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Abstract 

More than 80 years has passed since the Collatz conjecture has been proposed, but 

since then there has been no concrete proof as to why it is stuck in the 4 to 2 to 1 loop 

endlessly. There had been various attempts to find the reason as to why this infinite loop 

occurs, but there hasn’t been any widely recognized proof for the Collatz conjecture. 

This paper details a different approach to explain why this infinite loop occurs and at the 

same time explain why the Collatz conjecture is similar to a computer source code. Section 2, 3, 

4, and 5 details the process used to determine the purpose of 2𝑛 and 𝑛 + 1 functions inside an 

iterative loop, while section 6 and 7 reveals the logical reasoning behind how the 2𝑛 + 2 

algebraic expression was obtained based on 3𝑛 + 1 or 2𝑛 + 𝑛 + 1. 

Section 8 provides proof for 2𝑛 + 2 as the hidden algebraic expression of the Collatz 

conjecture, while both sections 9 and 10 provides proof that it is also possible to get stuck in 

the −4 to −2 to −1 loop endlessly when 𝑛 is any negative odd integer by simply replacing 

addition with subtraction. Sections 11 provides the key reason why the Collatz conjecture is 

getting stuck in an endless loop of 4 to 2 to 1.  

 

1. Introduction 

 Collatz conjecture states: 

a. Let 𝑛 be any positive odd integer greater than 0 

b. If 𝑛 is odd, use 3𝑛 + 1  

c. If 𝑛 is even, use 
𝑛

2
  

d. Repeat the loop until 1 is reached 
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2. Recursion and Iterations 

 In computer science, recursion and iteration are two related methods for solving 

problems that depends on the solution of a previous computation from the same lines of code.  

Recursion is a recursive function that calls itself repeatedly if a specific condition is met 

and will only stop once the predefined condition for it to stop is met.  

Iteration simply means executing the same lines of code over and over until the 

predefined condition for it to stop is met.  

 The very definition of recursion and iteration perfectly describes the Collatz conjecture 

in its entirety. Therefore, it is now possible to infer that the Collatz conjecture is just like any 

other computer source code, which can be further examined to determine what the purposes 

are of each function inside the iterative loop. Representing the Collatz conjecture as a 

computer algorithm using the python language. See the link for the python code in Appendix A. 

 

Iterative function 
filename: 3n _plus_ 1_whileloop.py 

Recursive function 
filename: 3n _plus_ 1_recursion.py 

# Using a while loop for the 

Collatz conjecture 

# created by Glenn Patrick King 

Ang 10/18/2021 

 

# n = 1 or any positive odd 

integer > 0 

 

n = 1 

previous_n = 0 

 

while n > 0 and previous_n != 2: 

 

    previous_n = n 

 

    if previous_n == 2: 

        print("1") 

        print("end loop") 

        break 

    elif n % 2 == 1: 

        n = (3 * n) + 1 

    elif n % 2 == 0: 

        n = n / 2 

 

    print(int(n)) 

# Creating a function called 

Collatz conjecture 

# created by Glenn Patrick 

King Ang 10/18/2021 

 

def Collatz_Conjecture(n, 

previous_n=0): 

    if previous_n == 2 or n 

== 2: 

        print("1") 

        print("end recursive 

programming") 

 

    else: 

        previous_n = n 

 

        if n % 2 == 1: 

            n = (3 * n) + 1 

        elif n % 2 == 0: 

            n = n / 2 

 

        print(int(n)) 

 

        Collatz_Conjecture(n, 

previous_n) 
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# n = 1 or any positive odd 

integer > 0 

n = 1 

Collatz_Conjecture(n) 

 

3. Rewriting the 𝟑𝒏 + 𝟏 algebraic expression 

In mathematics, an algebraic expression is an expression composed of variables, 

constants, and algebraic operations. Furthermore, algebraic expressions can be rewritten more 

than one way without affecting the original algebraic expression. Rewriting 3𝑛 + 1: 

𝟑𝒏 + 𝟏 

= 𝟐𝒏 + 𝒏 + 𝟏 

Rewriting the original algebraic expression is the key to not only better understand what 

the function of each part of the algebraic expression is for, but also in deciphering the hidden 

form of the 3𝑛 + 1 algebraic expression inside an iterative loop. 

 

4. Revealing the functions of 𝟐𝒏 and 𝒏 + 𝟏 

 In computer programming, when there are multiple functions in the source code of a 

program, the coder or programmer must look at and study each function to fully comprehend 

what it is for or what it exactly does. The same logic applies in this instance to fully prove that 

the 3𝑛 + 1 algebraic expression was designed from the very beginning to create an infinite loop 

that goes from 4 to 2 to 1 then back to 4 loops. 

 By using the rewritten algebraic expression, the possibility of evaluating each part of the 

algebraic expression for its true purpose has finally been opened up. For this proof, the 

rewritten algebraic expression will be separated into 2𝑛 and 𝑛 + 1. 

 

Starting with 𝟐𝒏:  

The purpose of 𝟐𝒏 is to always output an even integer that is always evenly divisible by 2. 

 Proof: Properties of even and odd numbers. 

            The sum of two odd numbers is always an even number. 

• Rewriting 2𝑛 as: 

𝒏 + 𝒏 
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For 𝒏 + 𝟏:  

Its purpose is to always output an even integer that is always evenly divisible by 2.  

 Proof: Properties of even and odd numbers 

            The sum of two odd numbers is always an even number. 

• Let n be any positive odd integer 

𝒏 + 𝟏            

 

 This proves that both 2𝑛 and 𝑛 + 1 is designed to not only always output an even 

integer but ensure that the integer is always evenly divisible by 2. Since it has already been 

proven what 2𝑛 and 𝑛 + 1 does, it is now time to decipher the code hidden inside 3𝑛 + 1. 

 

5. Deciphering the Collatz Conjecture’s code 

Although using the recursive function is far more ideal, for the purpose of keeping 

things simple, the while loop will be used throughout the proof instead. Both 2𝑛 and 𝑛 + 1 will 

be put inside an iterative loop separately in order to shed light as to the true purpose of each 

function. 

 

a. Starting with 2n: 

 This experiment will be using the exact same conditions as the Collatz conjecture, but 

with a slight variation where 2𝑛 will be used instead of 3𝑛 + 1. Representing the Collatz 

conjecture as a computer algorithm using the python language. See the link for the python code 

in Appendix A. filename: 2n_whileloop.py 

 

# n = 1 or any positive odd 

integer > 0 

# created by Glenn Patrick King 

Ang 10/18/2021 

 

n = 19 

previous_n = 0 

 

while n > 0 and previous_n != 2: 

 

    previous_n = n 

 

    if previous_n == 2: 

Example: 
 
n = 19 
 
𝑖𝑓 𝑜𝑑𝑑: 2𝑛 
𝑛 = 2(19) 
𝑛 = 38          
 

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2
 

𝑛 =
38

2
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        print("1") 

        print("end loop") 

        break 

    elif n % 2 == 1: 

        n = (2 * n) 

    elif n % 2 == 0: 

        n = n / 2 

 

    print(int(n)) 

𝑛 = 19 
 
The loop is forever stuck in the 19 to 38 
then back to 19 loops. 

 

By looping the code with 2𝑛 as the algebraic expression, it is now possible to infer that 

for any positive odd integer, the output will always get stuck in a loop. The loop consists mainly 

of multiplying and dividing 𝑛 by 2, which will then revert 𝑛 back to its original value. Therefore, 

the only purpose of 2𝑛 is to convert the positive odd integer into a positive even integer that 

will always be evenly divisible by 2.  

 

Logically speaking, the true purpose of 𝟐𝒏 when combined with 𝒏 + 𝟏 is to ensure that 

the iterative loop will never stop as long as a positive odd integer exists inside the 

iterative loop. 

 

b. Starting with n+1: 

 This experiment will be using the exact same conditions as the Collatz conjecture, but 

with a slight variation where 𝑛 + 1 will be used instead of 3𝑛 + 1. Representing the Collatz 

conjecture as a computer algorithm using the python language. See the link for the python code 

in Appendix A. filename: n_plus_1_whileloop.py 

 

# n = 1 or any positive odd 

integer > 0 

# created by Glenn Patrick King 

Ang 10/18/2021 

 

n = 1 

previous_n = 0 

while n > 0 and previous_n != 2: 

    previous_n = n 

    if previous_n == 2: 

        print("1") 

        print("end loop") 

        break 

    elif n % 2 == 1: 

        n = n + 1 

Example: 
 
n = 1 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 + 1 
𝑛 = 1 + 1 
𝑛 = 2          
 

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2
 

𝑛 =
2

2
 

𝑛 = 1 
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    elif n % 2 == 0: 

        n = n / 2 

 

    print(int(n)) 

The loop is forever stuck in the 2 
to 1 then back to 2 loops. 

 

Executing the iterative loop with more examples: 

 

Example: 
 
n = 7 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 =  𝑛 + 1 
𝑛 = 7 + 1 
𝑛 = 8 
 

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2
 

𝑛 =
8

2
 

𝑛 = 4 
 
Repeat the loop.  
 
Output: 

𝑛 =
4

2
= 2 

𝑛 =
2

2
= 1 

𝑛 = 1 + 1 = 2 
 
The loop is forever stuck in the 
2 to 1 then back to 2 loops 

 
 
n = 23 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 =  𝑛 + 1 
𝑛 = 23 + 1 
𝑛 = 24 
 

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2
 

𝑛 =
24

2
 

𝑛 = 12 
 
Repeat the loop.  
 
Output: 

𝑛 =
12

2
= 6 

𝑛 =
6

2
= 3 

𝑛 = 3 + 1 = 4 

𝑛 =
4

2
= 2 

𝑛 =
2

2
= 1 

𝑛 = 1 + 1 = 2 
 
The loop is forever stuck in 
the 2 to 1 then back to 2 
loops 

 
 
n = 85 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 𝑛 + 1 
𝑛 = 85 + 1 
𝑛 = 86 
 

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2
 

𝑛 =
86

2
 

𝑛 = 43 
 
Repeat the loop.  
 
Output: 
𝑛 = 43 + 1 = 44 

𝑛 =
44

2
= 22 

𝑛 =
22

2
= 11 

𝑛 = 11 + 1 = 12 

𝑛 =
12

2
= 6 

𝑛 =
6

2
= 3 

𝑛 = 3 + 1 = 4 

𝑛 =
4

2
= 2 

𝑛 =
2

2
= 1 

𝑛 = 1 + 1 = 2 
 
The loop is forever stuck in 
the 2 to 1 then back to 2 
loops 
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By looping the code with 𝑛 + 1 as the algebraic expression, it is now safe to infer that 

for any positive odd integer, the output will always be forever stuck in the 2 to 1 then back to 2 

loops. Therefore, the only purpose of 𝑛 + 1 is to keep adding 1 to any positive odd integer in 

order to eventually convert the positive odd integer into a positive even integer that will always 

be evenly divisible by 2.  

 

Logically speaking, the true purpose of 𝒏 + 𝟏 is to ensure that the iterative loop will 

never stop until 𝒏 becomes 2. By simply using 1 as 𝒏 inside the iterative loop for 𝒏 + 𝟏, 

the output is always going to be 2 because 𝒏 + 𝟏 is designed to eventually convert any 

positive odd integer inside the iterative loop into 2. 

 

Therefore, both 2𝑛 and 𝑛 + 1 was designed from the very beginning not only to ensure 

that the iterative loop will never stop until all positive odd integers are exhausted, but also for 

𝑛 + 1 to eventually convert any positive odd integer into 2 inside the iterative loop. 

 

6. The hidden form of the 𝟑𝒏 + 𝟏 algebraic expression 

After proving the functions of the 2𝑛 and 𝑛 + 1 inside the iterative loop, it is now 

possible to make a confident inference that will reveal the algebraic expression’s hidden form.  

 

Based on observations: 

• The main purpose of 2𝑛 is to turn any positive odd integer into an even integer that is 

always evenly divisible by 2. This ensures that the iterative loop will never break until all 

positive odd integers are exhausted inside the iterative loop. 

 

• Moreover, 𝑛 + 1 ensures that any positive odd integer will eventually be reduced to 2 at 

some point inside the iterative loop. In essence, 𝑛 + 1 is nothing but a function with the 

end goal of converting any positive odd integer inside the iterative loop into 2.  

 

Therefore, it is safe to confidently infer that 𝒏 + 𝟏 is basically just 2. 

 

Now, the hidden form of the 3𝑛 + 1 algebraic expression is finally revealed. By 

substituting 𝑛 + 1 with 2, the hidden form of the 3𝑛 + 1 𝑜𝑟 2𝑛 + 𝑛 + 1 algebraic 

expression is: 

𝟐𝒏 + 𝟐 
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7. Proving the logic of inference using both iterative loop and 

recursive function for 𝟐𝒏 + 𝒏 + 𝟏  

The 2𝑛 + 2 algebraic expression provides a clearer picture as to how the Collatz 

conjecture truly works. In essence, 2𝑛 mainly functions as a multiplier to ensure that the 

positive odd integer will always be evenly divisible by 2, whereas n+1’s sole objective is to 

eventually convert any positive odd integer into 2. In order to prove the logic of the inference, a 

python code was constructed using both iterative loop and recursive function for 2n+n+1 or 

more commonly known as 3n+1. Representing the Collatz conjecture as a computer algorithm 

using the python language.  

 

See the link for the python code in Appendix A. filename: 2n_plus_n_plus_1_recursion.py 

# n = 1 or any positive odd integer > 0 

# created by Glenn Patrick King Ang 10/18/2021 

 

n = 1 

previous_n = 0 

 

 

def n_plus_1(n_recursion, previous_n_recursion=0): 

    if previous_n_recursion == 2 or n_recursion == 

2: 

        return n_recursion 

    else: 

        previous_n_recursion = n_recursion 

        if n_recursion % 2 == 1: 

            n_recursion = n_recursion + 1 

        elif n_recursion % 2 == 0: 

            n_recursion = n_recursion / 2 

 

        return n_plus_1(n_recursion, 

previous_n_recursion) 

 

while n > 0 and previous_n != 2: 

 

    previous_n = n 

 

    if previous_n == 2: 

        print("end while loop for 2n + recursion at 

1") 

        break 

    elif n % 2 == 1: 

        n = (2 * n) + n_plus_1(n) 

    elif n % 2 == 0: 

        n = n / 2 

    print(f"While loop for 2n + recursion (n+1): 

{int(n)}") 

3𝑛 + 1 = 2𝑛 + 𝑛 + 1  
 
Using a while loop for 
2𝑛 + 𝑛 + 1 
 
Replacing 𝑛 + 1 with a 
recursive function 
called n_plus_1 
 
This python code for 
the Collatz conjecture 
provides a conclusive 
proof that 𝑛 + 1 is 
basically just 2. 
 
Therefore, this also 
proves that the 2𝑛 + 2 
algebraic expression 
for the Collatz 
conjecture is its hidden 
form. 
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After obtaining the hidden form of the Collatz conjecture’s 3𝑛 + 1 algebraic expression, 

it is now possible to prove that all positive odd integer will always end up in the 4 to 2 to 1 loop 

using 2𝑛 + 2. 

 

8. All positive odd integers will loop 4 to 2 to 1 endlessly using 𝟐𝒏 + 𝟐 

Using the same conditions as the Collatz conjecture: 

a. Let 𝑛 be any positive odd integer greater than 0 

b. If 𝑛 is odd, use 2𝑛 + 2 

c. If 𝑛 is even, use 
𝑛

2
 

d. Repeat the loop until 1 is reached 

 

Representing the Collatz conjecture as a computer algorithm using python language. See the 

link for the python code in Appendix A. filename: 2n_plus_2_whileloop.py 

 

# n = 1 or any positive odd 

integer > 0 

# created by Glenn Patrick King 

Ang 10/18/2021 

 

n = 7 

previous_n = 0 

 

while n > 0 and previous_n != 2: 

 

    previous_n = n 

 

    if previous_n == 2: 

        print("1") 

        print("end loop") 

        break 

    elif n % 2 == 1: 

        n = (2 * n) + 2 

    elif n % 2 == 0: 

        n = n / 2 

 

    print(int(n)) 

n = 7 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 =  2𝑛 + 2 
𝑛 = 2(7) + 2 
𝑛 = 16 
 

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2
 

𝑛 =
16

2
 

𝑛 = 8 
 
Repeat the loop.  
 
Output: 

𝑛 =
8

2
= 4 

𝑛 =
4

2
= 2 

𝑛 =
2

2
= 1 

𝑛 = 2(1) + 2 = 4 
 
The loop is forever stuck in the 4 to 2 to 1 
then back to 4 loops 
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9. Further Proof: All negative odd integers will loop −4 to −2 to −1 

endlessly using 𝟑𝒏 − 𝟏 

It is now possible to prove that the Collatz conjecture also works with all negative odd 

integers using 3𝑛 + 1 as long as some changes are made. Since it has already been proven that 

the only function of 𝑛 + 1 is to output 2, it is now safe to infer that to get the −4 to −2 to −1 

then back to −4 loops, a simple switch from addition to subtraction will suffice to make the 

3𝑛 + 1 work for all negative odd integers. Therefore, the new algebraic expression is:  

𝟑𝒏 − 𝟏 
Using the same conditions as the Collatz conjecture: 

a. Let 𝑛 be any negative odd integer less than 0 

b. If 𝑛 is odd, use 3𝑛 − 1  

c. If 𝑛 is even, use 
𝑛

2
 

d. Repeat the loop until −1 is reached 

 

Representing the Collatz conjecture as a computer algorithm using python language. See the 

link for the python code in Appendix A. filename: 3n_minus_1_whileloop.py 

 

# n = -1 or any negative odd 

integer < 0 

# created by Glenn Patrick King 

Ang 10/18/2021 

 

n = -1 

previous_n = 0 

 

while n < 0 and previous_n != -2: 

 

    previous_n = n 

 

    if previous_n == -2: 

        print("-1") 

        print("end loop") 

        break 

    elif n % 2 == 1: 

        n = (3 * n) - 1 

    elif n % 2 == 0: 

        n = n / 2 

 

    print(int(n)) 

Example: 
 
n = -1 
 
𝑖𝑓 𝑜𝑑𝑑: 3𝑛 − 1 
𝑛 = 3(−1) − 1 = −3 − 1 
𝑛 = −4          
 

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2
 

𝑛 =
−4

2
= −2 

 

𝑛 =
−2

2
= −1 

𝑛 = 3(−1) − 1 = −4 
 
The loop is forever stuck in the −4 to −2 
to −1 then back to −4  loops. More 
examples are provided in Appendix B 
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10. Further proof: 𝟐𝒏 + 𝟐 will also adhere to the same changes made 

on the 𝟑𝒏 + 𝟏 for all negative odd integers 

 Since it has already been proven that 3𝑛 + 1 works on all negative odd integer by simply 

replacing addition with subtraction, it is now possible to infer that its hidden form will also 

adhere to the same changes as well. To get the −4 to −2 to −1 then back to −4  loops with 

2𝑛 + 2, replacing addition with subtraction will give a new algebraic expression:  

𝟐𝒏 − 𝟐 
Using the same conditions as the Collatz conjecture: 

a. Let 𝑛 be any negative odd integer less than 0 

b. If 𝑛 is odd, use 2𝑛 − 2 

c. If 𝑛 is even, use 
𝑛

2
 

d. Repeat the loop until you reach -1 

 

Representing the Collatz conjecture into a computer algorithm using python language. See the 

link for the python code in Appendix A. filename: 2n_minus_2_whileloop.py 

 

# n = -1 or any negative odd 

integer < 0 

# created by Glenn Patrick King 

Ang 10/18/2021 

 

n = -1 

previous_n = 0 

 

while n < 0 and previous_n != -2: 

 

    previous_n = n 

 

    if previous_n == -2: 

        print("-1") 

        print("end loop") 

        break 

    elif n % 2 == 1: 

        n = (2 * n) - 2 

    elif n % 2 == 0: 

        n = n / 2 

 

    print(int(n)) 

Example: 
 
n = -1 
 
𝑖𝑓 𝑜𝑑𝑑: 2𝑛 − 2 
𝑛 = 2(−1) − 2 = −2 − 2 
𝑛 = −4          
 

𝑖𝑓 𝑒𝑣𝑒𝑛:
𝑛

2
 

𝑛 =
−4

2
= −2 

 

𝑛 =
−2

2
= −1 

𝑛 = 2(−1) − 2 = −4 
 
 
The loop is forever stuck in the −4 to −2 
to −1 then back to −4 loops. 
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11. Key reason why the Collatz conjecture is always getting stuck in an 

endless loop of 4 to 2 to 1 

The only reason why all positive odd integers are always getting stuck in the 4 to 2 to 1 

loop endlessly is because of 2𝑛 in 2𝑛 + 𝑛 + 1. The 2𝑛 ensures that any positive odd integer will 

always be at least greater than or equal to 2 in order for it to be evenly divisible by 2. This can 

be proven by simply removing 2𝑛 from  2𝑛 + 𝑛 + 1, the iterative loop will always get stuck in 

the 2 to 1 then back to 2 loops for any positive odd integer.  

Moreover, it can also be observed that 3𝑛 + 1 is basically almost the same as 𝑛 + 1, 

where 3 multiplied by any positive odd integer will still be a positive odd integer. 3𝑛 ensures 

that any positive odd integer multiplied by 3 will always result in a positive odd integer greater 

than 2. Thus, adding 1 to the result of 3𝑛 will always output a positive even integer greater than 

2 that will then be evenly divided by 2 until it reaches 1 to begin the iterative loop again.  

 Therefore, the Collatz conjecture is going to loop endlessly for any positive integer 

because the 3𝑛 + 1 algebraic expression used in the iterative loop was designed not only to 

reduce any positive odd integer to 2, but to also make sure that once the positive even integer 

2 is further reduced to 1, the next positive even number created is 4. 

 

12. Conclusion 

Perceiving the Collatz conjecture as a computer code revealed the hidden function deep 

inside the seemingly simple 3𝑛 + 1 algebraic expression. The beauty and complexity of this 

problem lies on the need to discern the patterns that emerges from evaluating the intent or 

purpose of the programmer and or designer for each function inside the iterative loop. 

 

From all the proof that has been given, it is now possible to confirm that: 

a. All positive odd integer will loop 4 to 2 to 1 then back to 4 endlessly given that the 

equation is 3𝑛 + 1 or its hidden form 2𝑛 + 2. 

 

b. All negative odd integer will loop −4 to −2 to −1 then back to −4 endlessly given that 

the equation is 3𝑛 − 1 or its hidden form 2𝑛 − 2. 

 

c. The Collatz conjecture is looping endlessly because the 3𝑛 + 1 algebraic expression 

used in the iterative loop was designed not only to reduce any positive odd integer to 2, 

but also to make sure that once the positive even integer 2 is further reduced to 1, the 

next positive even number created is 4. 
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Appendix A:  

Link to the GitHub repository containing the python codes used in this research paper: 

https://github.com/07231985/collatzconjecture 

 

 

 

Appendix B: 

More examples: 

a. n = -7 

b. n = -23 

c. c = -85 

https://github.com/07231985
mailto:glenn.patrick.king.ang@outlook.com
mailto:glenn.p.ang@alumni.uts.edu.au
https://github.com/07231985/collatzconjecture
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a. n = -7 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 3𝑛 − 1 
𝑛 = 3(−7) − 1 
𝑛 = −21 − 1 
𝑛 = −22 
 

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2
 

𝑛 =
−22

2
 

𝑛 = −11 
 
Repeat the loop.  
 
Output: 
𝑛 = 3(−11) − 1 = −34 

𝑛 =
−34

2
= −17 

𝑛 = 3(−17) − 1 = −52 

𝑛 =
−52

2
= −26 

𝑛 =
−26

2
= −13 

𝑛 = 3(−13) − 1 = −40 

𝑛 =
−40

2
= −20 

𝑛 =
−20

2
= −10 

𝑛 =
−10

2
= −5 

𝑛 = 3(−5) − 1 = −16  

𝑛 =
−16

2
= −8  

𝑛 =
−8

2
= −4  

𝑛 =
−4

2
= −2  

𝑛 =
−2

2
= −1  

𝑛 = 3(−1) − 1 =  −4 
 
The loop is forever stuck in 
the −4 to −2 to −1 then 
back to −4 loops 

b. n = -23 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 3𝑛 − 1 
𝑛 = 3(−23) − 1 
𝑛 = −70 
 

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2
 

𝑛 =
−70

2
 

𝑛 = −35 
 
Repeat the loop.  
 
Output: 
𝑛 = 3(−35) − 1 = −106 

𝑛 =
−106

2
= −53 

𝑛 = 3(−53) − 1 = −160 

𝑛 =
−160

2
= −80 

𝑛 =
−80

2
= −40 

𝑛 =
−40

2
= −20 

𝑛 =
−20

2
= −10 

𝑛 =
−10

2
= −5 

𝑛 = 3(−5) − 1 = −16 

𝑛 =
−16

2
= −8 

𝑛 =
−8

2
= −4 

𝑛 =
−4

2
= −2 

𝑛 =
−2

2
= −1 

𝑛 = 3(−1) − 1 = −4 
 
The loop is forever stuck in 
the −4 to −2 to −1 then 
back to −4 loops 

c. n = -85 
 
𝑖𝑓 𝑜𝑑𝑑: 𝑛 = 3𝑛 − 1 
𝑛 = 3(−85) − 1 
𝑛 = −256 
 

𝑖𝑓 𝑒𝑣𝑒𝑛: 𝑛 =
𝑛

2
 

𝑛 =
−256

2
 

𝑛 = −128 
 
Repeat the loop.  
 
Output: 

𝑛 =
−128

2
= −64 

𝑛 =
−64

2
= −32 

𝑛 =
−32

2
= −16 

𝑛 =
−16

2
= −8 

𝑛 =
−8

2
= −4 

𝑛 =
−4

2
= −2 

𝑛 =
−2

2
= −1 

𝑛 = 3(−1) − 1 = −4 
 
The loop is forever stuck in 
the −4 to −2 to −1 then 
back to −4 loops 

 


