
Deployment and Management of Time Series
Forecasts in Ocean Industry

Fearghal O’Donncha
AI 4 Digital Twins

IBM Research Europe
Dublin, Ireland

feardonn@ie.ibm.com

Albert Akhriev
AI & Quantum

IBM Research Europe
Dublin, Ireland

albert akhriev@ie.ibm.com

Bradley Eck
AI 4 Digital Twins

IBM Research Europe
Dublin, Ireland

bradley.eck@ie.ibm.com

Meredith Burke
Department of Oceanography

Dalhousie University
Halifax, Canada

meredith.burke@dal.ca

Ramon Filgueira
Marine Affairs Program

Dalhousie University
Halifax, Canada

ramon.filgueira@dal.ca

Jon Grant
Department of Oceanography

Dalhousie University
Halifax, Canada
jon.grant@dal.ca

Abstract—Machine learning has not achieved the same degree
of success in environmental applications as in other industries.
Challenges around data sparsity, quality, and consistency have
limited the impact of deep neural network approaches and
restricted the focus to research applications. An alternative
approach – that is more amenable to the characteristics of data
coming from disparate IoT devices deployed at different times
and locations in the ocean – is to develop many lightweight models
that can be readily scaled up or down based on the number of
devices available at any time. This paper presents a serverless
framework that naturally marries a single IoT sensor device
with a forecasting model. Aspects related to data ingestion, data
processing, model training and deployment are described. The
framework is applied to a fish farm site in Atlantic Canada.

Index Terms—time series, imputation, ocean, environment,
model management

I. INTRODUCTION

Accurate forecasts of environmental variables are critical
to many ocean industries such as aquaculture, shipping, and
coastal management. Traditionally these forecasts rely on
physics-based models that resolve ocean dynamics on a grid.
These models are the linchpin of operational forecasting
products but suffer from two shortcomings:

1) Running physics-based models at the high resolutions
demanded by coastal forecasting applications can be
prohibitively expensive; and,

2) the models require highly-skilled users to deploy them
and maintain accurate forecasts.

Recent research at the interface of numerical modelling and
High Performance Computing (HPC) examines the first point.
Efforts include new programming environments to facilitate
increased computational scaling [1] or innovative systems that
combine extreme-scale computing with complex numerical
models [2]. The former, however, are an emerging technology
while the latter relies on large scientific collaboration and
dissemination activities to improve understanding of ocean
processes and simplify model tuning and deployment.

Instead of resolving the physics of the system with a set of
partial differential equations (PDEs), machine learning offers
an alternative that avoids many of these obstacles. Recent
years has seen numerous applications of machine learning
to forecasting ocean variables such as wave height [3], tem-
perature [4], and primary productivity [5]. The concept of
applying machine learning models to these datasets to capture
the system dynamics and forecast future conditions is well
established.

Two important considerations for operational forecasting
products are the spatial resolution required to resolve system
dynamics, and the forecast horizon that is necessary to enable
decision support and response. Recent work suggests decision
support systems will require an order of magnitude improve-
ment in spatial resolution [6], and improvement in forecast
confidence up to 14 days-ahead.

While advacnes in IoT, remote sensing, and numerical
model products, have enriched data coming from the ocean, a
key challenge remains related to developing machine learning
solutions that fuses those data into a robust predictive fore-
casting system amenable to the different spatiotemporal scales
necessary for industry operations. The most prominent bodies
of work in that space involves combination of CNN and RNN
for spatiotemporal forecasting (e.g. [7]), or hybrid approaches
that combine physics models with machine learning (e.g. [8]).
While these have demonstrated promising early results, the
complexity associated with model setup, configuration, and
interrogation makes flexible deployment challenging, and in
particular is generally not easily transferred to other locations.
Further since data from satellite or ocean model data are gen-
erally used to train the spatiotemporal models, the resolution
is restricted to that of the original dataset.

An alternative approach is to consider relatively simple
forecasting models and use many of them to resolve conditions
across the region of interest. In many marine industries such
as oil platforms, fish farms, and ports, there are 10s–1000s



of sensors sampling conditions on the marine environment.
In a sense it reduces to a choice between a small number of
complex models that aims to address many different spatial
and temporal scales simultaneously, or a large number of
simpler models that can respond to the huge spatial scales
by instantiating different models for each location.

We target the latter situation with a system that considers
the data ingestion, pre-processing and cleansing, model setup
and training, and the management of these deployments. The
framework is demonstrated on data from a real world fish farm.
Contributions of the paper are as follows:
• We present a scalable framework to train, monitor, and

deploy machine learning models for ocean datasets.
• We describe an automated data cleaning and pre-

processing routine that adapts to the specific needs of
ocean datasets.

• We assessed performance of the modelling framework on
data from a chaotic, real-world environment where data
is often sparse.

• Finally, we discuss the strengths and weaknesses of
serverless computing for ocean industry applications.

The rest of the paper is structured as follows. In the next
section, we discuss the current state of the art. Section III
presents the system architecture, describes the data collected,
and the experimental setup. This is followed by the results
and analysis, while Section V presents conclusions from this
research and future directions.

II. RELATED ART

Environmental forecasting applications have traditionally
relied on physics-based approaches and an extensive literature
exists related to hydro-environmental modeling and applica-
tions to numerous case studies. Complex software codes exist
(generally written in FORTRAN), that resolve physical and
biogeochemical ocean processes across both structured and
unstructured grids. Prominent examples in this space include
ROMS [9], DELFT3D [10], and EFDC [11].

Due to the heavy computational overhead of physical mod-
els, there is an increasing trend to apply data-driven DL or ML
methods to model physical phenomena [12], [13]. There is an
extensive body of literature related to ML based forecasting
methods in environmental applications. These include a variety
of shallow (e.g., decision trees, random forests, support-vector
machines) and deep neural network (DNN) approaches. [4]
compares the performance of different statistical, ML, and
DNN methods to forecast sea surface temperature (SST).
Results indicate that depending on availability of sufficient
training data volumes, simpler methods achieve comparable
accuracy to DNNs. Many studies have proposed frameworks
to represent the spatiotemporal properties of geophsysical
systems. The most widely used framework combines convo-
lutional neural networks (CNN) with LSTM to represent both
the spatial (CNN) and temporal (LSTM) dependencies within
the data. This approach has been applied to a variety of geo-
scientific tasks such as precipitation nowcasting from rainfall

radar maps [14] and forecasting sea surface temperature from
satellite-derived observations [7].

A number of studies have investigated data-driven ap-
proaches to provide computationally cheaper surrogate mod-
els, applied to wave forecasting [15], air pollution [16],
viscoelastic earthquake simulation [17], and water-quality in-
vestigation [18]. There are few (if any) machine learning
based forecasting methods used in operational products in
oceanography. The challenges of model trust and robustness,
data ingestion and curation, and model management and
monitoring limits the role that machine learning currently
has in operational forecasting applications. All large scale
operational products rely on physics-based models (e.g., [19],
[20]) and additional work is necessary to gain acceptance of
ML methods by environmental stakeholders.

III. METHODS

This paper presents a time series data preprocessing, im-
putation, and forecasting approach applied to ocean datasets.
The entire modelling approach is deployed on a flexible
serverless computing architecture. We describe the data inges-
tion, processing, model training/scoring, and model scheduling
and deployment. The framework is applied to forecast ocean
temperature and dissolved oxygen on a fish farm site in
Atlantic Canada. The data are characterised by varying degrees
of noise and anomalies as well as periods of missing values.
We present a pragmatic preprocessing framework that filters
outliers and imputes missing values (where feasible). In the
remainder of this section, we describe the study site and the
data being collected, describe the system architecture, describe
data preprocessing and cleansing implementation, and explain
the machine learning models and deployments.

A. The data

Temperature and dissolved oxygen (DO) observations were
collected within a farm of sea cages cultivating Atlantic
salmon. The study site, located in Saddle Island, Nova Scotia
(coordinates: 44◦ 30.225′ N 64◦ 2.923′ W), is a commercially
operated Atlantic salmon farm containing six cages, each
measuring 150m circumference and containing about 60,000
fish. Each cage was equipped with at least two RealTime
Aquaculture [21] probes deployed at different depths in the
water column and sampling at three minute intervals. Figure 1
gives a schematic of a typical cage configuration with sensors
deployed to monitor horizontal and vertical gradients. Nine-
teen sensors were deployed across the farm each measuring
temperature and dissolved oxygen. Battery capacity allowed
four month deployments after which sensor was removed,
cleaned, and recalibrated prior to another deployment (gen-
erally at another location in the the farm). Hence, data for
machine learning models covered a four month period.

Temperature and DO are important variables to guide farm
management and early warning decisions. Water temperature
has a major impact on fish metabolism and therefore growth
rates [22], while DO has obvious implications for respiration,
health, and mortalities [23]. Further, DO can fluctuate rapidly



under the influence of external drivers and internal cage
dynamics.

Fig. 1. Schematic of sensor configuration within a cage. Sensors are deployed
at two levels in the vertical to measure vertical gradients and in specific cages
four sensors were deployed to also measure horizontal gradients.

Sensor data were complemented with pertinent external
data. Weather data were extracted from IBM Weather Oper-
ations Center available through their public API [24], while
global ocean model data were downloaded from Copernicus
Marine Service model repository [20]. Copernicus data is
available at a ≈10 km horizontal resolution at hourly intervals
and can be freely downloaded. Selected weather variables were
air temperature, solar radiation, and wind speeds while the data
extracted from the Copernicus marine service were surface
temperature and dissolved oxygen as well as water elevation.

B. Castor
Castor is a cloud-native system for the management of

time series data and models that makes extensive use of
serverless technology, in particular IBM Cloud Functions
( [25] [26]). Castor was previously applied to renewable energy
forecasting and distribution grid optimization ( [27], [28]). The
present aquaculture application shares several characteristics
that motivate the usage of Castor. Noisy and incomplete sensor
data arrives from different sources without a fixed schedule.
Production forecasts of a fixed horizon are made on a rolling
basis, resulting in multiple forecasts for the same future time.
Comparisons of several combinations of model algorithm and
feature set are of interest. Thus, this work uses an instance of
the Castor system to support several forecasting tasks:
• ingestion and storage of sensor data and weather fore-

casts,
• data pre-processing and cleaning,
• training and scoring of machine learning models, and,
• model management and performance evaluation.
Castor uses semantic concepts of entity, and signal to

describe time series data and manage model deployments.
In this application, entities corresponded to locations such
as individual fish cages, and signals corresponded to water
quality parameters such as dissolved oxygen or water temper-
ature. Each time series has a unique identifier (tsid) which is

then associated with an entity-signal pair. Thus, sensor data
uploaded to the system may use either the tsid or semantic
coordinates. A Castor instance is deployed for every farm and
at this pilot site in Canada, it contains 1381 different time
series, representing 146 entities and 23 signals.

Castor separates the code which implements a model from
the configuration information needed to apply that model for a
specific time series. Model configuration includes the semantic
coordinates of the target time series, which automatically
also provides the historical values and related time series. In
this way, the semantics of entity and signal can be used for
parametric and programmatic model deployment. As further
described below, we implemented four different model classes:

1) Generalized additive models (GAM)
2) XGBoost
3) Random Forest (RF)
4) Multi-layer Perceptron (MLP)

Each class implemented Castor’s model interface, allowing the
system to manage model training and scoring and to evaluate
performance.

C. Data Pre-processing and Cleansing

A key objective of our work is to enable forecasting with
minimal human interaction. This requires the ability to request
data based on a given context, automatically process and
cleanse the data, and invoke an appropriate machine learning
pipeline for model training and forecasting (or scoring in ma-
chine learning parlance). Data preparation is a core component
of an applied data scientist’s role with an oft-repeated trope
that 80% of their time is spent cleaning data. A core part of
data cleansing is handling missing data – this is especially true
in time series forecasting where we desire complete coverage
over the time period.

The data imputation approaches considered the different
characteristics of data quality issues in aquaculture. The reality
of operating in a chaotic environment result in multiple classes
of data quality issues: failures in power and connectivity
results in data gaps of hours to days; sensor fouling and
damage impedes data quality and often demands bias and error
corrections; while the multiple temporal and spatial scales of
ocean processes often require robust post-processing and noise
removal strategies. These issues are amplified by the fact that
collecting sufficient data is often difficult and one is rarely
able to replace significant portions of data due to data quality
issues – one instead desires to repair the data.

While a fundamental and long-studied problem, it is not
straightforward to devise a formal protocol and to categorise
the “best” imputation system. The difficulty primarily stems
from the fact that one requires a representative model of the
original time series signal to enable reconstruction – of course
this is generally not available in practise. Instead we wish
to offer a variety of imputation approaches and allow the
system to chose the best one based on changes or improvement
in model skill. In practical terms, we are not interested in
precisely replicating the true signal (this is not known and



impossible), but rather to impute in a manner that we replicate
the statistical fidelity of the series.

We considered a variety of standard imputation approaches,
as well as two algorithms we developed that are more
amenable to time series data with distinct periodic signals.
The standard imputers are well known and included: a simple
imputer from Scikit-Learn Python package that substitutes a
median value instead of a missing one, as well as linear,
quadratic, cubic and polynomial interpolation. The two new
imputation choices we offered were:
• A fast principal component projection imputer (Fast-

PCPImputer) and a
• Low rank imputer (LRImputer)
Instead of interpolation at missing values, these imputers

try to substitute the missing portion of a signal from other,
uncorrupted parts of the same sequence. This is done via low-
rank matrix approximation. Namely, we put the signal into a
square matrix progressively row by row (possibly padding by
NaNs at the end of last row). We call this matrix a data matrix.
The rank of low-rank approximation is chosen as a square root
of matrix size in either dimension.

The first imputer (FastPCPImputer) elaborates the idea
described in the paper [29]. The fundamental rationale of the
approach considers recovering a low-rank matrix (the principal
components) from a high-dimensional data matrix despite the
presence of sparse errors [30]. This has natural applicability
for time series data where one may expect repeated patterns
at different frequencies such as day (solar radiation), week
(traffic volumes) or year (annual or seasonal cycles). We adopt
a brute-force grid search approach to select value of regulariza-
tion parameter λ to achieve best match at uncorrupted entries
of the time series.

The second imputer (LRImputer) extends our paper [31],
where low-rank approximation was achieved by decomposition
of the data matrix into a product of two low-rank ones L ·
R (hence the name LR). We use robust loss function with a
regularizer that promotes smoothness of the imputation result.

Both imputers are relatively fast. The Python implementa-
tion usually takes less than 10 seconds (often 2-3 seconds)
on single-core CPU on time series with 10,000+ observations.
This approach allows us to standardise data processing for
machine learning models (since missing values are handled in
an equivalent manner for every sensor), while different choices
can be readily explored.

D. Model Setup and Training

While any model can conceptually be added to the model
store, there are practical limitation in terms of model size,
hence, we wish to limit to shallower choices (the data appetite
of DNNs is also an issue in a challenging data collection
environment such as oceans). For our applications we consid-
ered four different algorithms: Generalised Additive Models
(GAM), Random Forest (RF) XGBoost, and Multi-Layer
Perceptron (MLP). Extensive details on these algorithms are
provided in many statistical and machine learning textbooks

(e.g., [32], [33]) and considerations for their application to
ocean datasets are described in [4].

For each model implementation, pertinent data was re-
quested from the server, resampled to hourly intervals, prepro-
cessed as described above to remove outliers and impute miss-
ing values, converted into appropriate time-aligned matrices
for the model implementation, and used to train the machine
learning model (or update a previously trained model). The
train test split is an important consideration for time series
data. Randomly shuffling the data can artificially inflate model
performance, while a simple linear split (first 80% training and
the remainder test) can lead to model drift. Our approach relies
on a recurrent forecasting method where the model is trained
on all available data up to a point and makes a prediction for
the subsequent time point. The process then steps forward one
time step and repeats the training and forecasting.

Hyperparameter optimisation was done using a greedy grid
search approach that searched over a user-defined range of
hyperparameters with an embarrassingly parallel approach.
Pywren [34] managed the search, which then returned the
parameters that minimised error for the training dataset, us-
ing a MapReduce operation. More details on hyperparameter
optimisation and testing is provided in [4].

The trained model was then stored in a model management
database and deployed in forecasting mode against a verifica-
tion dataset to evaluate performance metrics and goodness-of-
fit. Trained models are tagged and stored allowing flexibility
to select different model iterations (e.g., roll back to a model
that we know gives a certain level of performance while also
testing new model implementations). At all stages, a variety of
preprocessing and forecasting algorithms are available to the
system to enhance forecasting skill and allow us to address
many different variables and conditions. This gives us the
added benefit that we can readily train and store different mod-
els with different combinations of features to allow flexible
interrogation and demonstration of the implications of different
forcing parameters.

IV. RESULTS AND DISCUSSION

The key objective of our work was to simplify the task of
configuring, training, and deploying machine learning models,
with a focus on environmental applications. The situation at
hand consisted of multiple IoT sensors returning observa-
tions from different locations within the cage. Effective farm
management required 5–10 day-ahead forecasts, and a robust
model monitoring framework to identify deviations from am-
bient condition. Meeting these needs required a framework
for data ingestion, data processing, model training, model
deployment, and monitoring.

As described in Section III-B, sensor data is stored and
managed via a context layer that provided the user with a
logical access point to the data based on entity (generally
sensors identified based on cage number and whether they are
near surface or near bottom), and signal (water temperature or
dissolved oxygen in this case).



Fig. 2. Example dashboard showing Castor’s model hierarchy and comparing performance of two random forest models for predicting water temperature in a
cage at a depth of 2 m. The legend on the bottom left denotes an entity such as sensor in cage 1 at 2m depth (blue ellipse), signal such as water temperature
or DO (yellow square), model such as GAM, XGBoost, or Random Forest (purple diamond) and a tagged version or id for the model denoting different
deployments (pink triangle)

A dashboard for the Castor system allows interactive nav-
igation of data and forecasts. The instance/site of interest
(DAL indicating Canadian fish farm) and the time window are
selected from the left panel. The entity (a temperature, salinity,
and oxygen (TSO) sensor from center of cage 1 at 2m depth)
and signal (water temperature) are selected in the top row.
The network diagram at the bottom left shows Castor’s model
hierarchy: how models and model versions relate to the target
entity and signal. Perhaps of most interest is the time series
plot on the bottom right where the forecast values from two
different forest models are compared with observations.

Deployed model classes were labelled by model number (1–
6) and algorithm (GAM, RF, XGBoost, and MLP). The model
number refers to different combinations of features that draw
from [4]: 1) autoregressive features (i.e. past values of the
response variable), 2) atmospheric variables (air temperature,
pressure, and wind speeds), and 3) Copernicus ocean model
variables (physical model forcing at global scale (≈10 km
horizontal resolution). In this case, Figure 2 compares model
results from model3 rf against model4 rf : model3 is forced
by autoregressive features only, while model4 is informed by
features from Copernicus ocean model only (in effect, model4
attempts to downscale from the global scale (O(10 km) to the
cage level (O(0.05 km). In our case model3 reports better
model skill, but model4 avoids some of the limitations of
autoregressive models and allows us make forecasts during
periods we don’t have sensor data. The eventual choice of
models is driven by the specifics of a given farm. Naturally dif-
ferent combinations of these features can be readily combined
(specified in configuration file) and the model store allows easy
comparison and selection of desired choice. The scalability of

our serverless approach places little practical limitations on
the number of models that can be explored.

V. CONCLUSION

We present a scalable data ingestion, processing, and fore-
casting framework that is amenable to the requirements of
forecasting in marine industry application. Challenges around
data sparsity are addressed by fusing data from external
sources, while shorter gaps in data are handled by a choice of
imputation algorithms. The objective is a pragmatic approach
that simplifies the repetitive tasks and allows the data scientist
or domain expert to readily explore different model choice
and make their selection based on given site characteristics
and requirements.

The semi-automated approach greatly increases the number
of models that can be easily deployed and managed by the
user (in practical terms, the limitation is not computational
but rather restricted by the user bandwidth). Metrics on model
performance (RMSE and MAPE) are computed and provided
to the user as a base sanity check on model performance. Fu-
ture research is focused on developing more robust monitoring
frameworks that are sensitive to data fluctuations or sensor
drift that are not readily detected by more naive approaches
like RMSE. In addition, increased penetration of machine
learning in the industry is contingent on model trust and
robustness. The fact that all models are stored provides a
valuable resource for explainability solutions that allows the
user to readily explore how different set of features contribute
towards model forecast.
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