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ABSTRACT
This paper addresses the statistical behaviour of the MUSIC method
for DoA estimation, in a scenario where each source signal direct
path is disturbed by a clutter spreading in an angular neighborhood
around the source DoA. In this scenario, it is well-known that sub-
space methods performance suffers from an additional clutter sub-
space, which breaks the orthogonality between the source steering
vectors and noise subspace. To perform a statistical analysis of the
MUSIC DoA estimates, we consider an asymptotic regime in which
both the number of sensors and the sample size tend to infinity at
the same rate, and rely on classical random matrix theory results.
We establish the consistency of the MUSIC estimates and provide
numerical results illustrating their performance in this non standard
scenario.

Index Terms— DoA estimation, MUSIC, Distributed Sources,
Random Matrix Theory

1. INTRODUCTION

The estimation of the Direction of Arrival (DoA) of source signals
using an array of sensors is a fundamental topic in signal process-
ing, having applications in various fields such as radar processing,
wireless communications or seismology. Among the high resolution
techniques offering a reasonable computation cost, the subspace
methods (e.g. MUSIC, ESPRIT) are widely used. The statisti-
cal performance of these methods, in terms of Mean Square Error
(MSE), asymptotic normality or resolution probability, have been
extensively studied (see e.g. [1] and the references therein), usually
in the large sample size regime. Moreover, the standard analyses are
mostly carried out by considering Line of Sight (LOS) plane waves
scenarios, involving a single direct path between each source and
the sensor array (usually referred to as point source model).

Nevertheless, applications such as wireless communications or
ground/sea radar detection may involve additional multipath prop-
agation due to local scattering, leading to non standard models in
which a clutter disturbance spread around each source DoA (usually
referred to as distributed source model).

Let us consider K narrowband and far-field source signals with
DoA θ1, . . . , θK impinging on a uniform linear array of M sensors
(with each sensor separated by half the wavelength). Assuming rich
local scattering around each source DoA, as well as deterministic
constant modulus source signals (see e.g. [2], [3]), the received
signal can be modeled as a temporally uncorrelated Gaussian M -
dimensional time series (yn) given by

yn = R1/2xn, (1)
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with xn ∼ NCM (0, I) and 1

R =

K∑
k=1

(
αkγk

1 + γk

a(θk)a(θk)∗

M
+

αk
1 + γk

Tk

)
+ σ2I, (2)

and where

• a(θ) = [1, e−iπ cos(θ), . . . , e−i(M−1)π cos(θ)]T is the steering
vector,

• αk and γk are non negative factors controlling respectively
the total energy, and the dispersion of the energy between the
direct path and the scatterers, for the k-th source. By con-
vention, setting γk = +∞ means that the energy of the k-th
source is concentrated in the direct path (point source model).

• Tk is the Toeplitz spatial correlation matrix of the clutter
around the k-th source, given by

Tk =

∫ π

0

a(θ)a(θ)∗fk(θ)dθ, (3)

where fk represents the angular density of the scatterers.

We moreover assume that N samples y1, . . . ,yN are available.
Several DoA estimation methods or improvements of existing

ones have been proposed in this context, usually based on the a pri-
ori knowledge or estimation of the clutter statistical parameters, see
e.g. [4] [2] [3] [5]. In particular, subspace methods [4] have been
modified to take into account the potential increase of the signal
subspace dimension, due to the clutter covariances T1, . . . ,TK . In
comparison, the performance analysis of classical subspace methods
has received much less attention. The statistical behaviour of MU-
SIC is studied in [6][7], and approximate distribution of the DoA
estimates are derived, assuming a clutter with small angular spread
around each nominal source DoA. Moreover, most works assume
the absence of a direct path between the sources and the sensor ar-
ray, that is, γk = 0 for all k = 1, . . . ,K.

In situations where a direct path between the sources and the
array exists and carries a certain amount of the total energy, it is
still possible to use classical subspace methods to estimate the nom-
inal DoA. In this case, one major issue is the loss of orthogonality
between the source steering vectors a(θ1), . . . ,a(θK) and the noise
subspace defined as the eigenspace associated with theM−K small-
est eigenvalues of R defined above. Nevertheless, this loss can be
mitigated for array equipped with a large number of sensors. In this
case, the sample size may not be much larger than the number of

1The role of the normalization factor 1
M

in the direct path contribution is
to keep the SNR bounded, as we will letM goes to infinity for our asymptotic
analysis.



sensors, and standard statistical analysis based on asymptotic sam-
ple size regime N → ∞, with fixed observations dimension M is
not relevant anymore.

In this paper, we consider the same approach as in [8] and resort
to the asymptotic regime in which both M and N goes to infinity
at the same rate. Based on this, we provide a statistical analysis of
the MUSIC DoA estimates, for the distributed source model (1). In
particular, we prove that as long as the energy of the direct path of
each source (controlled by the coefficients α1, γ1, . . . , αK , γK ) is
sufficiently large, the MUSIC method still provides consistent DoA
estimates. For this purpose, we provide an analysis of the asymptotic
behaviour of theK largest eigenvalues of the sample correlation ma-
trix (SCM)

R̂ =
1

N

N∑
n=1

yny
∗
n,

based on a straightforward extension of the results of [9] (which are
valid in particular for a point source model). Most of the proofs in
the paper are omitted due to lack of space.

2. SPECTRAL BEHAVIOUR OF THE SCM

For our analysis, we consider the asymptotic regime 2 in which the
sample size N = N(M) is a function of M such that cM = M

N
→

c > 0 as M → ∞, whereas the source number K is assumed
fixed. The source DoA θ1, . . . , θK are considered fixed with re-
spect to M , which models situations where the DoA are widely
spaced (see [10] for further details). We assume that θk does not
belong to the boundary of supp(fk), that is, the source DoA may
be strictly inside/outside its clutter angular spreading, as well as the
non-overlapping conditions 3

θk 6∈ supp(f`) and supp (fk) ∩ supp (f`) = ∅,

for k 6= `, and consider supp(fk) ⊂ (0, π) for all k = 1, . . . ,K.
Finally, we assume the technical conditions that fk is piecewise con-
tinuous with no isolated points in its support and that it is Lipschitz
continuous 4 when restricted to its support.

For the remainder, we will work with T = (−π, π] and rewrite
the steering vectors in the Fourier domain as b(ϕ1), . . . ,b(ϕK)
with

b(ϕ) = [1, e−iϕ, . . . , e−i(M−1)ϕ]T and ϕk = π cos(θk).

We also rewrite the correlation matrix R as

R =
1

M
BDB∗ + T + σ2I, (4)

where B = [b(ϕ1), . . . ,b(ϕK)], D = diag (d1, . . . , dK) with
dk = αkγk

1+γk
, and where

T =
1

2π

∫
T
b(ϕ)b(ϕ)∗g(ϕ)dϕ,

2Accordingly, we use the subscriptM for certain quantities depending on
M , when there may be an ambiguity.

3The results of this paper could be extended to the case where more than
one source DoA belongs to supp(fk) ; nevertheless we stick to the case of
"one source per clutter" to lighten the presentation.

4Note that this last condition is mainly used to prove the existence of a
local minimum at point w0 for the function ψ defined below in (5).

with

g(ϕ) =

K∑
k=1

2αk
1 + γk

fk
(
arccos

(
ϕ
π

))√
1−

(
ϕ
π

)2 .

Under the above assumptions, note that g ∈ L∞(T), and thus
‖T‖2 ≤ ‖g‖∞, where ‖.‖2 stands for the spectral norm and ‖.‖∞
the essential sup norm on L∞(T) .

Denote by λ1,M ≥ . . . ≥ λM,M the eigenvalues of the corre-
lation matrix R, and by νM the empirical spectral distribution of R
defined as

νM =
1

M

M∑
m=1

δλm,M ,

where δx is the Dirac measure at point x. From Szegö theorem, it is
well-known that

νM
w−−−−→

M→∞
ν = τ ◦

(
g + σ2

1T
)−1

,

that is, (νM ) converges weakly to the image measure of τ by g +
σ2
1T, where τ is the normalized Lebesgue measure on T. Although

the global asymptotic behaviour of the spectrum of R follows the
distribution ν, the K largest eigenvalues of R may split from the
support of ν, thus ensuring clear separation between signal and clut-
ter plus noise subspaces, as stated in the following result.

Proposition 1. If dk + g(ϕk) > ‖g‖∞ for all k = 1, . . . ,K, then

λk,M −−−−→
M→∞

λk = dk + g(ϕk) + σ2,

while lim supM→∞ λK+1,M ≤ ‖g‖∞ + σ2.

The proof, which relies on a standard analysis of eigenvalues
perturbation and Fourier series computations, is omitted. Note that
the condition in the statement of Proposition 1 has a straightforward
interpretation, as it requires the energy of the "signal plus clutter"
contribution in the directions ϕ1, . . . , ϕK to be larger than the max-
imum of the clutter spectral density.

We now examine the conditions under which the K largest
eigenvalues of the SCM R̂ also split from the rest. First, we begin
by reformulating some well-known results stating that the whole
spectrum of R̂ tends to spread following some deterministic distri-
bution. Let us define the empirical spectral distribution of R̂ as the
random probability measure

µ̂M =
1

M

M∑
m=1

δλ̂m,M
,

where λ̂1,M ≥ . . . ≥ λ̂M,M are the eigenvalues of R̂. Then it is
well-known (see [9] and the references therein) that almost surely,

µ̂M
w−−−−→

M→∞
µ,

where µ is a deterministic probability distribution, characterized
through its Stieltjes transform m(z) =

∫
R

dµ(λ)
λ−z satisfying the

canonical equation

m(z) =

∫
R

dν(λ)

λ (1− c− czm(z))− z .



for all z ∈ C\ supp(µ). Moreover, supp(µ) coincides with the
disjoint union of compact intervals whose boundary points are given
by the local extrema of the function w 7→ ψ(w) defined as

ψ(w) = w

(
1− c

∫
R

λ

λ− wdν(λ)

)
. (5)

In the interval
(
‖g‖∞ + σ2,+∞

)
, ψ admits in particular a unique

local minimum at some point denoted w0, and max (supp(µ)) =
ψ(w0).

Following verbatim the steps of [9], we also obtain the fol-
lowing result ensuring the escape of the K largest eigenvalues
λ̂1,M , . . . , λ̂K,M from the support of µ.

Theorem 1. Assume that

λK > w0. (6)

Then, for k = 1, . . . ,K, with probability one (w.p.1) as M → ∞,
λ̂k,M → ψ(λk), whereas λ̂K+1,M → ψ(w0) < ψ(λK).

The condition in (6) (equivalent to ψ′(λK) > 0) intrisically
depends on αk, γk and σ2 and is roughly satisfied as long as αk and
γk are large enough ; it is referred to as separation condition (see
[8]). Therefore, as long as the separation condition is satisfied, we
are able to consistently detect the number of sources in the sense that

K̂M = max
{
k : λ̂k,M > ψ(w0) + ε

}
a.s.−−−−→

M→∞
K,

for 0 < ε < ψ(λK)− ψ(w0), where a.s stands for almost surely.

Remark 1. Of course, by letting γk → +∞ for all k, we have

ψ(w)→ w
w − σ2(1 + c)

w − σ2
, (7)

and we retrieve the usual separation condition for point sources [9],
that is α1, . . . , αK > σ2√c.

3. CONSISTENCY OF THE MUSIC METHOD

In this section, we use the results on the spectrum of the SCM to ana-
lyze the statistical behaviour of the MUSIC DoA estimates, in terms
of consistency, in the specific doubly asymptotic regime mentioned
previously. We assume, to ligthen the presentation, that λ1 > . . . >
λK (simple eigenvalues case).

Let us define

η̂M (ϕ) =
1

M

K∑
k=1

|b(ϕ)∗ûk,M |2 ,

the usual MUSIC cost function, where û1,M , . . . , ûK,M are the
orthonormalized eigenvectors of R̂ associated with the K largest
eigenvalues λ̂1,M , . . . , λ̂K,M , as well as the related DoA estimates
ϕ̂1,M , . . . , ϕ̂K,M with 5

ϕ̂k,M = argmax
ϕ∈Ik

η̂M (ϕ),

where I1, . . . , IK are disjoint compact intervals such that ϕk be-
longs to the interior of Ik.

The following result gives the asymptotic of η̂M (ϕ). We denote
by u1,M , . . . ,uK,M the orthonormalized eigenvectors of R associ-
ated with λ1,M , . . . , λK,M , and define

h(w) = w
ψ′(w)

ψ(w)
.

5As it will be clearer below, the argmax is unique w.p.1 for all large M .

Proposition 2. If the separation condition (6) holds, then

‖η̂M − ηM‖∞
a.s.−−−−→

M→∞
0,

where ηM (ϕ) = 1
M

∑K
k=1 h(λk) |b(ϕ)∗uk,M |2.

Proof. For any fixed ϕ ∈ T, the convergence η̂M (ϕ)−ηM (ϕ)→ 0
can be obtained as in [8, Th.1], and using the fact that νM → ν
weakly. The uniformity over all ϕ ∈ T can be handled following the
arguments as in [11, Th.3.1]

To study the behaviour of the DoA estimates ϕ̂1,M , . . . , ϕ̂K,M ,
we thus need to study the local maxima of ϕ 7→ ηM (ϕ) obtained in
the previous result. Using standard asymptotic properties of b(ϕ),
we obtain, as M →∞, that

sup
ϕ6∈∪kIk

ηM (ϕ)→ 0 and sup
ϕ∈Ik

|ηM (ϕ)− ηk,M (ϕ)| → 0, (8)

where the function ηk,M , defined by

ηk,M (ϕ) = h(λk)

∣∣∣∣ dkM b(ϕ)∗
(
T + (σ2 − λk)I

)−1
b(ϕk)

∣∣∣∣2 ,
admits a unique local maximum on Ik at ϕk. This immediately
implies that ϕ̂k,M → ϕk a.s. as M → ∞. To precise the rate of
convergence, we follow the steps of [10, Th. 5] and obtain that w.p.1,

lim inf
M→∞

η̂M (ϕ̂k,M ) ≥ h(λk) > 0. (9)

This implies that

lim sup
M→∞

M |ϕ̂k,M − ϕk| <∞ w.p.1,

otherwise (9) would be contradicted. Finally, if sinc denotes the
function satisfying sinc(0) = 1 and sinc(x) = sin(x)/x if x 6= 0,
then

sup
δ∈K

∣∣∣∣ηk,M (ϕk +
δ

M

)
− h(λk)sinc (δ/2)2

∣∣∣∣ −−−−→M→∞
0, (10)

for any compact K of R. This implies M (ϕ̂k,M − ϕk) → 0 w.p.1
as M → ∞, otherwise (9) would be again contradicted. Therefore,
the following result holds.

Theorem 2. If the separation condition (6) holds, then

M (ϕ̂k,M − ϕk)
a.s.−−−−→

M→∞
0.

Note that this consistency result, referred to as M -consistency,
is similar to the one obtained in the point source scenario [10].

Remark 2. The convergences in (8) and (10) indicate that the
MUSIC cost function asymptotically "removes" the clutter contribu-
tion, in the sense that we retrieve its usual behaviour of the point
source scenario [10] in/outside neighborhoods of the nominal DoA
ϕ1, . . . , ϕK .



4. NUMERICAL RESULTS FOR UNIFORMLY
DISTRIBUTED SCATTERERS

In this section, we provide numerical illustrations of the statistical
behaviour of the MUSIC DoA estimates, in the special case where
the clutters associated with the K sources are uniformly distributed
and centered around the corresponding nominal DoA, that is

fk(θ) =
1

∆k
1[
θk−

∆k
2
,θk+

∆k
2

](θ).
In this case, we have

λk =
αk

1 + γk

(
γk +

2

∆k sin(θk)

)
+ σ2,

and the separation condition ψ′(λK) > 0 rewrites more precisely

K∑
k=1

∫ θk+
∆k
2

θk−
∆k
2

(
1 +

λK
2αk

(1+γk)∆k sin(θ)
+ σ2 − λK

)2

sin(θ)dθ

+

(
σ2

σ2 − λK

)2
(

1− 2

K∑
k=1

sin (θk) sin

(
∆k

2

))
<

2

c
.

We chooseK = 3 sources with θ1 = 40◦, θ2 = 90◦ and θ3 = 135◦,
with clutter spreading ∆1 = ∆2 = ∆3 = 15◦. The energy factors
are set to α1 = 2, α2 = 3, α3 = 2.4 and γ1 = γ2 = γ3 = 10.

In Figure 1, we plot the expectation of the periodogram ϕ 7→
1
M
‖R1/2b(ϕ)‖2, as well as the asymptotic equivalent ϕ 7→ ηM (ϕ)

of the MUSIC cost function obtained in Proposition 2 (M = 100,
c = 0.5 and σ2 = 0.25). Both cost functions are renormalized
such that their maximum and minimum values are 1 and 0 respec-
tively. As stated in Remark 2, we observe that the MUSIC asymp-
totic equivalent cost function mitigates the clutter spectral density,
which leads in theory to a better "Peak to Sidelobe Ratio" compared
to the periodogram.
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Fig. 1. Periodogram and MUSIC asymptotic cost functions

In Figure 2, we plot the empirical MSE of the MUSIC DoA
estimate ϕ̂2,M against a normalized SNR defined as −10 log(σ2),
for different values of M (with N = 2M ). The Cramer-Rao bound
for point sources [1] is also plotted (for M = 150). We observe a
saturation of the MSE at high SNR, due to the loss of orthogonality
between the source steering vectors and the noise subspace. The
separation condition (6) occurs around SNR=-2dB.
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Fig. 2. Empirical MSE of ϕ̂2,M as a function of the SNR

Finally, in Figure 3, we represent the empirical MSE of ϕ̂2,M

as a function of M (with N = 2M and SNR = 10 dB). We notice
that the saturation of the MSE, observed in Figure 2, can be miti-
gated if the array is equipped with a large number of sensors, and
the order of magnitude is conjectured to beO

(
M−3

)
. Additionally,

the estimated DoA are also expected to be asymptotically Gaussian
distributed (see e.g. [10] for the case of point sources).

101 102

M

10−7

10−6

10−5

10−4

10−3

10−2

Empirical MSE
M−3

Fig. 3. Empirical MSE of ϕ̂2,M as a function of M

5. CONCLUSION

In this paper, we have addressed a statistical analysis of the MU-
SIC algorithm for DoA estimation, in a context where source signals
LOS component is corrupted by a clutter spreading in a angular sec-
tor around the nominal DoA. Considering the asymptotic regime in
which the number of sensors and the number of available snapshots
tend to infinity at the same rate, we have provided an explicit con-
dition, involving the noise variance as well as the energies of the
clutter and LOS components, under which MUSIC provides consis-
tent DoA estimates. Numerical computations of the MSE have been
provided as a function of the SNR and the number of antennas, and
its theoretical study is currently under investigation.
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