the Delta-V distributions of these four classes of objects.

The most direct correlation in Figure 17 is that Delta-V scales with semimajor

axis. This is expected from orbital mechanics and is no surprise. The trailing

end of the NEOs is likely due to NEOs with orbits inside of Earth’s, near the

Sun, a regime that our burn methods are not designed for.

7.2. Delta-V Distribution: Main Belt

The purpose of this project is to analyze the orbits of the Main Belt asteroids

and determine the feasibility of deploying mining missions to these objects.
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Figure 17: The distribution of asteroid Delta-V in the dataset, using the lowest value

from the two methods per asteroid. The peaks of each dataset are scaled to a similar

height by binning. The Main Belt has 10,000 bins, the NEOs have 100 bins, and the

Outer objects have 400 bins.

Figures 18 and 19 show that a spacecraft with a Delta-V rating of 10.0 km s−1

can rendezvous with half of the Main Belt asteroids.

Looking more closely at the low Delta-V Main Belt asteroids (see Figure 20),

there are 5,211 targets within 8 km s−1, 214 targets within 7.5 km s−1, and just 6

targets within 7 km s−1. The number of accessible Main Belt Asteroids exceeds

the number of accessible NEOs at Delta-V ≈ 8.0 km s−1. This demonstrates

that there are plenty of potential asteroid targets for research and mining, but

there is a threshold Delta-V that must be reached for the Main Belt asteroids

to be accessible targets.
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Figure 18: The distribution of asteroid Delta-V in the dataset, using the lowest value

for Delta-V from the two methods per asteroid.

7.3. Low Delta-V Orbital Parameters

The completed dataset can provide insight into the types of orbits that are

most accessible, and can be used to analyze the strengths and weaknesses of

each method of orbital burns. The distribution of Delta-V in (a, i) space is

shown in Figure 21.

Clearly Delta-V is minimized in orbits with a < 2.5 AU, and i < 10◦. These

orbits are the most similar to that of the Earth and are thus the lowest Delta-V

targets.

Even at distances near Jupiter (a=5.2 AU), at i < 15◦ the Delta-V does

not exceed ∼13 km s−1. This is because at high semimajor axis a Delta-V

approaches the solar escape velocity from Earth’s solar orbit (42.1 km s−1).

Instead, high inclination is much more costly to reach, equaling 13 km s−1

by i ≈ 25◦ and climbing to ∼16 km s−1 by i ≈ 30◦.
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Figure 19: Integral plot of the fraction of Main Belt asteroids that can be reached for a

given Delta-V, using the lowest value for Delta-V from the two methods per asteroid.

Note the small tail of ∆V ) < 8 km s−1 objects.

The argument of periapsis also has a significant effect on Delta-V. Figure

22 shows that both orbital methods prefer the argument of the periapsis to be

either at 0◦ or 180◦. These argument of periapsis values result in a minimal

Burn 2 of the 3 Burn Method, and would allow Burn 2 of the 2 Burn Method

to occur at the apoapsis, the most efficient place for it to occur. By the inverse

reasoning, arguments of the periapsis of 90◦ and 270◦ are highly unfavorable for

both methods. On average in the dataset, orbits with ω = 180◦ ± 20◦ have a

Delta-V that is 1.1 km s−1 lower than orbits with ω = 90◦ ± 20◦.

7.4. The Lowest Delta-V Main Belt Asteroids

This study is not purely statistical. We have identified specific low Delta-V

Main Belt objects. Table 2 lists some properties of the 10 Main Belt asteroid

with the lowest Delta-V.
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Figure 20: Logarithmic integral plot of Main Belt asteroids and NEOs that can be

reached for a given Delta-V, using the lowest value for Delta-V from the two methods

per asteroid.

Table 2: 10 Lowest Delta-V Objects

Designation ω (◦) i (◦) e a (AU) Delta-V Method H-mag

P7471 201.79536 1.64067 0.05768 1.72553 6.94 km s−1 2 19.4

R1774 351.99342 1.55672 0.14794 1.82854 6.83 km s−1 2 18.9

X9147 196.51032 0.38700 0.17064 1.93272 7.03 km s−1 1 18.7

d6707 211.45293 4.03677 0.03018 1.62904 7.00 km s−1 2 20.0

K06T09G 157.85926 0.51266 0.18357 1.89659 6.87 km s−1 1 19.4

K16CD7U 312.03544 0.83988 0.20963 1.93816 7.06 km s−1 1 19.5

K01FL1A 242.51722 0.31751 0.26329 2.08645 7.07 km s−1 1 21.8

K05Q53U 202.12606 0.09758 0.27036 2.11243 7.00 km s−1 1 19.1

K06O27D 4.57879 1.15080 0.18180 1.97099 7.08 km s−1 2 20.8

K10JC9H 189.98297 3.08198 0.01223 1.64215 6.94 km s−1 2 –

38



Figure 21: Asteroid inclination plotted against semimajor axis (a), with Delta-V in km

s−1 as a color scale. Asteroids with a Delta-V of 18 km s−1 or greater are not included

on this plot. These objects make up < 1% of the dataset.

7.5. Current Mission Feasibility

To test the practicality of the results, we propose a hypothetical mission

using the Atlas V 551 to rendezvous with Main Belt asteroid 9283 “MartinElvis.”

The parameters of “MartinElvis” are listed in Table 3.

Table 3: “MartinElvis” Parameters

Designation ω (◦) i (◦) e a (AU) Delta-V Method H-mag

09283 247.08651 2.23369 0.15893 2.45411 9.33 km s−1 1 14.4
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Figure 22: Asteroid argument of the periapsis ω plotted against semimajor axis a, with

Delta-V in km s−1 as a color scale.

“MartinElvis” is a representative sample of a Main Belt asteroid, as the

asteroid’s Delta-V (9.33 km s−1) is slightly below the median Delta-V of the

Main Belt (10.0 km s−1). The 3 Burn Method is preferred for “MartinElvis.”

To test the mission feasibility, we choose the Atlas V 551 as the launch vehicle.

“MartinElvis” has an apoapsis of 2.84 AU, thus the semimajor axis of the 3

Burn transfer orbit would be 1.92 AU (see Eq. (14)). Combining Eq. (10),

(12), and (15) and solving for C3 gives:

C3 =

(√
µ

(
2

r⊕
− 1

at

)
− v⊕

)2

(61)
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This corresponds to a C3 of 41 km2 s−2 for “MartinElvis.”

Using Atlas V 551 payload ratings as function of C3 [12], the Atlas V 551

can launch a mass of 3140 kg to a C3 of 41 km2 s−2. This uses the Atlas V 551

to perform the entirety of Burn 1. The 3140 kg spacecraft must then perform

burns 2 and 3. The Delta-V of burns 2 and 3 are 0.88 km s−1 and 3.52 km s−1

respectively, for a total remaining Delta-V of 4.40 km s−1.

Returning to the rocket equation (Eq. (2)), we choose ve to be 4.4 km s−1,

the value for the RL-10 and J2X LH2/LOX engines [5]. Using these values, we

solve for the delivered mass mf to “MartinElvis”.

mi

mf
= exp

(
∆V

ve

)
3140 kg

mf
= exp

(
4.40 km s−1

4.4 km s−1

)
(62)

mf = 1155 kg (63)

This is a promising result, as the Rosetta Orbiter had a dry mass of 1180

kg [7]. For a full mining mission, this would be insufficient, but “MartinElvis”

is not a low Delta-V Main Belt mining target.

This type of exercise could be largely expanded upon in future studies, creat-

ing a database of delivered payloads to asteroids using different launch vehicles

(see Section 8.2: Future Directions).

8. Conclusions and Future Directions

8.1. Conclusions

This examination of Main Belt asteroids as prospective targets for mining

missions has produced promising results. Within a Delta-V of 8 km s−1, start-

ing from LEO, one can access 5,211 asteroid targets. Additionally, there are 214

targets that can be reached with a Delta-V of less than 7.5 km s−1. This gives

a fantastic selection of potential targets for early mining missions. Additionally,

the development of two very different sets of orbital burns that can be used for

rendezvous are excellent tools for further orbital applications.

This investigation concludes that the asteroid mining industry has a sub-

stantial number of feasible targets in the Main Belt that can be used for both

commercial and scientific initiatives in the near future.
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8.2. Future Directions

This project simply lays the groundwork for mining analysis of the Main

Belt. We plan to annotate the orbital calculation code and publish it as a

tool for the scientific community, along with the output data formatted into an

online database for public use. Follow up projects could include cross referencing

this dataset with Main Belt asteroid size and composition to further focus on

optimal mining targets. An expansion of the orbital code should investigate

launch windows for given allowed increases in Delta-V.

The next steps in this project involve the application of its results. The round

trip journey time is an important constraint, given the time cost of mining. The

synodic periods of the asteroids constrain both launch opportunities and the and

the chances to better characterize potential targets. Another constraint is the

comparison of the results to specific rocket systems specifications to estimate the

deliverable payload with current and future hardware. Each of these constraints

will refine, but also restrict the optimum target list.
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Appendix A. 3 Burn Method Code

import math

import numpy as np

np . s e t p r i n t o p t i o n s ( fo rmatte r={ ’ f l o a t ’ : ’ { : g} ’ . format }) #s p e c i f i e s

↪→ numpy array number format

#Constants and Unit Conversion

G=6.67408∗10∗∗(−11) #mˆ3 kgˆ−1 sˆ−2

Msun=1.988∗10∗∗30 #kg

u=Msun∗G

MEarth=5.9722∗10∗∗24 #kg

ue=MEarth∗G

REarth=149.6∗10∗∗9 #meters

VEarth=math . s q r t (u∗( f l o a t (2 ) / f l o a t ( REarth )− f l o a t (1 ) / f l o a t ( REarth ) ) )

Vpark=math . s q r t ( ue ∗( f l o a t (2 ) / f l o a t (6378000+100000)− f l o a t (1 ) / f l o a t

↪→ (6378000+100000) ) ) #o r b i t a l v e l o c i t y at 100km parking o r b i t

Vesc=math . s q r t (2∗ ue /(6378000+100000) ) #escape v e l o c i t y at 100km

↪→ parking o r b i t

de f MtoAU(m) :

re turn m∗6.68459∗10∗∗(−12)

de f AUtoM(AU) :

re turn AU/(6.68459∗10∗∗(−12) )

de f DegtoRad ( deg ) :

r e turn deg∗math . p i / f l o a t (180)

de f RadtoDeg ( rad ) :

r e turn rad ∗180/math . p i

#Fina l Function

de f DeltaV (w, i , ec , a ) :

Total=M1( ec ,AUtoM( a ) )+M2( DegtoRad (w) , DegtoRad ( i ) , ec ,AUtoM( a ) )+

↪→ M3( DegtoRad (w) , DegtoRad ( i ) , ec ,AUtoM( a ) )

re turn Total

de f DeltaVexp (w, i , ec , a ) :

r e turn M1( ec ,AUtoM( a ) ) ,M2( DegtoRad (w) , DegtoRad ( i ) , ec ,AUtoM( a ) ) ,

↪→ M3( DegtoRad (w) , DegtoRad ( i ) , ec ,AUtoM( a ) )

de f DVArray( array ) :

r e turn DeltaV ( array [ 0 ] , array [ 1 ] , array [ 2 ] , array [ 3 ] )
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#Maneuver 1

#Star t at 100 km Earth parking o r b i t

de f AstAp( ec , a ) : #apoaps i s o f a s t e r o i d

re turn (1+ec ) ∗a

de f AstPe ( ec , a ) : #p e r i a p s i s o f a s t e r o i d

re turn (1−ec ) ∗a

de f ve l o ( semi , r ) : #o r b i t a l v e l o c i t y at a rad iu s

re turn math . s q r t (u∗( f l o a t (2 ) / f l o a t ( r )− f l o a t (1 ) / f l o a t ( semi ) ) )

de f TransPeV ( ec , a ) : #v e l o c i t y at t r a n s f e r p e r i a p s i s

r e turn ve lo ( ( AstAp( ec , a )+REarth ) / f l o a t (2 ) , REarth )

de f M1( ec , a ) : #Delta−V f o r Maneuver 1

re turn math . s q r t ( ( ( TransPeV ( ec , a )−VEarth ) ∗∗2)+(Vesc ∗∗2) )−Vpark

#Maneuver 2

de f TransA ( ec , a ) :

r e turn (AstAp( ec , a )+REarth ) / f l o a t (2 )

de f TransEC( ec , a ) : #Trans fe r o r b i t E c c e n t r i c i t y

re turn f l o a t ( ( AstAp( ec , a )−REarth ) ) /(AstAp( ec , a )+REarth )

de f p e r i l a t (w, i ) : #” Lat i tude ” o f P e r i a p s i s

r e turn math . a s in (math . s i n (w) ∗math . s i n ( i ) )

de f TransR ( ec , a ) : #Radius at Maneuver 2 burn

return TransA ( ec , a )∗(1−TransEC( ec , a ) ∗∗2)

de f FPAngle ( ec , a ) : #Fl i gh t Path Angle

re turn math . acos ( REarth∗TransPeV ( ec , a ) /( TransR ( ec , a ) ∗ ve lo (

↪→ TransA ( ec , a ) , TransR ( ec , a ) ) ) )

de f M2Angle (w, i , ec , a ) : #Maneuver 2 Angle

re turn math . acos (math . cos ( p e r i l a t (w, i ) ) ∗(math . cos ( FPAngle ( ec , a )

↪→ ) ∗∗2)+(math . s i n ( FPAngle ( ec , a ) ) ∗∗2) )

de f M2(w, i , ec , a ) : #Delta−V f o r Maneuver 2 , der ived from law o f

↪→ c o s i n e s with equal s i d e l eng th s

re turn 2∗ ve lo ( TransA ( ec , a ) , TransR ( ec , a ) ) ∗math . s i n (M2Angle (w, i ,

↪→ ec , a ) /2)

#Maneuver 3

de f TwistAng (w, i ) : #ang le f o r very l a s t maneuver

#Function e x h i b i t s odd behavior near l i m i t i n g case o f p i /2 f o r

↪→ i n c l i n a t i o n

45



#This i s expected , as the o r b i t a l approach i s des igned f o r

↪→ i n c l i n a t i o n s below 45 degree s

re turn math . acos (math . cos ( i ) /math . s q r t ( ( math . cos (w) ∗∗2) +((math .

↪→ cos ( i ) ∗∗2) ∗(math . s i n (w) ∗∗2) ) ) )

de f M3Vi( ec , a ) : #i n i t i a l v e l o c i t y at Maneuver 3 p o s i t i o n

re turn ve lo ( TransA ( ec , a ) ,AstAp( ec , a ) )

de f M3Vf( ec , a ) : #f i n a l v e l o c i t y at Maneuver 3 p o s i t i o n

re turn ve lo ( a , AstAp( ec , a ) )

de f M3(w, i , ec , a ) : #Delta−V f o r Maneuver 3 , der ived from law o f

↪→ c o s i n e s

re turn math . s q r t (M3Vi( ec , a )∗∗2+M3Vf( ec , a )∗∗2−2∗M3Vi( ec , a ) ∗M3Vf(

↪→ ec , a ) ∗math . cos ( TwistAng (w, i ) ) )

#Load d a t a f i l e , l i n e 42 i s data , sk ip heade r=41

DATA=np . genfromtxt ( ’MPCORB import .DAT’ , d e l i m i t e r=None , sk ip heade r

↪→ =41, u s e c o l s =(5 ,7 ,8 ,10) )

NAMES=np . genfromtxt ( ’MPCORB import .DAT’ , dtype=’ s t r i n g ’ , d e l i m i t e r=

↪→ None , sk ip heade r =41, u s e c o l s =(0) )

p r i n t ’ Import S u c c e s s f u l ’

#Ca lcu la te Delta−V and Output D a t a f i l e

Result=np . a p p l y a l o n g a x i s (DVArray , 1 ,DATA, )

ResultTable=np . t ranspose (np . append (np . t ranspose (DATA) , [ Result ] , a x i s

↪→ =0) )

ResW=ResultTable [ : , 0 ]

ResI=ResultTable [ : , 1 ]

ResEC=ResultTable [ : , 2 ]

ResA=ResultTable [ : , 3 ]

ResDV=ResultTable [ : , 4 ]

FinalDataTable=np . array ( z ip (NAMES, ResW, ResI , ResEC , ResA , ResDV) ,

↪→ dtype =[( ’NAMES’ , ’ S16 ’ ) , ( ’ResW ’ , f l o a t ) , ( ’ ResI ’ , f l o a t ) ,

↪→ ( ’ResEC ’ , f l o a t ) , ( ’ResA ’ , f l o a t ) , ( ’ResDV ’ , f l o a t ) ] )

np . save txt ( ’ DeltaV Results . txt ’ , FinalDataTable , fmt=[”%s ” , ]+ [ ”%.5 f ”

↪→ , ] ∗ 5 )
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Appendix B. 2 Burn Method Code

import math

import numpy as np

np . s e t p r i n t o p t i o n s ( fo rmatte r={ ’ f l o a t ’ : ’ { : g} ’ . format }) #s p e c i f i e s

↪→ numpy array number format

#Constants and Unit Conversion

G=6.67408∗10∗∗(−11) #mˆ3 kgˆ−1 sˆ−2

Msun=1.988∗10∗∗30 #kg

u=Msun∗G

MEarth=5.9722∗10∗∗24 #kg

ue=MEarth∗G

REarth=149.6∗10∗∗9 #meters

VEarth=math . s q r t (u∗( f l o a t (2 ) / f l o a t ( REarth )− f l o a t (1 ) / f l o a t ( REarth ) ) )

de f MtoAU(m) :

re turn m∗6.68459∗10∗∗(−12)

de f AUtoM(AU) :

re turn AU/(6.68459∗10∗∗(−12) )

de f DegtoRad ( deg ) :

r e turn deg∗math . p i / f l o a t (180)

de f RadtoDeg ( rad ) :

r e turn rad ∗180/math . p i

#Fina l Function

de f DeltaV (w, i , ec , a ) :

r e turn M1( DegtoRad (w) , ec ,AUtoM( a ) )+M2( DegtoRad (w) , DegtoRad ( i ) ,

↪→ ec ,AUtoM( a ) )

de f DeltaVexp (w, i , ec , a ) :

r e turn M1( DegtoRad (w) , ec ,AUtoM( a ) ) ,M2( DegtoRad (w) , DegtoRad ( i ) ,

↪→ ec ,AUtoM( a ) )

de f DVArray( array ) :

r e turn DeltaV ( array [ 0 ] , array [ 1 ] , array [ 2 ] , array [ 3 ] )

#Astero id Parameters

de f AstAp( ec , a ) : #apoaps i s o f a s t e r o i d

re turn (1+ec ) ∗a

de f AstPe ( ec , a ) : #p e r i a p s i s o f a s t e r o i d
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r e turn (1−ec ) ∗a

#Maneuver 1

#Star t at 100 km Earth parking o r b i t

ParkAlt =100000 #Earth Parkign Orbit a l t i t u d e above p lanet s u r f a c e

Vpark=math . s q r t ( ue ∗( f l o a t (2 ) / f l o a t (6378000+ ParkAlt )− f l o a t (1 ) / f l o a t

↪→ (6378000+ ParkAlt ) ) ) #o r b i t a l v e l o c i t y at Earth parking o r b i t

Vesc=math . s q r t (2∗ ue /(6378000+ ParkAlt ) ) #escape v e l o c i t y at Earth

↪→ parking o r b i t

de f ve l o ( semi , r ) : #o r b i t a l v e l o c i t y at a rad iu s

re turn math . s q r t (u∗( f l o a t (2 ) / f l o a t ( r )− f l o a t (1 ) / f l o a t ( semi ) ) )

de f RNode(w, ec , a ) : #rad iu s at ascending or decending node , choose

↪→ h igher one

Node1=a∗(1−( ec ∗∗2) ) /(1+ ec ∗math . cos (−w) )

Node2=a∗(1−( ec ∗∗2) ) /(1+ ec ∗math . cos (math . pi−w) )

i f Node1>Node2 :

re turn Node1

e l s e :

r e turn Node2

de f NodeChoice (w, ec , a ) : #which node was chosen , f o r a l l f u tu r e

↪→ c a l c u l a t i o n the p e r i a p s i s d i r e c t i o n i s de f ined as 0 degree s

Node1=a∗(1−( ec ∗∗2) ) /(1+ ec ∗math . cos (−w) )

Node2=a∗(1−( ec ∗∗2) ) /(1+ ec ∗math . cos (math . pi−w) )

i f Node1>Node2 :

re turn −w

e l s e :

r e turn math . pi−w

def TransPeV (w, ec , a ) : #v e l o c i t y at t r a n s f e r p e r i a p s i s

r e turn ve lo ( ( RNode(w, ec , a )+REarth ) / f l o a t (2 ) , REarth )

de f M1(w, ec , a ) : #Delta−V f o r Maneuver 1

re turn math . s q r t ( ( ( TransPeV (w, ec , a )−VEarth ) ∗∗2)+(Vesc ∗∗2) )−

↪→ Vpark

#Maneuver 2

#Def ine Orb i ta l Elements

de f TransA (w, ec , a ) :

r e turn (RNode(w, ec , a )+REarth ) / f l o a t (2 )

de f TransEC(w, ec , a ) : #Trans fe r o r b i t E c c e n t r i c i t y
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r e turn f l o a t ( ( RNode(w, ec , a )−REarth ) ) /(RNode(w, ec , a )+REarth )

de f AstB( ec , a ) : #semiminor a x i s o f a s t e r o i d o r b i t

r e turn a∗math . s q r t (1−ec ∗∗2)

de f AstC( ec , a ) : #”c” o f e l l i p s e , u s e f u l f o r c a l c u l a t i o n

re turn a∗ ec

#Def ine Ve loc i ty magnitudes

de f TransVM2(w, ec , a ) :

r e turn ve lo ( TransA (w, ec , a ) , TransA (w, ec , a ) ∗(1+TransEC(w, ec , a ) ) )

de f AstVM2(w, ec , a ) :

r e turn ve lo ( a , RNode(w, ec , a ) )

#Def ine Vector components

de f VecX(w, ec , a ) : #X d i r e c t i o n vec to r component o f a s t e r o i d o r b i t

↪→ at node

re turn −RNode(w, ec , a ) ∗math . s i n ( NodeChoice (w, ec , a ) ) /AstB( ec , a )

↪→ ∗∗2

de f VecY(w, ec , a ) : #Y d i r e c t i o n vec to r component o f a s t e r o i d o r b i t

↪→ at node

re turn (RNode(w, ec , a ) ∗math . cos ( NodeChoice (w, ec , a ) )+AstC( ec , a ) ) /

↪→ a∗∗2

de f NormConstAst (w, ec , a ) :#Normal izat ion constant f o r Ve loc i ty

↪→ vec to r

re turn math . s q r t (VecX(w, ec , a )∗∗2+VecY(w, ec , a ) ∗∗2)

de f VecXTrans (w, i , ec , a ) : #X d i r e c t i o n vec to r component o f t r a n s f e r

↪→ o r b i t at node

re turn −math . s i n ( NodeChoice (w, ec , a ) ) ∗math . cos ( i )

de f VecYTrans (w, i , ec , a ) : #Y d i r e c t i o n vec to r component o f t r a n s f e r

↪→ o r b i t at node

re turn math . cos ( NodeChoice (w, ec , a ) ) ∗math . cos ( i )

de f VecZTrans ( i ) :

r e turn math . s i n ( i )

de f TransNorm (w, i , ec , a ) :

r e turn math . s q r t ( VecXTrans (w, i , ec , a )∗∗2+VecYTrans (w, i , ec , a )∗∗2+

↪→ VecZTrans ( i ) ∗∗2)

de f FinalM2Angle (w, i , ec , a ) : #Ca lcu la te Angle between Orbits us ing

↪→ Dot Product

re turn math . acos ( ( VecX(w, ec , a ) ∗VecXTrans (w, i , ec , a )+(VecY(w, ec , a

↪→ ) ∗VecYTrans (w, i , ec , a ) ) ) /( NormConstAst (w, ec , a ) ∗TransNorm (
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↪→ w, i , ec , a ) ) )

de f M2(w, i , ec , a ) : #Delta−V f o r Maneuver 1 , der ived from law o f

↪→ c o s i n e s

re turn math . s q r t (TransVM2(w, ec , a )∗∗2+AstVM2(w, ec , a )∗∗2−2∗

↪→ TransVM2(w, ec , a ) ∗AstVM2(w, ec , a ) ∗math . cos ( FinalM2Angle (w,

↪→ i , ec , a ) ) )

#Load d a t a f i l e , l i n e 42 i s data , sk ip heade r=41

DATA=np . genfromtxt ( ’MPCORB import .DAT’ , d e l i m i t e r=None , sk ip heade r

↪→ =41, u s e c o l s =(5 ,7 ,8 ,10) )

NAMES=np . genfromtxt ( ’MPCORB import .DAT’ , dtype=’ s t r i n g ’ , d e l i m i t e r=

↪→ None , sk ip heade r =41, u s e c o l s =(0) )

p r i n t ’ Import S u c c e s s f u l ’

#Ca lcu la te Delta−V and c r e a t e output f i l e

Result=np . a p p l y a l o n g a x i s (DVArray , 1 ,DATA)

ResultTable=np . t ranspose (np . append (np . t ranspose (DATA) , [ Result ] , a x i s

↪→ =0) )

ResW=ResultTable [ : , 0 ]

ResI=ResultTable [ : , 1 ]

ResEC=ResultTable [ : , 2 ]

ResA=ResultTable [ : , 3 ]

ResDV=ResultTable [ : , 4 ]

FinalDataTable=np . array ( z ip (NAMES, ResW, ResI , ResEC , ResA , ResDV) ,

↪→ dtype =[( ’NAMES’ , ’ S16 ’ ) , ( ’ResW ’ , f l o a t ) , ( ’ ResI ’ , f l o a t ) ,

↪→ ( ’ResEC ’ , f l o a t ) , ( ’ResA ’ , f l o a t ) , ( ’ResDV ’ , f l o a t ) ] )

np . save txt ( ’ DeltaV Results . txt ’ , FinalDataTable , fmt=[”%s ” , ]+ [ ”%.5 f ”

↪→ , ] ∗ 5 )
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Appendix C. Data Combination Code

import numpy as np

import math

#Find best method f o r each datapoint

OLD=np . genfromtxt ( ’ DeltaV Results Method1 . txt ’ , d e l i m i t e r=None ,

↪→ u s e c o l s =(5) )

OLDFULL=np . genfromtxt ( ’ DeltaV Results Method1 . txt ’ , d e l i m i t e r=None )

NEW=np . genfromtxt ( ’ DeltaV Results . txt ’ , d e l i m i t e r=None , u s e c o l s =(5) )

NAMES=np . genfromtxt ( ’MPCORB import .DAT’ , dtype=’ s t r i n g ’ , d e l i m i t e r=

↪→ None , sk ip heade r =41, u s e c o l s =(0) )

DATA=np . vstack ( (OLD, NEW) ) .T

de f bes t ( array ) :

i f array [1] > array [ 0 ] :

r e turn array [ 0 ] , 1

e l s e :

r e turn array [ 1 ] , 2

MinResult=np . a p p l y a l o n g a x i s ( best , 1 ,DATA)

#Create f i n a l output d a t a f i l e

BEST=MinResult [ : , 0 ]

Method=MinResult [ : , 1 ]

ResW=OLDFULL[ : , 1 ]

ResI=OLDFULL[ : , 2 ]

ResEC=OLDFULL[ : , 3 ]

ResA=OLDFULL[ : , 4 ]

DV1=OLDFULL[ : , 5 ]

CombinedDataTable=np . array ( z ip (NAMES, ResW, ResI , ResEC , ResA , DV1,

↪→ NEW, BEST, Method ) , dtype =[( ’NAMES’ , ’ S16 ’ ) , ( ’ResW ’ , f l o a t

↪→ ) , ( ’ ResI ’ , f l o a t ) , ( ’ResEC ’ , f l o a t ) , ( ’ResA ’ , f l o a t ) , ( ’DV1 ’ ,

↪→ f l o a t ) , ( ’NEW’ , f l o a t ) , ( ’BEST ’ , f l o a t ) , ( ’ Method ’ , i n t ) ] )

np . save txt ( ’ DeltaV Combined Results . txt ’ , CombinedDataTable , fmt=[”%

↪→ s ” , ]+ [ ”%.5 f ” , ]∗2+[ ”%.7 f ” , ]∗2+[ ”%.2 f ” , ]∗3+[ ”%.0 f ” , ] )
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