Conference paper Open Access

Connecting diverse public sector values with the procurement of machine learning systems.

Veale, Michael


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">public policy</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">public administration</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">public procurement</subfield>
  </datafield>
  <controlfield tag="005">20190410033904.0</controlfield>
  <controlfield tag="001">571786</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">15 - 16 September 2016</subfield>
    <subfield code="g">Data for Policy</subfield>
    <subfield code="a">Data for Policy 2016 - Frontiers of Data Science for Government: Ideas, Practices and Projections</subfield>
    <subfield code="c">Cambridge, United Kingdom</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">56179</subfield>
    <subfield code="z">md5:58eb2bb93c33b4a0c63ed897b96fee5c</subfield>
    <subfield code="u">https://zenodo.org/record/571786/files/32_Veale (1).pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://dataforpolicy.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-05-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-dfp17</subfield>
    <subfield code="o">oai:zenodo.org:571786</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University College London</subfield>
    <subfield code="a">Veale, Michael</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Connecting diverse public sector values with the procurement of machine learning systems.</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-dfp17</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Increasing interest in using machine learning systems for decision making and support in the public sector has raised questions as to how these technologies can be designed, implemented and managed responsibly. This short discussion paper describes some relevant social and technical potentials and perils of machine learning by relating them to different groups of public sector values outlined in the public administration literature. Practitioners may find this structure useful to help them understand different dimensions of responsibility they may wish to consider if they are considering using these technologies, and how they link to developing work and tools in the field. &lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.603951</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.571786</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
79
46
views
downloads
All versions This version
Views 7979
Downloads 4646
Data volume 2.6 MB2.6 MB
Unique views 7676
Unique downloads 4141

Share

Cite as