


Nomenclature

AC(j) total average energy cost qINF (j) distribution of p.u. in use for the infinite

models

Bm probability of exceeding P after the ac-

ceptance of type-m request

Sm total number of appliances of type m

bm′(j) control function for FCDS sm(j) number of type m active appliances,

when the total number of p.u. is j

bm′,t(j) control function for FCDS SWC(j),GC(j) total average social welfare

C(j) cost function T number of thresholds for FCDS and

FDRS

cm′(j) control function for FDRS vm power-request arrival rate per inactive

type-m device

cm′,t(j) control function for FDRS wm,t probability that a consumer will agree

to participate in the scheduling program,

when Pt−1 ≤ j < Pt

cm,t(j) control function for FPRS Greek symbols

d−1m mean appliance operational duration αi, βi constants that represent the power pro-

duction cost in generating unit i

d−1m′,t mean appliance operational duration

when Pt−1 ≤ j < Pt

γm′ indicator for “elastic”’(γm′ = 0) or “un-

elastic”(γm′ = 1) appliances

e predefined upper bound of the blocking

probabilities

δm′,t delay that a type-m′ power request suffers

under FDRS, when Pt−1 ≤ j < Pt

GC(j) total generating cost function ζi flag that determines if the generating unit

i is ON or OFF

j total number of PU in use ηifi(j) no-load cost

M number of appliances θigi(j) start-up cost

Nm′(j) number of type m′-appliances as a func-

tion of the number of p.u. in use

Λm′,t final power-request arrival rate under

FDRS

P maximum number of supported p.u. in

the real system

ξi flag that determines if the generating unit

i is shifted from ON to OFF state, or vice

versa

pm power demand of type-m appliance Subscripts

pm′,t compressed power demand when Pt−1 ≤
j < Pt

i generating unit

Pt power threshold for the scheduling sce-

narios

m appliance type from the M set

Q distribution normalization constant m′ appliance type from the 2M set

qF (j) distribution of p.u. in use for the finite

models

t power threshold
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1. Introduction12

The electric power industry confronted numerous challenges in the last13

two decades. The aging infrastructure, the increasing demands for energy, the14

limited energy resources, as well as environmental concerns have affected the15

reliability of the existing power grid [1]. In addition, the rise of new types16

of loads, such as Electric Vehicles (EVs) will further increase the margin17

between the installed power capacity and the maximum power output [2]. It18

is therefore essential to improve the conventional power grid with the aim19

of increasing the consistency and the efficiency, while providing resilience to20

equipment failures. The intelligence of the smart grid is the key factor for the21

provision of improved control, efficiency and safety, through the incorporation22

of advanced two-way communication capabilities [3].23

As the smart grid concept continues to evolve, various methods have been24

developed in order to support the current infrastructure, such as distributed25

energy generation, energy storage, smart pricing and demand response (DR)26

[4], [5]. DR refers to a procedure that is applied in order to motivate changes27

in the customers’ power consumption habits in response to incentives regard-28

ing the electricity prices [6]. Various DR algorithms have been presented in29

the literature that are either based on the scheduling of power requests [7],30

[8], [9], [10], or on real-time pricing [11], [12], [13], [14], [15], [16]. Under a31

scheduling scheme, power requests are scheduled to be activated in specific32

time periods, in order to avoid the overconsumption in high demand hours.33

For example, in [10] the authors propose a scheme where power demands are34

delayed in queues, until the total power consumption drops below a prede-35

fined threshold. Alternatively, under energy scheduling DR programs [17],36
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power consumption reduction of specific loads is achieved by controlling their37

operation, in order to consume less power during system stress. The real-38

time pricing studies focus on the development of tariff models that target39

on the online participation of the consumers, in order to improve system’s40

performance [18]. As reported in [19], a real-time pricing scheme is most fa-41

vorable, since it provides a more flattered load curve by reducing the power42

consumption especially in peak-demand hours.43

We have recently proposed four power demand control scenarios that44

correspond to different approaches on the control of power customers’ power45

demands [20]. All scenarios assume that in each residence a specific number46

of appliances are installed, with diverse power requirements, different opera-47

tional times and different power requests arrival rates. The first or the default48

scenario defines the upper bound of the total power consumption, since it does49

not consider any scheduling mechanism. The Compressed Demand Scenario50

(CDS) takes into account the ability of some appliances to compress their51

power demands and at the same time expand their operational times. Under52

the Delay Request Scenario (DRS), power requests are delayed in buffers for a53

specific time period, when the total power consumption exceeds a predefined54

threshold. A similar threshold is used in the Postponement Request Scenario55

(PRS), where power requests are postponed not for a specific time period,56

but until the total power consumption drops below a second threshold. In57

addition, in [21] we have proposed similar scheduling scenarios and corre-58

sponding analytical models that take into account the appliance’s feature to59

alternate between ON and OFF states. The analytical models of both [20]60

and [21] assume Poisson processes for the power-request arrival procedure,61
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while the models in [21] do not consider the percentage of consumers that62

refuse to participate in the scheduling program.63

In the current paper, we revisit the power demand control scenarios that64

were presented in [20], and we propose novel and more accurate analyti-65

cal models for the determination of the peak demand in a residential area.66

More precisely, in [20] we introduced analytical models for each one of the67

four power demand control scenarios for the peak-demand calculation, un-68

der the assumption of infinite number of appliances in the residential area.69

This assumption is expressed by a Poisson process for the arrivals of power70

requests. Nevertheless, when we went to practical implementation of our71

results within the European project Energy to Smart Grid (E2SG) [22], we72

noticed an overestimation of the power consumption, so that a change in the73

developed analytical models must be accomplished, mainly due to our pre-74

vious assumption in [20] of an infinite number of appliances. Therefore, we75

leave [20] as an upper bound theoretical study for the four scenarios and here76

in the current paper we adapt our models to the more realistic assumption of77

finite number of appliances installed in the area under study. This assump-78

tion is expressed by a quasi-random process for the procedure of arrivals79

of power requests, which is more realistic compared to the Poisson process80

(infinite number of power-requests’ sources).81

The main contribution of this paper is the derivation of simple and effi-82

cient recursive formulas for the calculation of the peak demand under each83

scenario, which consider all the aforementioned realistic assumptions. As the84

simulations later show, the accuracy of the proposed formulas is quite satis-85

factory. It should be noted that the analytical are obtained by solving the86
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proposed recursive formulas, while the simulation results are obtained from87

our simulator. The latter is an object oriented simulator, which is based on88

random numbers for the power-request arrival procedure and executes the89

rules of each scheduling scenario without using any equations. The compari-90

son of analytical and simulation results also highlights the effectiveness of the91

proposed analysis, due to the fact that analytical results are obtained in a92

very short time compared to simulations, which are generally time-consuming93

and typically performed by troublesome simulation tools. Furthermore, in94

order to reveal the necessity of the proposed analysis, we compare results95

from the proposed formulas with corresponding results from [20], which as-96

sume infinite number of appliances, and show that the models of [20] results97

in serious peak-demand overestimations. Finally, we associate each proposed98

scenario and corresponding analytical model with proper real-time pricing99

schemes that take into account the specific features of each scenario, in order100

to derive the social welfare.101

The remainder of this paper is organized as follows. In Section II we102

present the four power demand control scenarios and the corresponding pro-103

posed analytical models that tackle a finite number of appliances. In Section104

III we provide a cost and social welfare analysis, while in Section IV we eval-105

uate the accuracy of the proposed analysis. We conclude the paper in Section106

V.107
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2. Finite Power Demand Control Scenarios108

2.1. The Default Scenario109

We study a residential area, where each residence is connected to the110

power line through an Energy Consumption Controller (ECC) (Fig. 1). The111

ECC is connected to all appliances in the residence and it is responsible for112

the collection and the transmission of power demands of each appliance to113

the Central Load Controller (CLC). The communication between the ECC114

of each residence and the CLC is realized through load control messages that115

are transmitted in the control channel of a Local Area Network (LAN). Under116

the default scenario, the CLC receives the power demands of all appliances117

and activates the requests immediately, i.e. no scheduling of requests occurs.118

Each residence is equipped with up to M appliances, while the power119

demand of appliance m (m = 1, . . . ,M) is denoted as pm power units (p.u.).120

The total number of appliances of type m in the residential area is denoted121

as Sm. Due to the finite number of each type of appliances, the arrival pro-122

cess of power demands is not random (Poisson arrivals), but it is considered123

quasi-random, since the total arrival rate of power requests at the CLC is124

actually a function of the number of inactive appliances. As power requests125

are generated only from inactive appliances, the total power-request arrival126

rate is not constant, but it is a function of the variable number of inactive127

appliances. We denote the arrival rate of power demands per type-m inactive128

appliances as vm. The operational time of type-m appliances (the period of a129

type-m appliance consuming power) is considered to be generally distributed130

with mean d−1m . The latter assumption is more realistic compared to the131

exponential distribution and is applied in several research schemes [20], [21],132
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[23], since it allows the application of any distribution for the operational133

times. Furthermore, the maximum number of p.u. that the energy provider134

can support in the specific area and is denoted as P . In the following analysis,135

both pm and P power-consumption parameters are considered discrete, since136

the developed recursive formulas are based on discrete functions; however,137

this assumption can provide efficient results, especially when 1 p.u. is consid-138

ered equivalent to a very small value of the (continuous) power consumption139

(e.g. 1 PU ⇔ 0.01 W ).140

Based on the aforementioned assumptions of the smart grid model, we141

can determine the distribution qF (j) that j p.u. are in use in the residential142

area:143

jqF (j) =
M∑

m=1

(vm · d−1m )pmqF (j − pm) (Sm − sm(j) + 1) (1)

for j = 1, . . . , P , and sm(j) is the number of active appliances of type m144

in the grid, when the total number of p.u. in use is j. A similar recursive145

formula is used to determine the distribution of the occupied bandwidth in146

multi-rate communication networks [24]. In order to calculate sm(j) we do147

not follow the complex method used in [24], but we assume that this number148

can be approximated by the mean number of appliances of type m when an149

infinite number of appliances is assumed to be present in the grid (Poisson150

power-request arrivals) and the total number of p.u. in use is j:151

sm(j) ≈ (Smvmd
−1
m )qINF (j − pm)

qINF (j)
(2)

where qINF (j) is the distribution of the number of p.u. in use, when an152

infinite number of appliances is assumed to be present in the grid. In order153
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to assume equal number of power requests in the two models (infinite and154

finite cases) the arrival rate in the infinite case is considered to be equal to155

the product Smvm, i.e. equal to the arrival rate of requests in the finite case,156

if all appliances of type m are considered to be inactive. The distribution157

qINF (j) can be calculated by the following recursive formula [20]:158

jqINF (j) =
M∑

m=1

(Smvm)d
−1
m pmqINF (j − pm) (3)

where the power-request’s arrival rate is equal to the total arrival rate Smvm159

of the case of finite number of appliances. Therefore, in order to derive the160

distribution qF (j) of Eq. (1), we first need to solve the recursive formula of161

Eq. (3), in order to determine the number sm(j) of the active appliances by162

using Eq. (2). Both the recursive formulas of Eq. (1) and Eq. (3) can be163

solved by using an iterative method.164

The probability that the total power consumption will exceed P upon165

the arrival of a power demand for pm p.u.is given by the summation of the166

probabilities of all blocking states :167

Bm =
P∑

j=P−pm+1

qF (j)

Q
(4)

where Q =
∑P

j=0 qF (j) is the sum of the un-normalized probabilities qF (j).168

Equation (4) can be used to determine the minimum value of the maximum169

number P of p.u., which guarantees that a power request will not suffer an170

outage probability not higher than a predefined maximum value e. Therefore,171

by considering a small value for the threshold e (e.g. 10−6) so that nearly172
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all power requests are accepted, we can use Eq. (1) and Eq. (4) in order to173

calculate the peak demand.174

2.2. The Finite Compressed Demand Scenario175

Similarly to the default scenario, the Finite Compressed Demand Sce-176

nario (FCDS) considers that the number of appliances in the grid is finite;177

therefore the arrival process of power requests is quasi-random. The FCDS178

is applied in cases where there are types of appliances that are able to grad-179

ually compress their power demands, and at the same time extend their180

operational times, e.g. water heaters or air-conditions. The compression of181

power demands is applied only when the total number of p.u. in use exceeds182

predefined power thresholds; we consider T thresholds for the p.u. in use. If183

the total number of p.u. in use is less than the first threshold P0, then the184

request is accepted with the initial power demand pm and operational time185

d−1m . In contrast, if the total number of p.u. in use exceeds this threshold,186

the CLC sends a message to inform all consumers that the power requests187

of a specific set of appliances will be reduced and at the same time their188

operational times will be extended, so that the total power consumption is189

reduced. More specifically, if a consumer wishes to contribute to the peak-190

demand reduction program, then the power request for a type-m appliance191

will be accepted with a compressed power demand pm,1 < pm, while the192

operational time of the appliance is extended to a value d−1m,1 > d−1m . By193

considering multiple power thresholds, a gradual reduction of the appliances194

power demands can be achieved: when the total number of p.u. in use is195

Pt−1 ≤ j ≤ Pt (t = 1, . . . , T ), then consumers are prompted that power-196

requests for type-m appliances can be accepted with reduced power demand197
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pm,t and extended operational time d−1m,t, with pm > pm,1 > ... > pm,T and198

d−1m < d−1m,1 < ... < d−1m,T . The values of pm,t and d−1m,t for all thresholds199

should be chosen in such a way so that energy consumption is achieved, i.e.200 (
d−1m,t−1 × pm,t−1

)
>

(
d−1m,t × pm,t

)
. An example of the application of FCDS is201

illustrated in Fig. 2a, where 4 power thresholds are assumed.202

It should be noted that the compression of power demands is activated203

only to “elastic”appliances that have the ability of reducing their power de-204

mands and simultaneously extend their operational time, while it is deac-205

tivated when the total power consumption drops below the first threshold206

P0. To this end, the message that is sent by the CLC to the consumers con-207

tains information for the incentives offered to consumers that agree to com-208

press their demands. We consider that a consumer will agree to compress209

the demand of a type-m appliance, when the current power consumption210

is Pt−1 ≤ j < Pt, with probability wm,t, while the consumer will refuse to211

participate in the program with probability 1−wm,t. These probabilities are212

actually a function of the current power threshold; by considering that the213

offered incentives are more attractive when the total power consumption is214

high, more consumers will agree to compress their demands. On the other215

hand, “un-elastic”appliances that are not able to reduce their power demands216

(e.g. home entertaining sets of computers) request the same amount of p.u.217

regardless of the total p.u. in use.218

Due to the fact that the probabilities wm,t, which denote the consumers’219

agreement to participate in the demand compression program, affect the220

power demand arrival rate, two groups for each appliance type should be221

considered. The first group consists of appliances that are able to compress222
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their demands but they will refuse to participate in the program, while in the223

second group appliances will agree to contribute to the program by compress-224

ing their demands. On the other hand, appliances that are not able to com-225

press their demands could belong to any of the two aforementioned groups.226

Therefore, in order to derive an analytical model for the peak-demand cal-227

culation, 2M types of appliances should be assumed; the first M appliances’228

types comprise the “elastic”appliance population that agree to participate229

in the program together with half of the “un-elastic”appliances that are un-230

able to compress their demands. The second group consists of the “elas-231

tic”appliances population that refuses to participate in the program together232

with the other half of “un-elastic”appliances. The equal distribution of the233

“un-elastic”appliances to the two groups is not mandatory; different percent-234

ages of the appliance’s population in the two groups may be assumed as well.235

Based on this analysis, the population of appliances Nm′(j)(m′ = 1, . . . , 2M)236

is a function of the number of p.u. in use and is denoted as:237

Nm′ (j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sm

2
if γm′ = 0,m′ ∈ 2M, j ∈ P

Sm

2
if γm′ = 1,m′ ∈ 2M, j ≤ P0

Smwm′,t if γm′ = 1,m′ ≤M, (j − pm′,t) ∈ [Pt−1, Pt)

Sm (1− wm′,t) if γm′ = 1,m′ > M, (j − pm′,t) ∈ [Pt−1, Pt)

(5)

where the parameter γm′ is used to express the appliances’ ability for de-238

mand compression; γm′ = 0 for “un-elastic”appliances, while γm′ = 1 for239

“elastic”appliances. Therefore, since each “un-elastic”(γm′ = 0) appliance240

type belongs to two groups in the set [1, 2M ], their population is Sm/2241

(m = 1, . . . ,M). The same rule applies for “elastic”appliances, when the242
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total number of p.u. in use is less than the first threshold P0. It should be243

noted that by considering different percentages for the appliances’ popula-244

tion in each group (other than 50% in the first group and 50% in the second245

group), the two fractions of Eq. (5) should be respectively changed. How-246

ever, when demand compression is activated, a percentage of the initial Sm247

appliances will compress their demands (with probability wm′,t), while the248

remaining appliances of the same type will continue to operate with their249

nominal power (with probability 1−wm′,t).250

In order to determine a recursive formula for the distribution of the prob-251

abilities qF (j) of the p.u. in use for the set of 2M appliances, we define the252

parameters pm′ , pm′,t and d−1m′,t, as a function of the values of the parameters253

of the original set of appliances, so that pm′ = pm′+M = pm for m′ ≤ M ,254

pm′,t = pm,t for m
′ ≤ M , pm′,t = 0 for m′ > M (since no demand compres-255

sion occurs for this set of appliances). As far as the operational times are256

concerned, we define d−1m′,t = d−1m,t for m′ ≤ M and d−1m′,t = 0 for m′ > M .257

Based on these definitions, we proposed the following recursive formula for258

the determination of the distribution of p.u. in use:259

jqF (j) =
2M∑
m′=1

qF (j − pm′)
vm′
dm′ bm′ (j) (Nm′(j)− sm′(j) + 1) pm′+

2M∑
m′=1

T∑
t=1

qF (j−pm′,t)
vm′
dm′,t

bm′,t (j) (Nm′(j)−(sm′(j)+sm′,1(j)+...+sm′,T (j))+1) pm′,t

(6)
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for j = 1, . . . , P , where260

bm′(j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if (1 ≤ j − pm′ < P0 and γm′ = 1 and m′ ≤M)

or if (1 ≤ j < P and γm′ = 1 and m′ > M)

or if (1 ≤ j < P and γm′ = 0)

0 otherwise

(7)

261

bm′,t(j) =

⎧⎨
⎩ 1 if (Pt−1 ≤ j < Pt and γm′ = 1 and m′ ≤M)

0 otherwise
(8)

and sm′(j), sm′,t(j) are the number of active appliances that require pm′ and262

pm′,t p.u. respectively.263

Proof : see Appendix A264

As in the case of the default scenario, the functions sm′(j), sm′,t(j) are265

not known. We propose the following approximation in order to calculate266

these functions: the number sm(j) of active appliances, when j p.u. are in267

use is equal to the mean number of active appliances when Poisson arrivals268

are considered (i.e. infinite number of appliances):269

sm′(j) ≈
(
Nm′(j)vm′ · d−1m′

)
qINF (j − pm′)

qINF (j)
(9)

if (j ≤ P0 + pm′ and γm′ = 1) or (j ≤ P and γm′ = 0) and270

sm′t(j) ≈
(
Nm′(j)vm′d−1m′

)
qINF (j − pm′,t)

qINF (j)
(10)

if (Pt−1 ≤ j < Pt and γm′ = 1 and m′ ≤M). The distribution qINF (j) refers271

to the distribution of probabilities of the number of p.u. in use, when an272
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infinite number of appliances is assumed to be present in the grid (Eq. (4) in273

[20]):274

jqINF (j) =
2M∑
m′=1

Rm′(j)d−1m′ bm′(j)pm′qINF (j − pm′)+

2M∑
m′=1

Rm′(j)d−1m′ bm′,t(j)pm′,tqINF (j − pm′,t)

(11)

where the infinite model of Eq. (11) assumes that the arrival rate of requests275

of type-m appliances is equal to the product Rm′(j) = Nm′(j)vm′ of the276

number of appliances Nm′(j) by the arrival rate vm′ per inactive appliance,277

which are both used in the finite model.278

The probability that the total power consumption will exceed P upon the279

arrival of a compressed power demand for pm′,t p.u. is given by:280

Bm′,t =
P∑

j=P−pm′,t+1

qF (j)

Q
(12)

while the probability Bm′ can be calculated by using Eq. (4) for a power281

request from an appliance that cannot compress its power demand. Based282

on both the values of Bm′,t and Bm′ we can calculate the minimum value283

of P so that the outage probability will not exceed a predefined value e. A284

method for solving the set of Eqs. (5)-(12) is presented in Fig. 2b.285

2.3. The Finite Delay Request Scenario286

The Finite Delay Request Scenario (FDRS) requires the presence of up287

to M buffers installed in the CLC, one for each type of appliance. These288

buffers are used by the CLC in order to delay power requests that arrive in289

the CLC when the total number of p.u. in use exceeds a power threshold.290

The delay duration depends on predefined power thresholds, so that gradual291
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increase of power-request delays is achieved as a function of the current power292

consumption. After the delay in the buffer a power request instantly attempts293

to access the system. By delaying the power requests, the final requests’294

arrival rate to the system is reduced, and during this delay several active295

appliances terminate their operations; therefore, the probability of reaching296

high-power consumption states is also reduced.297

We assume that the delay that a power request of type m appliances298

suffers when the current power consumption is Pt−1 ≤ j < Pt is denoted as299

δm,t. The values of δm,t increase with the increment of the power consumption300

so that δm,1 < δm,2 < ... < δm,T , while they are chosen based on the ability301

of an appliance to tolerate delays. For example, water heaters can endure302

a delay in their operation, while a home entertainment set cannot. For303

appliances that belong to the latter case, the values of the parameters δm,t304

are equal to zero, i.e. no buffers are reserved for these types of appliances. An305

example of the application of FDRS to delay-tolerant appliances is illustrated306

in Fig. 3a, where 4 power thresholds are assumed.307

The calculation of the distribution of the probabilities qF (j) for FDRS308

is based on the arrival rate of the power requests per inactive appliance at309

the system. The value of the arrival rate of power requests when the total310

p.u. in use exceeds a power threshold is a function of the delay that these311

requests suffer in the buffers. More precisely, we first define the inter-arrival312

time of the power requests of type-m appliances, per inactive appliance. This313

time is equal to the inter-arrival time 1/vm per inactive appliance of requests314

that arrive at the buffer plus the delay δm,t that these request suffer at the315

buffers, when the current power consumption is Pt−1 ≤ j < Pt. By reversing316
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the resulting sum, we find the rate Λm,t per inactive type-m appliance that317

power requests egress the buffer:318

Λm,t =
vm

1 + vmδm
(13)

As in the case of FCDS, consumers have the capability to select whether319

they agree to postpone their demands; the probability that a consumer will320

agree to postpone a power request for a type-m appliance when the current321

power consumption is Pt−1 ≤ j < Pt is denoted as wm,t. By considering these322

probabilities, the assumption of two groups of appliances (“elastic”and “un-323

elastic”) that is used in the FCDS case is also applicable to the FDRS, where324

“elastic”appliances are able to postpone their requests, while the requests of325

“un-elastic”appliances are not delayed. Therefore, Eq. (5) that defines the326

number of appliances Nm′(j) for FCDS, is also applied to the FDRS case.327

By using the arrival rate per inactive appliance of Eq. (13) and the number328

of appliances Nm′(j) of Eq. (5) we can calculate the distribution qF (j) of the329

probabilities that j p.u. are in use for the FDRS, by using the following330

proposed recursive formula:331

jqF (j) =
2M∑
m′=1

vm′
d
m′

(Nm′(j)− sm′(j) + 1) cm′(j)pm′qF (j − pm′)+

2M∑
m′=1

Λm′,t
dm′ (Nm′(j)−(sm′(j)+sm′,1(j)+...+sm′,T (j))+1) cm′,t(j)pm′qF (j−pm′)

(14)

for j = 1, . . . , P , while332

cm′(j) =

⎧⎨
⎩ 1 if 1 ≤ j − pm′ ≤ P0

0 otherwise
(15)
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and333

cm′,t(j) =

⎧⎨
⎩ 1 if (Pt−1 ≤ j − pm′ < Pt) and (γm′= 1) and (m′ ≤M)

0 otherwise
(16)

Proof : see Appendix B.334

The calculation of the number of active appliances sm′,t and sm′,t is per-335

formed by using a similar approximation as the one used in the default sce-336

nario and in the FCDS. More precisely, the number of active appliances,337

when j p.u. are in use is equal to the mean number of active appliances338

when infinite number of appliances in the grid are assumed. Therefore the339

number sm,t(j) can be calculated by using Eq. (9) for j − pm′ ≤ P0, while340

the number sm′,t(j) can be calculated by Eq. (10), where qINF (j) should be341

replaced by the corresponding distribution of probabilities of the number of342

p.u. in use, when an infinite number of appliances is assumed to be present343

in the grid (Eq. (9) in [20]):344

jqINF (j) =
2M∑
m′=1

Rm′(j)vm′d−1m′ bm′(j)pm′qINF (j − pm′)+

2M∑
m′=1

Rm′(j)Λm′,td
−1
m′ bm′,t(j)pm′qINF (j − pm′)

(17)

where Rm′(j) = Nm′(j)vm′ . Based on the distribution of Eq. (14) we can345

calculate the probability that the total power consumption will exceed Pt346

upon the arrival of a power request, by using Eq. (4). A method for solving347

the set of Eqs. (13)-(17) is presented in Fig. 3b. It should be noted that if348

the delay δm is set to zero for all M types of appliances, then the arrival rate349

per inactive appliance is equal to vm for j = 1, . . . , P (from Eq. (13)), and350
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the FDRS coincides with the default scenario.351

2.4. The Finite Postponement Request Scenario352

As in the previous scenarios, the Finite Postponement Request Scenario353

(FPRS) assumes a finite number of appliances for each one of the M types354

of appliances. The FPRS assumes that there is a threshold P2 for the p.u.355

in use. If this threshold is exceeded upon the arrival of a power request, the356

user of the corresponding appliance is prompted that the operation of the357

appliance should be delayed, until the number of p.u. in use drops below a358

second threshold P1, with P1 < P2. When the total number of p.u. in use359

drops below this second threshold, the power demand will immediately try360

to access the system. An example of the application of FPRS is illustrated361

in Fig. 4a. The user can decide whether the operation of the appliance362

is delayed or not. The probability that the user will accept to delay the363

operation of the appliance is denoted as wm, while the probability that the364

use will refuse is equal to 1−wm. Based on these assumptions, we define the365

arrival rate per inactive type-m appliance vm,n(j) as follows:366

vm,n(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vm,1(j) = vm + wmvm if j ≤ P1

vm,2(j) = vm if P1 < j ≤ P2

vm,3(j) = (1− wm)vm if j > P2

(18)

Based on Eq. (18) we can calculate the distribution of the probabilities367
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qF (j) by using the following proposed recursive formula:368

jqF (j) =
M∑

m=1

vm,1d
−1
m (Sm − sm(j) + 1) cm,1(j)pmqF (j − pm)+

M∑
m=1

3∑
n=2

vm,nd
−1
m (Sm−(sm(j)+sm,2(j)+sm,3(j))+1) cm,n(j)pmqF (j−pm)

(19)

for j = 1, . . . , P . Also,369

cm,1(j) =

⎧⎨
⎩ 1 if 0 ≤ j ≤ P1 + pm

0 otherwise
(20)

370

cm,2(j) =

⎧⎨
⎩ 1 if P1 + pm < j ≤ P2 + pm

0 otherwise
(21)

371

cm,3(j) =

⎧⎨
⎩ 1 if P2 + pm < j ≤ P

0 otherwise
(22)

Proof : see Appendix C.372

As in the previous scenarios, the number of active appliances is approxi-373

mated by the mean number of active appliances when an infinite number of374

appliances are present in the grid. Therefore, the functions sm(j), sm,2(j) and375

sm,3(j) can be derived by using Eq. (8), for j ≤ P1+pm, P1+pm < j ≤ P2+pm376

and P2+pm < j ≤ P , respectively, while the distribution qINF (j) refers to the377

corresponding distribution of probabilities of the number of p.u. in use, when378

infinite number of appliances are present in the residential area (Eq. (13) in379

[20]):380

jqINF (j) =
M∑

m=1

3∑
n=1

rm,nd
−1
m cm,n(j)pmqINF (j − pm) (23)
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By using Eq. (19) and Eq. (4) we can calculate the minimum number of381

p.u. that are required in the grid, so that the maximum outage probability382

(given by Eq. (4)) will not exceed a predefined value e. Eqs. (18)-(22) can be383

solved by using a method presented in Fig. 4b. Note that if the probabilities384

wm are set to be equal to zero for all M types of appliances, the FPRS385

coincides with the default scenario.386

3. Performance Analysis Of The Proposed Scenarios387

3.1. Cost Analysis388

The application of a real-time pricing management model is able to im-389

prove the efficiency of a smart grid by flattering the load curve. The ap-390

plication of a dynamic power pricing scheme provides an incentive for the391

customers to reduce their power consumption during peak demand hours. In392

order for a dynamic pricing pattern to benefit not only the consumer but393

also the energy provider, it should be defined based on the considered power394

demand control scenario. In this way, a more balanced charging policy can395

be applied to customers that decide to postpone or reduce their power de-396

mands, while the energy provider will benefit by the reduction of the necessity397

to activate new power plants.398

The total average energy cost can be defined through the introduction399

of a cost function C(j), which is associated to the total number j of p.u.400

in use. This cost function should be an increasing function, so that the401

total power cost is enlarged by the increase of the power consumption with402

a behavior that is in accordance to the applied power demand scenario. The403
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total average energy cost is defined as:404

AC(j) =
P∑

j=0

j · qF (j) · C(j) (24)

For the case of the default scenario we can define a simple increasing405

function in the form of C(j) = a · jk, while for the scheduling scenarios the406

cost functions should consider the values of the power thresholds. Therefore,407

in the case of the FCDS, the power demand compression can be rewarded by408

defining the cost function as C(j) = b·jl if j ≤ P0 and C(j) = ct ·jnt if Pt−1 ≤409

j < Pt, where a ≤ b ≤ c1 ≤ c2 ≤ ... ≤ cT and k ≤ l ≤ n1 ≤ n2 ≤ ... ≤ nT .410

The values of the parameters ct, nt can be determined as a function of the411

average reduction of the power demands of all M types of appliances, when412

the power consumption exceeds a power threshold; e.g. if 2 thresholds are413

applied then (b/c1, l/n1) ∼ E(pm/pm,1) and (c1/c2, n1/n2) ∼ E(pm,1/pm,2).414

An analogous cost function can be defined for the case of the FDRS, where415

the values of the parameters ct, nt are functions of the average delay of416

requests of all M types of appliances, i.e. if 2 thresholds are applied then417

(b/c1, l/n1) ∼ E(1/rm,t) and (c1/c2, n1/n2) ∼ E(1/rm,t). Finally, for the418

case of the FPRS the cost function should be a function of the thresholds P1419

and P2, therefore:420

C(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b · jl if j ≤ P1

c · ju if P1 < j ≤ P2

d · js if j > P2

(25)

where a ≤ b ≤ c ≤ d and k ≤ l ≤ u ≤ s.421
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3.2. Social Welfare422

The social welfare can be defined as the total power cost to the consumers423

minus the total power generation cost [25]. A generation cost function should424

take into account not only the production cost, but also the no-load cost and425

the start-up cost [26]. The no-load cost refers to the cost that is incurred426

whenever a generator is online but idle, while the start-up cost represents427

the cost required for a generating unit to shift from the OFF state to the428

ON state. By considering that G generators are connected to the residential429

area under study, the total generating cost function can be defined as:430

GC(j) =
G∑
i=1

(
αij

κi
i + βij

λi
i + ζiηifi(j) + ξiθigi(j)

)
(26)

where αi and βi are constants that represent the power production cost of431

generating j p.u. in unit i (i = 1, . . . , G), ζi is a flag, which is set to 0 or 1432

if the generating unit i is OFF or ON respectively, and ξi is a flag that takes433

the value 1 when the generating unit i shifts from state OFF to state ON434

and the value 0 when the unit moves from state ON to state OFF. These435

two flags change their values depending on the total requested p.u.: in peak-436

demand hours additional generating units are turned on in order to satisfy437

the increased power demands. Furthermore, ηifi(j) and θigi(j) denote the438

no-load and start-up cost, respectively, while the number j of the generating439

p.u. is the sum of the generating p.u. in each active generating unit.440

Having determined the total generating cost function we can define the441
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total average social welfare as:442

SWC(j), GC(j) =
P∑

j=0

j · qF (j) · (C(j)−GC(j)) (27)

4. Evaluation and Discussion443

The evaluation of the proposed analytical models for each scenario is444

performed by comparing analytical results from the proposed models with445

corresponding results from simulation, as well as with analytical results from446

[20]. To this end, we assume a residential area with 50 residences. Each447

residence is equipped with the same 10 appliances; therefore the number of448

type-m appliance in this area is Sm=50. The 10 types of appliances are: 1)449

electric stove, 2) laundry pair, 3) water heater, 4) dishwasher, 5) refrigerator,450

6) air condition, 7) home office set, 8) entertainment set, 9) lighting and451

10) plug-in hybrid electric vehicle (PHEV). The power demands and the452

operational times of the appliances are listed in Table 1. These values are453

derived by taking into account the typical power consumption of a residence454

and by assuming that 1 p.u. = 100 Watt. It should be noted that the power455

demands of some appliances (e.g. electric stove, air condition, PHEV, etc.)456

are usually not constant during their entire operational time. However, these457

appliances can either request the maximum demand for the entire operational458

duration, or schedule multiple requests with different constant demands each459

time, over the appliance operational duration. Also, we use the same set of460

appliances and with the same power demands as in the case of [20], in order461

to compare the analytical results of the two cases and prove that the proposed462

finite algorithms are more accurate than the corresponding models in [20].463
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For the evaluation of the proposed analytical models we built an object-464

oriented simulator using the C++ programming language. The simulator465

creates 3×106 events based on random numbers for the power requests, while466

a stabilization time that corresponds to the first 105 events is assumed, so467

that the simulator reaches the steady state. Simulation results are obtained468

as mean values from 15 simulation iterations, each one with a different seed,469

while 95% reliability ranges are presented. It should be noted that simulation470

results from each simulation run are obtained in about 14 min. in average,471

which is a significantly higher time compared to 2.7 s. in average required472

in order to obtain the analytical results from the proposed formulas. This473

fact proves the effectiveness of the proposed analysis, especially when near474

real-time scheduling decisions are required. In what follows, the proposed475

analytical models are referred as finite models due to the assumption of a476

finite number of appliances, while the models from [20] are referred as infinite477

models, since the models in [20] assume an infinite number of appliances in478

the residential area.479

For the evaluation of the proposed analytical models we initially consider480

the default scenario, where no energy or task scheduling occurs. In Fig. 5 we481

present analytical and simulation peak-demand results for the default sce-482

nario from the proposed finite model, together with analytical results from483

the infinite model of [20]. In order to provide a fair comparison between the484

proposed analysis and the analysis of [20], we assume that the arrival rate485

in the infinite model is equal to the product of the number of appliances to486

the arrival rate in the finite model, or λm = Smvm, where λm is the arrival487

rate in the infinite model. This assumption is used in order to consider the488
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same number of power-request arrivals per unit time for the two models. For489

presentation purposes, we consider the same arrival rate for all appliances;490

evidently, since the proposed analytical model includes the power-requests491

arrival rates in a parametric way, any arrival-rate set may be applied. The492

comparison between analytical and simulation results reveal the satisfactory493

accuracy of the finite model. Moreover, Fig. 5 shows that serious overesti-494

mations of the peak demand occur under the infinite model; this fact proves495

the necessity for the application of an analytical model that assumes a finite496

population of appliances, as the models that are presented in the current497

paper. It should be also pointed out that the analytical results of Fig. 5 are498

exactly the same with the analytical results obtained by considering that 1499

p.u.=0.01 W, without a significant increase of the computation time , due to500

the use of recursive formulas.501

The evaluation of the analytical models for the scheduling scenarios is502

performed by considering two combined case studies, which are based on the503

case studies used in [20], so that both energy scheduling and task scheduling504

appliances are considered. Specifically, we categorize the aforementioned ap-505

pliance types into three sets: i) the first set comprises of appliances that are506

able to compress their demands (laundry pair, water heater, air-condition),507

ii) in the second set we consider appliances that are tolerant to request post-508

ponements (electric stove, dishwasher, PHEV), while, iii) appliances that509

belong to the third set are not participating in any scheduling scheme (re-510

frigerator, home office set, entertainment set, lighting). In the first case study,511

the energy scheduling appliances together with refrigerator and home-office512

set are applied to the FCDS, while the task scheduling appliances together513
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with entertainment set and lighting are applied to the FDRS. The second514

case study is the same as the first case; however FDRS is replaced by the515

FPRS. It should be noted that appliances that are not participating in any516

scheduling scheme can be applied to any of FCDS, FDRS or FPRS, since the517

corresponding analytical models support non-scheduled appliances.518

In Fig. 6 we evaluate the performance of the first case study (FCDS519

and FDRS) by presenting analytical and simulation results for peak demand520

versus the power-requests’ arrival rate. In the same figure we present analyt-521

ical results of the corresponding case study of [20]. Both FCDS and FDRS522

consider two power thresholds, which are set to 60% and 75% of the peak523

demand, respectively. Under FCDS, consumers are prompted to reduce their524

power demands by 15% and at the same time expand their operational times525

by the same percentage, when the current power consumption exceeds the526

first power threshold, while these values are both changed to 25%, when527

power consumption exceeds the second threshold. For the FDRS case, when528

the power consumption exceeds the first and the second threshold power re-529

quests are delayed for 4 and 8 min, respectively. Furthermore, in both FCDS530

and FDRS the percentage of consumers that agree to participate in the pro-531

gram is 60%, for the first threshold, and 70% for the second threshold; this532

participation rate increase is due to more encouraging incentives that are533

offered to consumers, when the total power consumption is significant. The534

results of Fig. 6 reveal the satisfactory accuracy of the proposed analysis.535

We also observe that if we consider the infinite case of [20], serious over-536

estimations of the peak demand occur (average difference 26.5%, minimum537

difference 19.8% and maximum difference 33.1%).538
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In Fig. 7 we provide analytical and simulation peak-demand results under539

the FCDS-FPRS study case. The FPRS results are obtained by considering540

that the two thresholds P1 and P2 are set to the 60% and 75% of the peak541

demand, respectively, while the participation rate is set to 70%. The results542

of the FCDS are obtained by using the same parameter values as the ones543

that are used for the derivation of the results of Fig. 6. We also provide544

corresponding analytical results from the infinite model, which are derived545

by assuming that the arrival rate is equal to the product of the number of546

appliances to the arrival rate per inactive appliance in the finite model. The547

comparison of analytical and simulation results reveal that the accuracy of548

the proposed model is quite satisfactory. We also observe that, as in the549

FCDS-FDRS study case, the infinite model overestimates the peak demand550

(average difference 21.8%, minimum difference 17.0% and maximum differ-551

ence 27.1%).552

It is important to mention that the total number of appliances that are553

installed in the residential area plays an important role for the determina-554

tion of the total number of requested p.u. The effect of the population of555

appliances on the total number of requested p.u. is shown in Fig. 8, where556

analytical results for the four scenarios are presented. We consider that in557

each point (but the last) in the x-axis of Fig. 8 the product (Number of ap-558

pliances) by (arrival rate per inactive appliance) is kept constant and equal559

to 0.4 requests per minute for every type of appliance. In order to pro-560

vide a fair comparison between the different scenarios, we consider a single561

power threshold for FCDS and FDRS, which is equal to 60% of the peak562

demand, so that a single value of the participation rate is assumed, as in563
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the case of FPRS; the participation rate is assumed to be equal to 70% for564

FCDS, FDRS and FPRS. Under FCDS, the power compression is equal to565

25%, while under FDRS power requests are delayed for 10 minutes. The566

results that correspond to the infinite population (last point in the x-axis567

of Fig. 8) are derived by the corresponding analytical results of [20]. We568

observe that when the population of appliances increases, the total number569

of requested p.u. also increases. This behavior is explained by the fact that570

when a large number of appliances are installed in the residential area, the571

percentage of idle appliances is higher; therefore the number of requests that572

arrive from these inactive appliances is higher and more p.u. are necessary for573

the satisfaction of all power requests. We also observe that the best perfor-574

mance is achieved by the application of the FDRS, in terms of lower number575

of requested p.u.. Evidently, the difference between the four scenarios is a576

function of the values of the parameters that are selected for each scenario.577

Nevertheless, the results of Fig. 8 indicate the significant advantages of the578

proposed finite models over the infinite models of [20], especially when they579

are applied to small appliances’ population cases.580

Finally we demonstrate the influence of the application of the power con-581

trol scenarios on the total average social welfare by using the same parameter582

values that were used in order to derive the results in Fig. 8. In order to583

provide a fair comparison of the performance of the four scenarios we as-584

sume the same generating cost function for all scenarios, which is given by585

Eq. (25) and by using the following assumptions: the residential area under586

study is connected to two generating units: the primary unit, which pro-587

duces up to 2600 p.u. and a secondary unit which is activated when the588
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total power consumption exceeds a single power threshold of 2600 p.u.. For589

the two generating units the power production parameters are α1=2, β1=3,590

κ1=2, λ1=2, α2=5, β2=20, κ2=3, λ2=2. Furthermore, the no-load cost and591

start-up cost parameters of the two units are η1=2, θ1=2, η2=5 and θ2=4 and592

the corresponding functions are f1(j) = 105, g1(j) = 5×104 for j ≤ 2600 and593

f2(j) = 8× 105, g2(j) = 105 for j > 2600. These values were chosen in order594

to show that the generating cost is significantly increased by the activation595

of the second generating unit. For the case of the default scenario the cost596

function is C(j) = 5 · j3. The cost function that corresponds to the FCDS597

takes into account the reduction of power demands by 20%, when the total598

power consumption exceeds the threshold P0, by reducing the parameter b599

by 30%, compared to the parameter c which is equal to 5 (as in the case of600

the default scenario); therefore the cost function is C(j) = 3.5 · j3 if j ≤ P0601

and C(j) = 5 · j3 if j > P0. For the case of the FDRS the same cost function602

is applied. Finally, for the case of the FPRS the cost function is C(j) = 3 · j3603

if j ≤ P1, C(j) = 4 · j3 if P1 < j ≤ P2, and C(j) = 5 · j3 if j > P2. In Fig. 9604

and Fig. 10 we present analytical results for the total average cost and the605

total average social welfare, respectively, for the four power demand control606

scenarios versus the total arrival rate. As it was expected, under the default607

scenario the total average cost is higher compared to the corresponding values608

of the other scenarios, since no demand compression or request delay occurs.609

The average reduction of the total average cost for FCDS, compared to the610

default scenario is 41.6%, for FPRS the average reduction is 39.3% and for611

FDRS the average reduction is 17.9%. On the other hand, as the results of612

Fig. 10 reveal, under all scenarios the total average social welfare is a concave613
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function of the power-requests’ arrival rate: when the arrival rate increases,614

then the welfare also increases, since the total electricity cost is increased.615

However, after a certain arrival-rate point, the generation cost is significant616

(due to the activation of the secondary generation unit) and the social wel-617

fare decreases. It should be noted that the maximum value of the average618

welfare is positioned at different arrival-points for each scheduling scenario.619

This is due to the fact that under the FCDS, FDRS or FPRS the total power620

consumption exceeds the power threshold that is assumed for the activation621

of the secondary generation unit (which results in higher generation costs)622

for higher arrival-rate values, compared to the default scenario; these values623

are different for each scenario, due to the dissimilar effect of each scenario on624

the power consumption reduction. Consequently, the proposed scenarios can625

be considered as a solution for restraining the necessity for the activation of626

supplementary power plants to meet peak demand.627

5. Conclusion628

We propose more realistic and accurate analytical models for the deter-629

mination of the peak demand in a residential area, under four power demand630

control scenarios. The proposed analysis is based on the assumption of fi-631

nite number of appliances in the area under study, which is expressed by632

a quasi-random process for the arrivals or power requests. For each sce-633

nario a recursive formula is derived, in order to efficiently calculate the peak634

demand as a function of the number of appliances. The accuracy of the pro-635

posed models is quite satisfactory, as it is verified by simulation. We also636

compare results from our proposed analysis with corresponding results from637
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[20], in order to reveal the necessity of an analytical model that assumes a638

finite number of appliances. Furthermore, we associate each scenario with639

appropriate real-time pricing procedures, in order to provide incentives to640

customers to compress or delay their power demands and we calculate the641

social welfare. The results of the proposed models are derived in a small com-642

putational time, compared to simulations; this fact allows the application of643

the proposed models to DR programs that require near real-time decisions.644
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Appendix A. Proof of the recursive formula of Eq. (6)649

In order to derive Eq. (6) we initially consider the case of a single power650

threshold P0, and we construct the one dimensional Markov chain with the651

state transition diagram of Fig. 11a. In this Markov chain each state j652

represents the number of p.u. in use, for j − pm′ ≤ P0 and shows the tran-653

sitions when a type-m′ appliance is activated and deactivated. If we assume654

that sm′(j) appliances of type m′ are active in state j, then the number of655

inactive appliances of the same type in state j is (Nm′(j) − sm′(j)) and the656

number of inactive appliances in state j − pm′ is (Nm′(j) − (sm′(j) − 1)) =657

(Nm′(j) − sm′(j) + 1); therefore, power requests will arrive from this set of658

appliances. Based on this analysis we define the transition rates in Fig. 11a,659

while the local balance equation of the state transition diagram of Fig. 11a660
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is:661

qF (j − pm′)vm′ (Nm′(j)− sm′(j) + 1) = qF (j)yF,m′(j)dm′ ⇔
qF (j − pm′)

vm′
dm′ (Nm′(j)− sm′(j) + 1) pm′ = qF (j)yF,m′(j)pm′

(A.1)

for j − pm′ ≤ P0 and m′ = 1, . . . , 2M . The function yF,m′(j) is the mean662

number of appliances in use in the grid that require pm′ p.u., when the total663

number of p.u. in use is j ≤ P0 + pm′ .664

We also construct the one dimensional Markov chain of the system with665

the state transition diagram of Fig. 11b, where each state j represents the666

number of p.u. in use, for j − pm′ > P0. The number of appliances that are667

active in state j > P0 is equal to sm′(j) + sm′,1(j); sm′(j) active appliances668

that were accepted for service when the system was in any state below P0 and669

sm′,1(j) active appliances when the system was in state above P0. Therefore,670

the number of inactive appliances in state j − pm′ is (Nm′(j) − (sm′(j) +671

sm′,1(j))+1), therefore power requests will arrive from this set of appliances.672

The local balance equation of the state transition diagram of Fig 11b is:673

qF (j − pm′,1)vm′ (Nm′(j)−)(sm′(j) + sm′,1(j)) + 1) = qF (j)yF,m′,1(j)dm′,1 ⇔
qF (j−pm′,1)

vm′
dm′,1

(Nm′(j)−(sm′(j)+sm′,1(j))+1) pm′,1=qF (j)yF,m′,1(j)pm′,1

(A.2)

for j − pm′,1 > P0 and m′ = 1, . . . , 2M , where sm′,1(j) is the number of674

active appliances of type-m′ that have compressed their demands. Also, the675

function yF,m′,1(j) is the mean number of appliances in use in the grid that676

require pm′,1 p.u., when the total number of p.u. in use is j > P0 + pm′,1.677

By considering the entire set 2M of appliances types, Eq. (A-1) is trans-678
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formed to:679

2M∑
m′=1

qF (j − pm′)
vm′
dm′ (Nm′(j)− sm′(j) + 1) pm′ =

qF (j)
2M∑
m′=1

yF,m′(j)pm′ , j ≤ P0 − pm′

(A.3)

Also, from Eq. (A-2) and for all 2M types of appliances, we obtain:680

2M∑
m′=1

qF (j − pm′,1)
vm′
dm′,t

(Nm′(j)− (sm′(j) + sm′,1(j)) + 1) pm′,1 =

qF (j)
2M∑
m′=1

yF,m′,1(j)pm′ , j > P0 − pm′,1

(A.4)

In order to derive the total number j of the p.u. in use in any state681

0 ≤ j ≤ P we sum the products of the mean number of appliances in use by682

the number of p.u. that these appliances demand, for all 2M power levels:683

j =

[
2M∑
m′=1

yF,m′(j)pm′ +
2M∑
m′=1

yF,m′,1(j)pm′,1

]
(A.5)

Therefore, in order for the summation of the Right Hand Side (RHS) of684

Eq. (A-3) to be equal to j, we have to assume that yF,m′,1(j) ∼= 0 for j ≤685

P0 − pm′ . Similarly, in order for the summation of RHS of Eq. (A-4) to be686

equal to j, we have to assume that yF,m′(j) ∼= 0 for j > P0 − pm,1. These687

two assumptions should be considered at the expression of the rate that the688

system jumps from any state j − pm′ (or j − pm′,t) to state j. By summing689

up side by side Eq. (A-3) and Eq. (A-4), by applying these two assumptions690
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and by using Eq. (A-5), we obtain the following equation:691

2M∑
m′=1

vm
dm

(Nm′(j)− sm′(j) + 1) bm′(j)pm′qF (j − pm′)+

2M∑
m′=1

vm
dm′,1

(Nm′(j)−(sm′(j)+sm′,1(j))+1) bm′,1(j)pm′,1qF (j−pm′,1)=jqF (j)

(A.6)

for j = 1, ..., P . The functions bm′(j) and bm′,1(j) express the aforementioned692

assumptions for the functions yF,m′ and yF,m′,1 and they are defined as follows:693

bm′(j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if (1 ≤ j − pm′ < P0 and γm′ = 1 and m′ ≤M)

or if (1 ≤ j < P and γm′ = 1 and m′ > M)

or if (1 ≤ j < P and γm′ = 0)

0 otherwise

(A.7)

694

bm′,1(j) =

⎧⎨
⎩ 1 if (j > P0 + pm′,1 and γm′ = 1 and m′ ≤M)

0 otherwise
(A.8)

The consideration of T thresholds affects the transition rates when j >695

P0+pm′,t (t = 1, . . . , T ). Precisely, by considering T thresholds P0, P1,. . ., PT−1,696

the local balance equation when j ≤ P0−pm′ remains the same as the single-697

threshold case and is given by Eq. (A-1), while the local balance equation698

when Pt−1 ≤ j − pm′,t < Pt is given by:699

qF (j − pm′,t)vm′ (Nm′(j)− (sm′(j) + sm′,1(j) + ...+ sm′,T (j)) + 1) =

= qF (j)yF,m′,t(j)dm′,t ⇔
qF (j − pm′,t)

vm′
dm′,t

(Nm′(j)− (sm′(j) + sm′,1(j) + ...+ sm′,T (j)) + 1) pm′,t =

= qF (j)yF,m′,t(j)pm′,t

(A.9)
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By applying Eq. (A-9) for all 2M appliances’ types and T thresholds, we700

obtain:701

2M∑
m′=1

T∑
t=1

qF (j − pm′,t)
vm′
dm′,t

(Nm′(j)−(sm′(j)+sm′,1(j)+...+sm′,T (j))+1)pm′,t=

= qF (j)
2M∑
m′=1

T∑
t=1

yF,m′,t(j)pm′,t

(A.10)

Since the total number j of p.u. in use is the sum of the products of the702

mean number of appliances in use by the number of p.u. that these appliances703

request:704

j=

[
2M∑
m′=1

yF,m′(j)pm′+
2M∑
m′=1

yF,m′,1(j)pm′,1+...+
2M∑
m′=1

yF,m′,T (j)pm′,T

]
(A.11)

we apply the following approximations: i) yF,m′(j) ∼= 0 for j > P0 − pm′ ,705

in order for the right hand side of Eq. (A-3) to be equal to jqF (j), and ii)706

yF,m′,t(j) ∼= 0 outside the region [Pt−1, Pt], so that the right hand side of707

Eq. (A-10) is equal to jqF (j). By summing up size by size Eq. (A-3) and708

Eq. (A-10) we derive Eq. (6), where the aforementioned approximations are709

expressed by Eq. (7) and Eq. (8), respectively.710

Appendix B. Proof of the recursive formula of Eq. (14)711

By following the same procedure as the one followed for the proof of712

Eq. (6), we define the local balance equations from the corresponding state713
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transition diagrams, for j − pm′ ≤ P0:714

qF (j − pm′) (Nm′(j)− sm′(j) + 1) vm′ = qF (j)yF,m′(j)dm′ ⇔
qF (j − pm′) (Nm′(j)− sm′(j) + 1)

vm′
dm′ pm′ = qF (j)yF,m′(j)pm′

(B.1)

where yF,m′(j) is the mean number of appliances that require pm′ p.u. when715

j p.u. are in use in the system. Also, by considering the T thresholds, the716

local balance equation when Pt−1 ≤ j − pm′ < Pt is:717

qF (j − pm)Λm′,t (Nm′(j)− (sm′(j) + sm′,1(j) + ...+ sm′,T (j)) + 1) =

= qF (j)yF,m′,t(j)dm′ ⇔
qF (j − pm′)

Λm′,t
dm′ (Nm′(j)− (sm′(j) + sm′,1(j) + ...+ sm′,T (j)) + 1) pm′ =

= qF (j)yF,m′,t(j)pm′

(B.2)

since the power-request arrival rate when the current power consumption is718

Pt−1 ≤ j − pm′ < Pt is reduced from vm′ to Λm′,t. Eq. (B-1) and Eq. (B-2)719

are converted to the following two equations, respectively, by considering all720

2M types of appliances:721

2M∑
m′=1

qF (j − pm′)
vm′
dm′ (Nm′(j)− sm′(j) + 1) pm′ =

qF (j)
2M∑
m′=1

yF,m′(j)pm′ , j ≤ P0 − pm′

(B.3)

722

2M∑
m′=1

T∑
t=1

qF (j−pm′)
Λm′,t
dm′ (Nm′(j)−(sm′(j)+sm′,1(j)+...+sm′,T (j))+1) pm′ =

= qF (j)
2M∑
m′=1

T∑
t=1

yF,m′,t(j)pm′

(B.4)

Therefore, Eq. (14) can be derived by following the same procedure as723

37



the one used for the proof of Eq. (6), while also considering the following as-724

sumptions: i) yF,m′(j) ∼= 0 for j > P0−pm′ , and ii) yF,m′,t(j) ∼= 0 outside the725

region [Pt−1, Pt]; these assumptions are expressed by Eq. (15) and Eq. (16),726

respectively.727

Appendix C. Proof of the recursive formula of Eq. (19)728

By following the same procedure as the one followed for the proof of729

Eq. (6), we define the local balance equations from the corresponding state730

transition diagrams, for j − pm ≤ P0:731

qF (j − pm) (Nm(j)− sm(j) + 1) vm,1 = qF (j)yF,m,1(j)dm ⇔
qF (j − pm) (Nm(j)− sm(j) + 1) vm,1

dm
pm = qF (j)yF,m,1(j)pm

(C.1)

where yF,m,1(j) is the mean number of appliances that require p)m p.u. when732

j p.u. are in use in the system. Also, for P1 + pm < j ≤ P2 + pm, and for733

P2 + pm < j ≤ P , the corresponding local balance equations are respectively734

given by:735

qF (j − pm) (Sm − sm,2(j) + 1) vm,2 = qF (j)yF,m,2(j)dm ⇔
qF (j − pm) (Sm − sm,2(j) + 1) vm,2

dm
pm = qF (j)yF,m,2(j)pm

(C.2)

736

qF (j − pm) (Sm − sm,3(j) + 1) vm,3 = qF (j)yF,m,3(j)dm ⇔
qF (j − pm) (Sm − sm,3(j) + 1) vm,3

dm
pm = qF (j)yF,m,3(j)pm

(C.3)

where yF,m,2(j) and yF,m,3(j) denote the mean number of appliances that737

require pm p.u. when j p.u. are in use in the grid, for P1+pm < j ≤ P2+pm,738

and for P2+pm < j ≤ P , respectively, while sm,2(j) and sm,3(j) are the mean739
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number of appliances that are activated when the total number of p.u. in740

use upon the arrival of the power request is P1 + pm < j ≤ P2 + pm, and741

P2 + pm < j ≤ P , respectively. By using Eq. (C-1), Eq. (C-2) and Eq. (C-3)742

and by summing up for all M power levels, we obtain:743

M∑
m=1

qF (j − pm)
vm,1

dm
(Sm − sm(j) + 1) pm =

qF (j)
M∑

m=1

yF,m,1(j)pm, j ≤ P1 − pm

M∑
m=1

qF (j − pm)
vm,2

dm
(Sm − sm,2(j) + 1) pm =

qF (j)
M∑

m=1

yF,m,2(j)pm, P1 − pm < j ≤ P2 − pm

M∑
m=1

qF (j − pm)
vm,3

dm
(Sm − sm,3(j) + 1) pm =

qF (j)
M∑

m=1

yF,m,3(j)pm, P2 − pm < j ≤ P

(C.4)

As in the case of the FCDS and FDRS, we need to assume that yF,m,1(j) ≈744

0 for j > P1−pm, yF,m,2(j) ≈ 0 outside the region P1−pm < j ≤ P2−pm and745

that yF,m,3(j) ≈ 0 for j < P2 − pm. Due to these three assumptions the rate746

by which the system jumps from any state j−pm to state j can be generalized747

to (Sm,t − (sm,t(j) + sm,2,t(j) + sm,3,t(j)) + 1) for any system state; this rate748

should be considered in Eq. (C-1), Eq. (C-2) and Eq. (C-3), in order to have749

a generalized expression of the these rates. By using the three assumptions750

and by summing up side by side the three equations of Eq. (C-4) we derive751

Eq. (19), while these assumptions are expressed by Eq. (20), Eq. (21), and752

Eq. (22), respectively.753
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Figure C.1: A typical smart grid infrastructure.
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Table C.1: Power demands and operational times of the 10 appliances installed in each
residence.

appliances ele
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ho
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en
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ai
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t s
et

lig
ht
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g

PH
EV

power demand pm (p.u.) 20 15 40 10 6 25 5 7 4 100

operational time d−1m (min.) 40 30 30 40 60 40 40 50 60 30
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Figure C.2: (a) Example of the operation of the Finite Compressed Demand Scenario
(FCDS), (b) Flowchart of the FCDS. 45



Figure C.3: (a) Example of the operation of the Finite Delay Request Scenario (FDRS),
(b) Flowchart of the FDRS. 46



Figure C.4: (a) Example of the operation of the Finite Postponement Request Scenario
(FPRS), (b) Flowchart of the FPRS. 47



Figure C.5: Analytical results for the total number of requested p.u. under the default
scenario for the infinite and the finite models.
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Figure C.6: Analytical results for the total number of requested p.u. under the combined
FCDS+FDRS, for the infinite and the finite models.
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Figure C.7: Analytical results for the total number of requested p.u. under the combined
FCDS+FPRS, for the infinite and the finite models.
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Figure C.8: Analytical results for the total number of requested p.u. versus the number
of appliances, under the four scenarios.
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Figure C.9: Total average cost versus the total arrival rate, for the four different scenarios.
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Figure C.10: Total average social welfare versus the total arrival rate, for the four different
scenarios.

Figure C.11: State transition diagram of the system, under the FDRS when (a) j−pm′≤P0,
and, (b) j−pm′ >P0.
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