
1

Deciphering the Collatz Conjecture

Through Recursion

Glenn Patrick King Ang

Abstract

More than 80 years has passed since the Collatz conjecture has been proposed, but

since then there has been no concrete proof as to why it is stuck in the 4 to 2 to 1 loop

endlessly. There had been various attempts to find the reason as to why this infinite loop

occurs, but there hasn’t been any widely recognized proof for the Collatz conjecture.

This paper details a different approach to explain why this infinite loop occurs and at the

same time explain why the Collatz conjecture is similar to a computer source code. Section 2, 3,

4, and 5 details the process used to determine the purpose of 2𝑛 and 𝑛 + 1 functions inside an

iterative loop, while section 6 and 7 reveals the logical reasoning behind how the 2𝑛 + 2

algebraic expression was obtained based on 3𝑛 + 1 or 2𝑛 + 𝑛 + 1.

Section 8 provides proof for 2𝑛 + 2 as the hidden algebraic expression of the Collatz

conjecture, while both sections 9 and 10 provides proof that it is also possible to get stuck in

the −4 to −2 to −1 loop endlessly when 𝑛 is any negative odd integer by simply replacing

addition with subtraction. Sections 11 provides the key reason why the Collatz conjecture is

getting stuck in an endless loop of 4 to 2 to 1.

1. Introduction

 Collatz conjecture states:

a. Let 𝑛 be any positive odd integer greater than 0

b. If 𝑛 is odd, use 3𝑛 + 1

c. If 𝑛 is even, use
𝑛

2

d. Repeat the loop until 1 is reached

2

2. Recursion and Iterations

 In computer science, recursion and iteration are two related methods for solving

problems that depends on the solution of a previous computation from the same lines of code.

Recursion is a recursive function that calls itself repeatedly if a specific condition is met

and will only stop once the predefined condition for it to stop is met.

Iteration simply means executing the same lines of code over and over until the

predefined condition for it to stop is met.

 The very definition of recursion and iteration perfectly describes the Collatz conjecture

in its entirety. Therefore, it is now possible to infer that the Collatz conjecture is just like any

other computer source code, which can be further examined to determine what the purposes

are of each function inside the iterative loop. Representing the Collatz conjecture as a

computer algorithm using the python language. See the link for the python code in Appendix A.

Iterative function
filename: 3n _plus_ 1_whileloop.py

Recursive function
filename: 3n _plus_ 1_recursion.py

Using a while loop for the

Collatz conjecture

created by Glenn Patrick King

Ang 10/18/2021

n = 1 or any positive odd

integer > 0

n = 1

previous_n = 0

while n > 0 and previous_n != 2:

 previous_n = n

 if previous_n == 2:

 print("1")

 print("end loop")

 break

 elif n % 2 == 1:

 n = (3 * n) + 1

 elif n % 2 == 0:

 n = n / 2

 print(int(n))

Creating a function called

Collatz conjecture

created by Glenn Patrick

King Ang 10/18/2021

def Collatz_Conjecture(n,

previous_n=0):

 if previous_n == 2 or n

== 2:

 print("1")

 print("end recursive

programming")

 else:

 previous_n = n

 if n % 2 == 1:

 n = (3 * n) + 1

 elif n % 2 == 0:

 n = n / 2

 print(int(n))

 Collatz_Conjecture(n,

previous_n)

3

n = 1 or any positive odd

integer > 0

n = 1

Collatz_Conjecture(n)

3. Rewriting the 𝟑𝒏 + 𝟏 algebraic expression

In mathematics, an algebraic expression is an expression composed of variables,

constants, and algebraic operations. Furthermore, algebraic expressions can be rewritten more

than one way without affecting the original algebraic expression. Rewriting 3𝑛 + 1:

𝟑𝒏 + 𝟏

= 𝟐𝒏 + 𝒏 + 𝟏

Rewriting the original algebraic expression is the key to not only better understand what

the function of each part of the algebraic expression is for, but also in deciphering the hidden

form of the 3𝑛 + 1 algebraic expression inside an iterative loop.

4. Revealing the functions of 𝟐𝒏 and 𝒏 + 𝟏

 In computer programming, when there are multiple functions in the source code of a

program, the coder or programmer must look at and study each function to fully comprehend

what it is for or what it exactly does. The same logic applies in this instance to fully prove that

the 3𝑛 + 1 algebraic expression was designed from the very beginning to create an infinite loop

that goes from 4 to 2 to 1 then back to 4 loops.

 By using the rewritten algebraic expression, the possibility of evaluating each part of the

algebraic expression for its true purpose has finally been opened up. For this proof, the

rewritten algebraic expression will be separated into 2𝑛 and 𝑛 + 1.

Starting with 𝟐𝒏:

The purpose of 𝟐𝒏 is to always output an even integer that is always evenly divisible by 2.

 Proof: Properties of even and odd numbers.

 The sum of two odd numbers is always an even number.

• Rewriting 2𝑛 as:

𝒏 + 𝒏

4

For 𝒏 + 𝟏:

Its purpose is to always output an even integer that is always evenly divisible by 2.

 Proof: Properties of even and odd numbers

 The sum of two odd numbers is always an even number.

• Let n be any positive odd integer

𝒏 + 𝟏

 This proves that both 2𝑛 and 𝑛 + 1 is designed to not only always output an even

integer but ensure that the integer is always evenly divisible by 2. Since it has already been

proven what 2𝑛 and 𝑛 + 1 does, it is now time to decipher the code hidden inside 3𝑛 + 1.

5. Deciphering the Collatz Conjecture’s code

Although using the recursive function is far more ideal, for the purpose of keeping

things simple, the while loop will be used throughout the proof instead. Both 2𝑛 and 𝑛 + 1 will

be put inside an iterative loop separately in order to shed light as to the true purpose of each

function.

a. Starting with 2n:

 This experiment will be using the exact same conditions as the Collatz conjecture, but

with a slight variation where 2𝑛 will be used instead of 3𝑛 + 1. Representing the Collatz

conjecture as a computer algorithm using the python language. See the link for the python code

in Appendix A. filename: 2n_whileloop.py

n = 1 or any positive odd

integer > 0

created by Glenn Patrick King

Ang 10/18/2021

n = 19

previous_n = 0

while n > 0 and previous_n != 2:

 previous_n = n

 if previous_n == 2:

Example:

n = 19

𝑖𝑓 𝑜𝑑𝑑: 2𝑛
𝑛 = 2(19)
𝑛 = 38

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2

𝑛 =
38

2

5

 print("1")

 print("end loop")

 break

 elif n % 2 == 1:

 n = (2 * n)

 elif n % 2 == 0:

 n = n / 2

 print(int(n))

𝑛 = 19

The loop is forever stuck in the 19 to 38
then back to 19 loops.

By looping the code with 2𝑛 as the algebraic expression, it is now possible to infer that

for any positive odd integer, the output will always get stuck in a loop. The loop consists mainly

of multiplying and dividing 𝑛 by 2, which will then revert 𝑛 back to its original value. Therefore,

the only purpose of 2𝑛 is to convert the positive odd integer into a positive even integer that

will always be evenly divisible by 2.

Logically speaking, the true purpose of 𝟐𝒏 when combined with 𝒏 + 𝟏 is to ensure that

the iterative loop will never stop as long as a positive odd integer exists inside the

iterative loop.

b. Starting with n+1:

 This experiment will be using the exact same conditions as the Collatz conjecture, but

with a slight variation where 𝑛 + 1 will be used instead of 3𝑛 + 1. Representing the Collatz

conjecture as a computer algorithm using the python language. See the link for the python code

in Appendix A. filename: n_plus_1_whileloop.py

n = 1 or any positive odd

integer > 0

created by Glenn Patrick King

Ang 10/18/2021

n = 1

previous_n = 0

while n > 0 and previous_n != 2:

 previous_n = n

 if previous_n == 2:

 print("1")

 print("end loop")

 break

 elif n % 2 == 1:

 n = n + 1

Example:

n = 1

𝑖𝑓 𝑜𝑑𝑑: 𝑛 + 1
𝑛 = 1 + 1
𝑛 = 2

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2

𝑛 =
2

2

𝑛 = 1

6

 elif n % 2 == 0:

 n = n / 2

 print(int(n))

The loop is forever stuck in the 2
to 1 then back to 2 loops.

Executing the iterative loop with more examples:

Example:

n = 7

𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 𝑛 + 1
𝑛 = 7 + 1
𝑛 = 8

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2

𝑛 =
8

2

𝑛 = 4

Repeat the loop.

Output:

𝑛 =
4

2
= 2

𝑛 =
2

2
= 1

𝑛 = 1 + 1 = 2

The loop is forever stuck in the
2 to 1 then back to 2 loops

n = 23

𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 𝑛 + 1
𝑛 = 23 + 1
𝑛 = 24

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2

𝑛 =
24

2

𝑛 = 12

Repeat the loop.

Output:

𝑛 =
12

2
= 6

𝑛 =
6

2
= 3

𝑛 = 3 + 1 = 4

𝑛 =
4

2
= 2

𝑛 =
2

2
= 1

𝑛 = 1 + 1 = 2

The loop is forever stuck in
the 2 to 1 then back to 2
loops

n = 85

𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 𝑛 + 1
𝑛 = 85 + 1
𝑛 = 86

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2

𝑛 =
86

2

𝑛 = 43

Repeat the loop.

Output:
𝑛 = 43 + 1 = 44

𝑛 =
44

2
= 22

𝑛 =
22

2
= 11

𝑛 = 11 + 1 = 12

𝑛 =
12

2
= 6

𝑛 =
6

2
= 3

𝑛 = 3 + 1 = 4

𝑛 =
4

2
= 2

𝑛 =
2

2
= 1

𝑛 = 1 + 1 = 2

The loop is forever stuck in
the 2 to 1 then back to 2
loops

7

By looping the code with 𝑛 + 1 as the algebraic expression, it is now safe to infer that

for any positive odd integer, the output will always be forever stuck in the 2 to 1 then back to 2

loops. Therefore, the only purpose of 𝑛 + 1 is to keep adding 1 to any positive odd integer in

order to eventually convert the positive odd integer into a positive even integer that will always

be evenly divisible by 2.

Logically speaking, the true purpose of 𝒏 + 𝟏 is to ensure that the iterative loop will

never stop until 𝒏 becomes 2. By simply using 1 as 𝒏 inside the iterative loop for 𝒏 + 𝟏,

the output is always going to be 2 because 𝒏 + 𝟏 is designed to eventually convert any

positive odd integer inside the iterative loop into 2.

Therefore, both 2𝑛 and 𝑛 + 1 was designed from the very beginning not only to ensure

that the iterative loop will never stop until all positive odd integers are exhausted, but also for

𝑛 + 1 to eventually convert any positive odd integer into 2 inside the iterative loop.

6. The hidden form of the 𝟑𝒏 + 𝟏 algebraic expression

After proving the functions of the 2𝑛 and 𝑛 + 1 inside the iterative loop, it is now

possible to make a confident inference that will reveal the algebraic expression’s hidden form.

Based on observations:

• The main purpose of 2𝑛 is to turn any positive odd integer into an even integer that is

always evenly divisible by 2. This ensures that the iterative loop will never break until all

positive odd integers are exhausted inside the iterative loop.

• Moreover, 𝑛 + 1 ensures that any positive odd integer will eventually be reduced to 2 at

some point inside the iterative loop. In essence, 𝑛 + 1 is nothing but a function with the

end goal of converting any positive odd integer inside the iterative loop into 2.

Therefore, it is safe to confidently infer that 𝒏 + 𝟏 is basically just 2.

Now, the hidden form of the 3𝑛 + 1 algebraic expression is finally revealed. By

substituting 𝑛 + 1 with 2, the hidden form of the 3𝑛 + 1 𝑜𝑟 2𝑛 + 𝑛 + 1 algebraic

expression is:

𝟐𝒏 + 𝟐

8

7. Proving the logic of inference using both iterative loop and

recursive function for 𝟐𝒏 + 𝒏 + 𝟏

The 2𝑛 + 2 algebraic expression provides a clearer picture as to how the Collatz

conjecture truly works. In essence, 2𝑛 mainly functions as a multiplier to ensure that the

positive odd integer will always be evenly divisible by 2, whereas n+1’s sole objective is to

eventually convert any positive odd integer into 2. In order to prove the logic of the inference, a

python code was constructed using both iterative loop and recursive function for 2n+n+1 or

more commonly known as 3n+1. Representing the Collatz conjecture as a computer algorithm

using the python language.

See the link for the python code in Appendix A. filename: 2n_plus_n_plus_1_recursion.py

n = 1 or any positive odd integer > 0

created by Glenn Patrick King Ang 10/18/2021

n = 1

previous_n = 0

def n_plus_1(n_recursion, previous_n_recursion=0):

 if previous_n_recursion == 2 or n_recursion ==

2:

 return n_recursion

 else:

 previous_n_recursion = n_recursion

 if n_recursion % 2 == 1:

 n_recursion = n_recursion + 1

 elif n_recursion % 2 == 0:

 n_recursion = n_recursion / 2

 return n_plus_1(n_recursion,

previous_n_recursion)

while n > 0 and previous_n != 2:

 previous_n = n

 if previous_n == 2:

 print("end while loop for 2n + recursion at

1")

 break

 elif n % 2 == 1:

 n = (2 * n) + n_plus_1(n)

 elif n % 2 == 0:

 n = n / 2

 print(f"While loop for 2n + recursion (n+1):

{int(n)}")

3𝑛 + 1 = 2𝑛 + 𝑛 + 1

Using a while loop for
2𝑛 + 𝑛 + 1

Replacing 𝑛 + 1 with a
recursive function
called n_plus_1

This python code for
the Collatz conjecture
provides a conclusive
proof that 𝑛 + 1 is
basically just 2.

Therefore, this also
proves that the 2𝑛 + 2
algebraic expression
for the Collatz
conjecture is its hidden
form.

9

After obtaining the hidden form of the Collatz conjecture’s 3𝑛 + 1 algebraic expression,

it is now possible to prove that all positive odd integer will always end up in the 4 to 2 to 1 loop

using 2𝑛 + 2.

8. All positive odd integers will loop 4 to 2 to 1 endlessly using 𝟐𝒏 + 𝟐

Using the same conditions as the Collatz conjecture:

a. Let 𝑛 be any positive odd integer greater than 0

b. If 𝑛 is odd, use 2𝑛 + 2

c. If 𝑛 is even, use
𝑛

2

d. Repeat the loop until 1 is reached

Representing the Collatz conjecture as a computer algorithm using python language. See the

link for the python code in Appendix A. filename: 2n_plus_2_whileloop.py

n = 1 or any positive odd

integer > 0

created by Glenn Patrick King

Ang 10/18/2021

n = 7

previous_n = 0

while n > 0 and previous_n != 2:

 previous_n = n

 if previous_n == 2:

 print("1")

 print("end loop")

 break

 elif n % 2 == 1:

 n = (2 * n) + 2

 elif n % 2 == 0:

 n = n / 2

 print(int(n))

n = 7

𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 2𝑛 + 2
𝑛 = 2(7) + 2
𝑛 = 16

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2

𝑛 =
16

2

𝑛 = 8

Repeat the loop.

Output:

𝑛 =
8

2
= 4

𝑛 =
4

2
= 2

𝑛 =
2

2
= 1

𝑛 = 2(1) + 2 = 4

The loop is forever stuck in the 4 to 2 to 1
then back to 4 loops

10

9. Further Proof: All negative odd integers will loop −4 to −2 to −1

endlessly using 𝟑𝒏 − 𝟏

It is now possible to prove that the Collatz conjecture also works with all negative odd

integers using 3𝑛 + 1 as long as some changes are made. Since it has already been proven that

the only function of 𝑛 + 1 is to output 2, it is now safe to infer that to get the −4 to −2 to −1

then back to −4 loops, a simple switch from addition to subtraction will suffice to make the

3𝑛 + 1 work for all negative odd integers. Therefore, the new algebraic expression is:

𝟑𝒏 − 𝟏
Using the same conditions as the Collatz conjecture:

a. Let 𝑛 be any negative odd integer less than 0

b. If 𝑛 is odd, use 3𝑛 − 1

c. If 𝑛 is even, use
𝑛

2

d. Repeat the loop until −1 is reached

Representing the Collatz conjecture as a computer algorithm using python language. See the

link for the python code in Appendix A. filename: 3n_minus_1_whileloop.py

n = -1 or any negative odd

integer < 0

created by Glenn Patrick King

Ang 10/18/2021

n = -1

previous_n = 0

while n < 0 and previous_n != -2:

 previous_n = n

 if previous_n == -2:

 print("-1")

 print("end loop")

 break

 elif n % 2 == 1:

 n = (3 * n) - 1

 elif n % 2 == 0:

 n = n / 2

 print(int(n))

Example:

n = -1

𝑖𝑓 𝑜𝑑𝑑: 3𝑛 − 1
𝑛 = 3(−1) − 1 = −3 − 1
𝑛 = −4

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2

𝑛 =
−4

2
= −2

𝑛 =
−2

2
= −1

𝑛 = 3(−1) − 1 = −4

The loop is forever stuck in the −4 to −2
to −1 then back to −4 loops. More
examples are provided in Appendix B

11

10. Further proof: 𝟐𝒏 + 𝟐 will also adhere to the same changes made

on the 𝟑𝒏 + 𝟏 for all negative odd integers

 Since it has already been proven that 3𝑛 + 1 works on all negative odd integer by simply

replacing addition with subtraction, it is now possible to infer that its hidden form will also

adhere to the same changes as well. To get the −4 to −2 to −1 then back to −4 loops with

2𝑛 + 2, replacing addition with subtraction will give a new algebraic expression:

𝟐𝒏 − 𝟐
Using the same conditions as the Collatz conjecture:

a. Let 𝑛 be any negative odd integer less than 0

b. If 𝑛 is odd, use 2𝑛 − 2

c. If 𝑛 is even, use
𝑛

2

d. Repeat the loop until you reach -1

Representing the Collatz conjecture into a computer algorithm using python language. See the

link for the python code in Appendix A. filename: 2n_minus_2_whileloop.py

n = -1 or any negative odd

integer < 0

created by Glenn Patrick King

Ang 10/18/2021

n = -1

previous_n = 0

while n < 0 and previous_n != -2:

 previous_n = n

 if previous_n == -2:

 print("-1")

 print("end loop")

 break

 elif n % 2 == 1:

 n = (2 * n) - 2

 elif n % 2 == 0:

 n = n / 2

 print(int(n))

Example:

n = -1

𝑖𝑓 𝑜𝑑𝑑: 2𝑛 − 2
𝑛 = 2(−1) − 2 = −2 − 2
𝑛 = −4

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2

𝑛 =
−4

2
= −2

𝑛 =
−2

2
= −1

𝑛 = 2(−1) − 2 = −4

The loop is forever stuck in the −4 to −2
to −1 then back to −4 loops.

12

11. Key reason why the Collatz conjecture is always getting stuck in an

endless loop of 4 to 2 to 1

The only reason why all positive odd integers are always getting stuck in the 4 to 2 to 1

loop endlessly is because of 2𝑛 in 2𝑛 + 𝑛 + 1. The 2𝑛 ensures that any positive odd integer will

always be at least greater than or equal to 2 in order for it to be evenly divisible by 2. This can

be proven by simply removing 2𝑛 from 2𝑛 + 𝑛 + 1, the iterative loop will always get stuck in

the 2 to 1 then back to 2 loops for any positive odd integer.

Moreover, it can also be observed that 3𝑛 + 1 is basically almost the same as 𝑛 + 1,

where 3 multiplied by any positive odd integer will still be a positive odd integer. 3𝑛 ensures

that any positive odd integer multiplied by 3 will always result in a positive odd integer greater

than 2. Thus, adding 1 to the result of 3𝑛 will always output a positive even integer greater than

2 that will then be evenly divided by 2 until it reaches 1 to begin the iterative loop again.

 Therefore, the Collatz conjecture is going to loop endlessly for any positive integer

because the 3𝑛 + 1 algebraic expression used in the iterative loop was designed not only to

reduce any positive odd integer to 2, but to also make sure that once the positive even integer

2 is further reduced to 1, the next positive even number created is 4.

12. Conclusion

Perceiving the Collatz conjecture as a computer code revealed the hidden function deep

inside the seemingly simple 3𝑛 + 1 algebraic expression. The beauty and complexity of this

problem lies on the need to discern the patterns that emerges from evaluating the intent or

purpose of the programmer and or designer for each function inside the iterative loop.

From all the proof that has been given, it is now possible to confirm that:

a. All positive odd integer will loop 4 to 2 to 1 then back to 4 endlessly given that the

equation is 3𝑛 + 1 or its hidden form 2𝑛 + 2.

b. All negative odd integer will loop −4 to −2 to −1 then back to −4 endlessly given that

the equation is 3𝑛 − 1 or its hidden form 2𝑛 − 2.

c. The Collatz conjecture is looping endlessly because the 3𝑛 + 1 algebraic expression

used in the iterative loop was designed not only to reduce any positive odd integer to 2,

but also to make sure that once the positive even integer 2 is further reduced to 1, the

next positive even number created is 4.

13

Acknowledgements

I would like to express my gratitude toward my parents for their continuous love,

support, and belief in me as I find my way in life. This research paper would have not been

possible without their love and support.

I would also like to express my gratitude toward my wife Natassia for her continuous

love, understanding, and constant support that she has given me ever since. Thank you for

always being a source of inspiration and a partner that I can always depend on.

Glenn Patrick King Ang

https://github.com/07231985

glenn.patrick.king.ang@outlook.com (preferred)

glenn.p.ang@alumni.uts.edu.au (not affiliated, only an alumni)

Appendix A:

Link to the GitHub repository containing the python codes used in this research paper:

https://github.com/07231985/collatzconjecture

Appendix B:

More examples:

a. n = -7

b. n = -23

c. c = -85

https://github.com/07231985
mailto:glenn.patrick.king.ang@outlook.com
mailto:glenn.p.ang@alumni.uts.edu.au
https://github.com/07231985/collatzconjecture

14

a. n = -7

𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 3𝑛 − 1
𝑛 = 3(−7) − 1
𝑛 = −21 − 1
𝑛 = −22

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2

𝑛 =
−22

2

𝑛 = −11

Repeat the loop.

Output:
𝑛 = 3(−11) − 1 = −34

𝑛 =
−34

2
= −17

𝑛 = 3(−17) − 1 = −52

𝑛 =
−52

2
= −26

𝑛 =
−26

2
= −13

𝑛 = 3(−13) − 1 = −40

𝑛 =
−40

2
= −20

𝑛 =
−20

2
= −10

𝑛 =
−10

2
= −5

𝑛 = 3(−5) − 1 = −16

𝑛 =
−16

2
= −8

𝑛 =
−8

2
= −4

𝑛 =
−4

2
= −2

𝑛 =
−2

2
= −1

𝑛 = 3(−1) − 1 = −4

The loop is forever stuck in
the −4 to −2 to −1 then
back to −4 loops

b. n = -23

𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 3𝑛 − 1
𝑛 = 3(−23) − 1
𝑛 = −70

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2

𝑛 =
−70

2

𝑛 = −35

Repeat the loop.

Output:
𝑛 = 3(−35) − 1 = −106

𝑛 =
−106

2
= −53

𝑛 = 3(−53) − 1 = −160

𝑛 =
−160

2
= −80

𝑛 =
−80

2
= −40

𝑛 =
−40

2
= −20

𝑛 =
−20

2
= −10

𝑛 =
−10

2
= −5

𝑛 = 3(−5) − 1 = −16

𝑛 =
−16

2
= −8

𝑛 =
−8

2
= −4

𝑛 =
−4

2
= −2

𝑛 =
−2

2
= −1

𝑛 = 3(−1) − 1 = −4

The loop is forever stuck in
the −4 to −2 to −1 then
back to −4 loops

c. n = -85

𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 3𝑛 − 1
𝑛 = 3(−85) − 1
𝑛 = −256

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2

𝑛 =
−256

2

𝑛 = −128

Repeat the loop.

Output:

𝑛 =
−128

2
= −64

𝑛 =
−64

2
= −32

𝑛 =
−32

2
= −16

𝑛 =
−16

2
= −8

𝑛 =
−8

2
= −4

𝑛 =
−4

2
= −2

𝑛 =
−2

2
= −1

𝑛 = 3(−1) − 1 = −4

The loop is forever stuck in
the −4 to −2 to −1 then
back to −4 loops

