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Preface

In atomic systems with their essentially spherical symmetry, quantities of interest
may be factorized as the product of a spin-angular and a radial factor. Spin-angular
factors can be calculated by Racah algebra while radial factors can be approximated
by ab initio Hartree-Fock programs that are increasingly capable of performing
large-scale, relativistic calculations [Froese Fischer et al., 2016, Jönsson et al., 2017].
On the other hand, given known spin-angular matrices and an accurately enough
prediction, radial energy factors may also be treated as parameters and determined
semi-empirically. Stimulated by newly developed computer packages, the focus of
attention has over the last 50 years shifted much from the spin-angular towards
the radial side. To attain the desired degree of accuracy, however, complex spec-
tra are still analyzed semi-empirically either using Cowan’s Slater-Condon approach
[Cowan, 1981] or orthogonal operators [Judd et al., 1982] as described in the present
work. In both these approaches (especially in the last), effective operators are used
to account for second and higher orders of perturbation. There is thus a growing gap
between the (partially perturbation based) semi-empirical approaches employing the
supposedly non-relativistic SL−coupling and the present-day large scale (variation
based) ab initio computations using the relativistic jj−coupling. One of the aims of
this work is to reconcile the two methods showing how relativistic quantities derived
within jj−coupling can be fitted into an SL−coupled framework.

This booklet is primarily intended as a resource for experimental and theoretical
research atomic physicists. Atomic units are used throughout, with only a few ex-
ceptions like transition probabilities that are traditionally given in SI. The most
common conventions for the reduced matrix elements, the Wigner nj−symbols and
phases are applied everywhere with the possible exception of the cfp’s, where the
original Racah phases [Nielson and Koster, 1963] are still used instead of the possi-
bly more principal quasispin phase [Judd, 1967].

In 1975, I followed Bernard Metsch as a master student at the Amsterdam Zee-
man Laboratory. Soon, Jørgen Hansen came to support our group theoretically,
and it was during his first stay that he handed out some sheets of paper with for-
mulae of practical use. In later years, I have used them that frequently that they
worn out and had to be replaced by a LATEXversion. This LATEXversion actually
became the start of the present work, and the original formulae can still be found
in chapters 2 and 3 of Part I; the focus remains on their practical use rather than
on the mathematical background.
In the late seventies, John Morrison stayed some years at the Zeeman Laboratory
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10 CONTENTS

while finishing his part of the book Atomic Many-Body Theory [Lindgren and Morrison, 1982];
he pointed out the possibilities of the graphical approach treated in chapter 4.
Soon thereafter, Jørgen Hansen got a permanent position in Amsterdam and be-
came my PhD supervisor on the subject of orthogonal operators: [Newman, 1981,
Newman, 1982, Judd et al., 1982] were published and atomic physics had gained a
promising new method.

The field of second quantization opened up for me by studying Brian Judd’s
compact but illuminating monograph Second Quantization and Atomic Spectroscopy
[Judd, 1967]. Second quantization runs like a thread through this booklet.
In chapter 5, it is used to derive several relations between coefficients of fractional
parentage. More importantly, operators are consistently dissected to their underly-
ing bone structure in terms of second quantization; a cooking recipe to do this is
given in section 5.3. Any one-particle operator may be written as

F (κk)t = −S(a, b) ⋅ (a†b)(κk)t with the radial factor S(a, b) = [κ, k]−
1
2 ⟨a ∥ F (κk) ∥ b⟩;

Hermiticity requires that κ + k + t is even. Moreover, it will be shown that an ele-
mentary jj → SL recoupling suffices to replace S(a, b) by its relativistic analogue
SR(a, b) with the identical spin-angular behavior. Similar expressions apply to two-
particle operators. The strength of translating traditional tensor operators into
second quantized form is illustrated in chapter 5 by the matrix element calculation
of various intricate Breit-Pauli operators. Products of operators are encountered in
perturbation theory as well as with inner products: in both cases, second quanti-
zation is fruitfully employed to calculate the summations in closed form. Second
quantization is also used to derive the transformation of relativistic reduced matrix
elements towards the radial factors SR(a, b) in a quick and transparent way.

The main text of the book is divided into three parts.
Part I outlines the general theory of Racah algebra (chapters 2 and 3), graphical
representations (chapter 4) and second quantization (chapter 5), i.e. the technology
for performing practical calculations subsequently illustrated in chapters 6 and 7.
Chapters 8 and 16 concern some work I did in support of the Zeeman Laboratory
laser group. No attempt has been made to include pure quantum-electrodynamical
(QED) effects; topics like parity non-conservation (chapter 9) or group theory (chap-
ter 13) are only treated superficially for the sake of completeness.
Part II is devoted to the theory of orthogonal operators in addition to essential sup-
porting subjects like the Hartree-Fock approach, perturbation theory and the use of
B-splines therein. The concept of an operator inner product could have been used in
the thirties e.g. with [Condon and Shortley, 1935], but it took until the early eight-
ies that the added value of a linear algebra of operators was seen. Orthogonality
ensures least correlation between the operators and this increased stability appears
to be a powerful tool in reducing the deviations between calculated and experimental
energy values in complex spectra (Z > 20). Due to its orthogonality, the operator
set is stable enough to introduce small (thus far neglected) higher-order magnetic
and electrostatic effects in the fitting procedure. By this extension, deviations be-
tween calculated and experimental energy values frequently approach experimental
accuracy. Also, the linear algebra of operators can fruitfully be used to project
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a variety of contributions onto the orthogonal operator set, both analytically and
numerically, using the central equation (14.26); this procedure supersedes the often
used but incomplete direct proportionality like the ∆−factors in hyperfine structure.
It was actually in this way, that the Blume and Watson theory for the spin-orbit
interaction [Blume and Watson, 1962] was generalized and corrected [Uylings, 1989]
and other contributions than s→ d excitations to the Trees operator were found.
Part III deals with the application of relativity in atoms and ions. Chapter 19 sets
out some of the mathematical machinery of relativistic calculations with the Dirac-
Breit Hamiltonian. Expressions for the reduced matrix elements are given in explicit
form in chapter 20, together with their relevant non-relativistic limits. This leads
e.g. to the slightly surprising result (1

2 lj ∥ α ∥
1
2 l
′j′) → −α ⟨1

2 lj ∥ p ∥
1
2 l
′j′⟩.

Many authors gave non-relativistic limits of the occurring reduced matrix elements.
For a complete comparison, however, the full operator should also possess the cor-

rect spin-angular character like (a†b)(κk)t or {(a†c)κ1k1 (b†d)κ2k2}
(κk)t

.

It is shown in chapter 21 how this can be achieved by a jj → SL coupling transfor-
mation yielding the correct weighting procedure over j, j′. It should be emphasized
that this way of finding the correct non-relativistic limit is not just a formal point
of retrieving well known results in an alternative way: precisely this procedure can
be used to replace non-relativistic quantities S(a, b) by their relativistic analogues
SR(a, b) thereby implementing full relativity in the SL−framework.
A case in point is the magnetic multipole radiation: while the relativistic integrals
are the same, the orbit and spin terms in the SL−framework differ slightly as a
result of different j−dependent weighting factors.
Subjects like the Zeeman effect, hyperfine structure and (electric or magnetic multi-
pole) transition probabilities are first treated non-relativistically, indicated by a (1)
in chapters 3 and 7; later, their relativistic counterparts are given in chapters 22
and 23, indicated by a (2). The appendices contain supplementary material.
In summary, the followed approach enables one to implement full relativity while
adopting the known large body of SL−formulae in full. Double tensors and opera-

tors in second quantization like (a†b)(κk)t can be maintained without adjustments
for the same reason. To define, apply and find the contributions of any operator,
one can be content to know the matrix elements in its parent configuration and use
the formulae from sections 14.2 and 14.6 to find the necessary N−dependence.

It is a pleasure to work with so many colleagues in the field like (theory) Brian
Judd, Charlotte Froese Fischer, Bob Cowan and Jørgen Hansen and (experiment)
Jean-François Wyart, Lydia Tchang-Brillet, Vladimir Azarov, Yogi Joshi, Dik van
Kleef, Sasha Ryabtsev (with whom Ton and I stayed in contact during our twenty
years of absence), and many others. Most of all, I would like to mention my friend
and close colleague Ton Raassen: without him, orthogonal operators would hardly
be the effective method it is today. I would also like to express my appreciation
to Tomas Brage, Alan Hibbert, Gediminas Gaigalas, Michel Godefroid and Sasha
Kramida for stimulating our comeback in the field of atomic physics.

Amsterdam, January 2021 Peter Uylings
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Chapter 1

Hartree atomic units au

Hartree’s system of atomic units is based on setting the below constants to one:

• e

• me

• h̵

• 4πε0 = f−1

As a result, the Bohr radius a0 = h̵2/(me ⋅ fe2) → 1 is the au unit of length.
1 b (=barn)→ 3.57106483 ⋅ 10−8 in au.

The fine-structure constant α = fe2/(h̵c) → c−1, so c = α−1 ≈ 137.036 in au and
the (reduced) Compton wavelength of the electron: λ̄e = α ⋅ a0 = h̵/mec.
Likewise, the Rydberg constant R∞ = (mee4f 2)/(h̵34πc) → α/4π in au.

Therefore, the energy Ry= hcR∞ = 13.605693 eV (often used in spectroscopy) → 1
2

in au and thus 1 H = 1 Eh = 2 Ry = h̵2/(mea2
0) = 27.21138602 eV is the au of energy.

The well-known non-relativistic formula for the energies of hydrogen thus becomes
in au: εn = −1/(2n2).

1 H = 1 au = 219474.631 cm−1 and 1 eV = 8065.54402 cm−1, whereas
1 cm−1 = 1.98644561 × 10−23 J.

The Bohr magneton in SI: µB = eh̵/(2me) → 1
2 in au.

In Gaussian-CGS: µB = eh̵/(2mec) → 1
2α in au.

In SI, the au unit of magnetic field is given by: h̵/(ea2
0) = 2.350517568 × 105 T.

In Gaussian-CGS: ef/(a2
0c) = 1.71525554 × 103 T, again differing by a factor α.

Similarly, as µ0ε0 = c−2 [→ε0 = (4πc2 × 10−7)−1 in SI], the magnetic constant µ0/4π →
α2 in au.

Combining the above two formulae, one obtains for the frequently encountered
magnetic constant µ0/(2π) ⋅ µB → 2α2 ⋅ 1

2 = α2.

13
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1.1 Constants of nature

speed of light c = 2.99792458 × 108 m s−1

Bohr radius a0 = 5.29177211 × 10−11 m
electron charge e = 1.60217663 × 10−19 C
electron mass me = 9.10938371 × 10−31 kg
Planck constant h = 6.62607015 × 10−34 J s
reduced Planck constant h̵ = 1.05457182 × 10−34 J s
Boltzmann constant k = 1.38064900 × 10−23 J K−1

Hartree energy a.u. H = 4.35974472 × 10−18 J
Hartree energy a.u. H = 2.72113860 × 101 eV
Hartree energy a.u. H = 2.19474631 × 105 cm−1

Rydberg constant R∞ = 1.09737316 × 107 m−1

fine-structure constant α = 7.29735257 × 10−3

Bohr magneton µB = 9.27401008 × 10−24 J T−1

electron g factor gs = 2.00231930
electron QED correction 1

2(gs − 2) = 1.15965219 × 10−3

proton g factor gp = 5.58569469
electron-proton mass ratio me/mp = 5.44617021 × 10−4

time a.u. mea2
0/h̵ = 2.41888433 × 10−17 s

velocity a.u. αc = 2.18769126 × 106 m s−1

1.2 Some basic mathematics

ax = ex⋅lna a logx = lnx

lna ∫
∞

0
(Fg) dr = [FG]∞0 − ∫

∞

0
(fG) dr

∫
∞

0
xk ⋅ e−mx dx = k!

mk+1
(1.1a)

∫
∞

0
xk ⋅ e−ax2 dx =

1
2 ⋅ (

k−1
2

)!

a(
k+1
2
)

with (−1
2
)! =

√
π (1.1b)

∫
∞

0

xk

ex − 1
dx = k!

∞
∑
n=1

n−(k+1) (1.1c)

a × (b × c) = (a ⋅ c)b − (a ⋅ b)c (1.2)

∇ × (aφ) = φ(∇ × a) − a ×∇φ ∇×∇φ = 0 (1.3)

a ⋅ (a × b) = b ⋅ (a × b) = 0 ∇ ⋅ (a × b) = b ⋅ (∇ × a) − a ⋅ (∇ × b) (1.4)



Chapter 2

nj-symbols

2.1 Basic 3j-symbols

For the 3j-symbol ( j1 j2 j3

m1 m2 m3
) , every odd permutation of columns or sign re-

versal of the m−values yields a phase (−1)j1+j2+j3 .
Here, j1, j2 and j3 fulfill the triangular condition {j1j2j3} and m1 +m2 +m3 = 0.

Under the requirement that g = 1
2 (l + k + l′) be an integer, i.e. l + k + l′ is even:

( l k l′

0 0 0
) = (−1)g

¿
ÁÁÀ(2g − 2l)!(2g − 2k)!(2g − 2l′)!

(2g + 1)!
g!

(g − l)!(g − k)!(g − l′)!
(2.1)

2.2 Sum rules and definitions

∑
j3m3

[j3] (
j1 j2 j3

m1 m2 m3
) ( j1 j2 j3

m′
1 m′

2 m3
) = δ(m1,m

′
1) ⋅ δ(m2,m

′
2) (2.2)

∑
m1m2

( j1 j2 j3

m1 m2 m3
) ( j1 j2 j′3

m1 m2 m′
3

) = [j3]−1 ⋅ δ(j3, j
′
3) ⋅ δ(m3,m

′
3) (2.3)

The Wigner 6j-symbol differs from the Racah W -function [Racah, 1942b] in phase
only:

{a b e
d c f

} = (−1)a+b+c+d ⋅W (abcd; ef) (2.4)

[Jahn, 1951] gives the alternative U -coefficient:

{a b e
d c f

} = (−1)a+b+c+d ⋅ [e, f]−
1
2 ⋅U(abcd; ef) (2.5)

15
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it follows directly that U(abcd; ef) = [e, f]
1
2 ⋅W (abcd; ef).

Any of the six possible permutations of its columns leaves a 6j-symbol invariant:

{j1 j2 j3

j4 j5 j6
} = {j2 j1 j3

j5 j4 j6
} = {j2 j3 j1

j5 j6 j4
} (2.6)

Any two elements in the upper row may be interchanged with the elements
underneath:

{j1 j2 j3

j4 j5 j6
} = {j4 j5 j3

j1 j2 j6
} = {j4 j2 j6

j1 j5 j3
} = {j1 j5 j6

j4 j2 j3
} (2.7)

There are four triangular conditions to be satisfied:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

○ ⋯ ○ ⋯ ○⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

○
⋱ ⋱

○ ○

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩

○
⋱

○ ⋯ ○

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

○
⋱

○ ⋯ ○

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.8)

2.2.1 Summations

∑
x

[x] {a b x
a b p

} = (−1)2a+2b (2.9)

∑
x

[x](−1)−x {a b x
b a p

} = δ(p,0) (−1)a+b [a, b]
1
2 (2.10)

∑
x

[x] {a b x
c d p

} {c d x
a b q

} = δ(p, q)
[p]

(2.11)

∑
x

[x] (−1)p+q+x {a b x
c d p

} {c d x
b a q

} = {c a q
d b p

} (2.12)

∑
x

[x] (−1)x+p+q+r+a+b+c+d+e+f {a b x
c d p

} {c d x
e f q

} {e f x
b a r

} (2.13)

= {p q r
e a d

} {p q r
f b c

}

The 9 − j symbol is defined as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a f r
d q e
p c b

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ∑

x

[x] (−1)2x {a b x
c d p

} {c d x
e f q

} {e f x
a b r

} (2.14)



2.2. SUM RULES AND DEFINITIONS 17

Every odd permutation of rows or columns produces a sign change of (−1)T , with
T = a+b+c+d+e+f +p+q+r the sum of all nine arguments. Every even permutation
of rows and columns, therefore, leaves the symbol unchanged.
Also, rows and columns may be interchanged (transposition):

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a b c
d e f
g h i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a d g
b e h
c f i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f c
h e b
g d a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i h g
f e d
c b a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.15)

∑
x

[x]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a b x
d c a
c e b

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= [c]−1 (2.16)

∑
x

[x] (−1)x
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a b x
c d b
e c a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= [c]−1 ⋅ (−1)2b+e−d (2.17)

∑
x

[x]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a f x
d q e
p c b

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{a f x
e b λ

} = (−1)2λ {c d λ
e f q

} {a b λ
c d p

} (2.18)

∑
x,y

[x, y]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a f x
d q y
p c b

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a f x
d q y
p′ c′ b

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= δ(p, p′) δ(c, c′) [p, c]−1 (2.19)

∑
x,y

[x, y] (−1)x
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a d x
b e y
c f g

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d a x
b e y
h i g

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= (−1)a+b+d−e+f+i−g

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a b c
e d f
i h g

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.20)

With R4 = ∑4
i=1 (ji + li + ki), the 12j-symbol of the first kind is defined as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 k4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ∑

x

[x](−1)R4−x{j1 k1 x
k2 j2 l1

} {j2 k2 x
k3 j3 l2

}

×{j3 k3 x
k4 j4 l3

} {j4 k4 x
j1 k1 l4

} (2.21)

The symmetric 12j-symbol of the second kind is given by:

⎡⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 k4

⎤⎥⎥⎥⎥⎥⎦
= (−1)l1−l2−l3+l4∑

x

[x]{k1 k2 x
j3 j1 l1

} {k3 k4 x
j3 j1 l2

}

×{k1 k2 x
j4 j2 l3

} {k3 k4 x
j4 j2 l4

} (2.22)
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∑
x

[x]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l4 l1 x
k3 j1 l2
j2 k1 l3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l4 l1 x
k4 j3 l2
j4 k2 l3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.23)

= (−1)j1−j2−j3+j4
⎡⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4
l1 l2 l3 l4
k1 k2 k3 k4

⎤⎥⎥⎥⎥⎥⎦

∑
x

[x]
⎡⎢⎢⎢⎢⎢⎣

x j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 k4

⎤⎥⎥⎥⎥⎥⎦
= δ(l1, l2) δ(l3, l4) δ(k1, k3) δ(k2, k4) [l4, k4]−1

(2.24)

∑
x

[x] (−1)x
⎡⎢⎢⎢⎢⎢⎣

x j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 k4

⎤⎥⎥⎥⎥⎥⎦

= δ(k1, l2) δ(l1, k3) (−1)l1+l+2−l3+l4(−1)k2−k4
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k1 k4 j3

j2 l4 k3

l3 j4 k2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.25)

2.3 Reductions

{a b c
0 c b

} = (−1)a+b+c [b, c]−
1
2 (2.26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a b e
c d e
f f 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 e e
f d b
f c a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e 0 e
c f a
d f b

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f f 0
d c e
b a e

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f b d
0 e e
f a c

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a f c
e 0 e
b f d

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b a e
f f 0
d c e

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e d c
e b a
0 f f

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c e d
a e b
f 0 f

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= (−1)b+c+e+f [e, f]−
1
2 {a b e

d c f
} (2.27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a b c
a b c
0 0 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a a 0
b b 0
c c 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= [a, b, c]−

1
2 (2.28)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 j3 j4

l1 l2 l3 0
k1 k2 k3 k4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= δ(j4, k1) ⋅ δ(k4, j1) ⋅ [j1, k1]−

1
2

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 l1 j2

k3 k2 l2
l3 k1 j3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.29)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 j3 0
l1 l2 l3 l4

k1 k2 k3 k4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= δ(j3, l3) ⋅ δ(k1, l4) ⋅ [l3, l4]−

1
2

×(−1)l1+l2+l3+k1−j2−k2 ⋅ {j1 k1 k4

k2 j2 l1
} {j2 k2 k4

k3 j3 l2
} (2.30)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 j3 j4

l1 l2 l3 l4
0 k2 k3 k4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= δ(k2, l1) ⋅ δ(j4, l4) ⋅ [l1, l4]−

1
2

×(−1)l1+l2+l3+l4−j3−k3 ⋅ {j2 l1 j1

k3 j3 l2
} {j3 k3 j1

k4 l4 l3
} (2.31)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 j3 j4

l1 l2 l3 l4
k1 0 k3 k4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= δ(k1, l1) ⋅ δ(k3, l2) ⋅ [l1, l2]−

1
2

×(−1)l1+l2+l3+l4−j4−k4 ⋅ {j3 l2 j2

k4 j4 l3
} {j4 k4 j2

j1 l1 l4
} (2.32)

⎡⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 0

⎤⎥⎥⎥⎥⎥⎦
= δ(j4, l4) δ(j3, l2) [l2, l4]−

1
2 (−1)j1+l1−j2−l3

{ l1 l2 k2

k3 k1 j1
} {k2 l3 l4

j2 k3 k1
} (2.33)

⎡⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4

l1 l2 l3 l4
k1 0 k3 k4

⎤⎥⎥⎥⎥⎥⎦
= δ(j4, l3) δ(j3, l1) [l1, l3]−

1
2 (−1)j1−j2+l2−l4

{j2 k1 l3
k4 l4 k3

} {k1 j1 l1
l2 k4 k3

} (2.34)

⎡⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4

0 l2 l3 l4
k1 k2 k3 k4

⎤⎥⎥⎥⎥⎥⎦
= δ(j1, k1) δ(j3, k2) [j1, j3]−

1
2 (−1)j2+k3−j4−k4

{l2 l3 l4
j2 k3 j1

} {l2 l3 l4
j4 k4 j3

} (2.35)

2.4 Recoupling identities

Change order of coupling, like in going from ∣LS;J⟩ to ∣SL;J⟩:

⟨j1j2;J ∣j2j1;J⟩ = (−1)j1+j2−J (2.36)

⟨J12J34;J ∣ J13J24;J⟩ = [J12, J34, J13, J24]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 J12

j3 j4 J34

J13 J24 J

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.37)
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⟨J12J34;J ∣ J14J23;J⟩ = (−1)j3+j4−J34 [J12, J34, J23, J14]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 J12

j4 j3 J34

J14 J23 J

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.38)

A state in a new coupling scheme is found from summing over the quantum numbers
of the old coupling scheme that are to be removed:

ψ(J12j3;J) = ∑
J23

⟨J12j3;J ∣j1J23;J⟩ ⋅ ψ(j1J23;J) (2.39)

⟨j1j2(J12)j3;J ∣ j1, j2j3(J23);J⟩ = (−1)j1+j2+j3+J [J12, J23]
1
2 {j1 j2 J12

j3 J J23
} (2.40)

⟨j1j3(J13)j2;J ∣ j1j2(J12)j3;J⟩ = (−1)j2+j3+J12+J13 [J12, J13]
1
2 {j1 j2 J12

J j3 J13
} (2.41)

⟨j1, j2j3(J23);J ∣ j1j3(J13)j2;J⟩ = (−1)J+J23+j1 [J23, J13]
1
2 {J23 j2 j3

J13 j1 J
} (2.42)

⟨j1j2(J12)j3;J ∣ j2, j1j3(J13);J⟩ = (−1)J12+J+j3 [J12, J13]
1
2 {J12 J j3

J13 j1 j2
} (2.43)

⟨j1j2(J12)j3;J ∣ j1j3(J13)j2;J⟩ = (−1)J12+j2+j3+J13 [J12, J13]
1
2 {J12 J j3
J13 j1 j2

} (2.44)

⟨j1j2(J12)j3;J ∣ j3j1(J13)j2;J⟩ = (−1)2j3(−1)j1+j2+J12 [J12, J13]
1
2 {J12 J j3

J13 j1 j2
} (2.45)

⟨(j1j2(J12)j3)J123, j4;J ∣ j1, (j2j3(J23)j4)J234;J⟩ = (−1)2J12+2J23+2j4

⋅ [J12, J123, J23, J234]
1
2 ⋅ (−1)j2+j3+J23 ⋅ {J12 J123 j3

J23 j2 j1
}

⋅(−1)J123+j4+J ⋅ {J123 J j4
J234 J23 j1

} (2.46)

⟨j1, (j2j3(J23)j4)J234;J ∣ j1j2(J12)j3j4(J34);J⟩ = (−1)j2+j3+j4+J234

⋅ [J12, J34, J23, J234]
1
2 ⋅ (−1)j1+j2+J34+J ⋅ {j2 j3 J23

j4 J234 J34
} ⋅ { j1 j2 J12

J34 J J234
} (2.47)

⟨(j1, j2j3(J23))J123 j4;J ∣ (j1j2(J12) j4)J124 j3;J⟩ =

[J123, J23, J12, J124]
1
2 ⋅ (−1)j1+j2+J12 ⋅ {J23 j3 j2

J12 j1 J123
}

⋅(−1)J12+J124+j4 ⋅ {j3 J J124

j4 J12 J123
} (2.48)
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⟨(j1j2(J12) j3(J123)) j4;J ∣ j1j4(J14) j2j3(J23);J⟩ =

[J12, J123, J14, J23]
1
2 ⋅ (−1)j2+j3−J23 ⋅ {j1 j2 J12

j3 J123 J23
}

⋅(−1)j4+J14−j1 ⋅ {j1 j4 J14

J J23 J123
} (2.49)

⟨j1j2(J12)j3j4(J34);J ∣ (j1(j2j3)J23)J123, j4;J⟩ = (−1)2j3

⋅ [J12, J34, J23, J123]
1
2 ⋅ (−1)j1+j2+J12 ⋅ {j3 J23 j2

j1 J12 J123
}

⋅(−1)J123+j4+J ⋅ {j3 J34 j4

J J123 J12
} (2.50)

⟨(j1j2(J12) j3(J123)) j4;J ∣ j1j3(J13) j2j4(J24);J⟩ =

[J12, J123, J13, J24]
1
2 ⋅ (−1)J123+j4+J ⋅ {j2 j4 J24

J J13 J123
}

⋅(−1)J12+j3+J123 ⋅ {J12 J123 j3

J13 j1 j2
} (2.51)

A recoupling identity useful in the manipulation of equivalent creation and
annihilation operators:

⟨(j1j2)j12(j3j4)j34; 0∣ (j1(j2j3)j23) j123, j4; 0⟩

= δ(j12, j34)δ(j123, j4)(−1)j1+j2+j3+j4[j12, j23]
1
2{j3 j23 j2

j1 j12 j4
} (2.52)



Chapter 3

Wigner-Eckhart theorem

3.1 CG-coefficients and tensor operators

Clebsch-Gordan (CG) or vector-coupling coefficients ⟨AB∣C⟩ couple the product of
two eigenstates A and B to a new eigenstate C. They are defined as follows:

C(jm) = ∑
m1,m2

(j1m1 j2m2∣jm) A(j1m1)B(j2m2) (3.1)

The Lithuanian group of Gaigalas, Kaniauskas and Rudzikas uses the notation:

(j1m1 j2m2∣jm) = [ j1 j2 j
m1 m2 m

] (3.2)

Another notation has been used e.g. by [Rose, 1961]:

(j1m1 j2m2∣jm) = C(j1, j2, j;m1,m2,m) = C(j1, j2, j;m1,m2) (3.3)

The CG-coefficients are subject to two orthogonality conditions:

∑
m1m2

(jm∣j2m2 j1m1)(j1m1 j2m2∣j′m′) = δjj′δmm′ (3.4a)

and:

∑
jm

(j1m1 j2m2∣jm)(jm∣j2m
′
2 j1m

′
1) = δm1m′

1
δm2m′

2
(3.4b)

By definition:

(j1m1 j2m2∣jm) = (−1)j1−j2+m ⋅ [j]
1
2 ⋅ ( j1 j2 j

m1 m2 −m) (3.5)

This procedure applies both to eigenstates and to tensor operators, which gives
in fact the definition of a spherical tensor operator T

(k)
q : both eigenstates and tensor

operators transform equally under the rotations of the group R3.
This group-theoretical property underlies the Wigner-Eckart theorem, which can
actually be generalized to any group.
The Hermitian adjoint of a spherical tensor operator [as in ⟨ψ∣T †∣ψ′⟩ = ⟨ψ′∣T ∣ψ⟩∗] is -
with the [Schwinger, 1952] phase convention - given by [Racah, 1942b, Edmonds, 1957]:

T
(k)†
q = (−1)q T (k)−q (3.6)

22
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(TU)† = U †T †. The alternative phase (−1)k−q was used by [Fano and Racah, 1959].
The coupling of a tensor product of two tensor operators to a third tensor operator
is performed in a way similar to equation (3.1):

(T(k)U(k′))(K)
Q

≡ V
(K)
Q = ∑

qq′
(kq k′q′∣KQ) T (k)q U

(k′)
q′

= ∑
qq′

(−1)k−k′+Q ⋅ [K]
1
2 ⋅ (k k′ K

q q′ −Q) T (k)q U
(k′)
q′ (3.7)

An example is the vector spherical harmonic, defined as:

(Y (k)e(1))(J)
M

≡ YJ kM = ∑
mq

(km 1q∣JM) Ykme(1)q

= ∑
mq

(−1)k−1+M ⋅ [J]
1
2 ⋅ ( k 1 J

m q −M) Ykm e(1)q (3.8)

By reverse, any particular product of two tensor operators may be expressed as a
series of coupled products. Multiplying both sides of equation (3.7) by (kq k′q′∣KQ),
summing over KQ and applying orthogonality yields:

T
(k)
q U

(k′)
q′ = ∑

KQ

(kq k′q′∣KQ) ⋅ (T(k)U(k′))(K)
Q

= ∑
KQ

(−1)k−k′+Q ⋅ [K]
1
2 ⋅ (k k′ K

q q′ −Q) (T(k)U(k′))(K)
Q

(3.9)

The spherical vector components V
(1)
q are related to their Cartesian counterparts as

follows:

V
(1)

0 = Vz

V
(1)
±1 = ∓

(Vx ± iVy)√
2

Here, equation (3.6) can be verified explicitly. The normalized spherical unit vector

e
(1)
q is given by:

e
(1)
0 = ez =

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(3.10a)

e
(1)
±1 = ∓ 1/

√
2 (ex ± iey) = 1√

2

⎛
⎜
⎝

∓1
−i
0

⎞
⎟
⎠

(3.10b)

They satisfy the orthonormality condition e
(1)
µ ⋅ e(1)ν = (−1)µ δ(µ,−ν).

For the vector r⃗, it then follows immediately:

r
(1)
0 = z (3.11a)

r
(1)
±1 = ∓ 1/

√
2 (x ± iy) (3.11b)
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In fact, every arbitrary vector A⃗ = A may be expanded in a spherical basis set as
follows:

A = ∑
q=0,±1

(−1)q A(1)−q e(1)q (3.12)

The spherical components of a vector operator should not be confused with the
related angular momentum shift or ladder operators:

J+ = Jx + iJy → J
(1)
1 = − 1√

2
J+ (3.13a)

J− = Jx − iJy → J
(1)
−1 = 1√

2
J− (3.13b)

The commutation relations of angular momentum operators yield the below well-
known relations:

General states: Spherical harmonics:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J2 ∣J M⟩ = J(J + 1) ∣J M⟩
Jz ∣J M⟩ =M ∣J M⟩

J± ∣J M⟩ = [J(J + 1) −M(M ± 1)]
1
2 ∣J M ± 1⟩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L2 YLM = L(L + 1)YLM
L0 YLM =M YLM

L± YLM = [L(L + 1) −M(M ± 1)]
1
2 YLM±1

Irreducible tensor operators, commutation rules:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[J2, T
(k)
q ] = k(k + 1)T (k)q

[Jz, T (k)q ] = q T (k)q

[J±, T (k)q ] = [k(k + 1) − q(q ± 1)]
1
2 T

(k)
q±1

By definition, the inner product of two tensors is given by:

(T(k) ⋅U(k)) = ∑
q

(−1)q T (k)q U
(k)
−q = ∑

q

T
(k)
q U

(k)†
q (3.14)

Application of equation (3.7) yields:

(T(k)U(k))(0)
0

= ∑
q

(kq k− q∣00) T (k)q U
(k)
−q

= ∑
q

(k k 0
q −q 0

) T
(k)
q U

(k)
−q = ∑

q

(−1)k+q [k]−
1
2 T

(k)
q U

(k)
−q

Comparison gives now directly:

(T(k)U(k))(0)
0

= (−1)k [k]−
1
2 (T(k) ⋅U(k)) (3.15)

The inner product axbx + ayby + azbz of two vectors a and b is thus given by:

a ⋅ b = −
√

3 ⋅ (a(1)b(1))(0)
0

= −
√

3 ⋅ [1]−
1
2 ⋅ (−azbz − axbx − ayby) (3.16)
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Similarly, the common cross product
⎛
⎜
⎝

aybz − azby
azbx − axbz
axby − aybx

⎞
⎟
⎠

of two vectors a and b is written

as:

a × b = −i
√

2 (a(1)b(1))(1) (3.17)

This relation may be verified from (a(1)b(1))(1)Q = ∑qq′ (1q 1q′∣1Q) a(1)q b
(1)
q′ :

(a(1)b(1))(1)
Q

= ∑
qq′

√
3 (−1)Q(1 1 1

q q′ −Q) a(1)q b
(1)
q′ with (1 1 1

q q′ −Q) = ±1√
6
→

(a(1)b(1))(1)
0

= 1√
2
(a(1)1 b

(1)
−1 − a(1)−1 b

(1)
1 ) = i√

2
(axby − aybx) (3.18)

while similarly:

(a(1)b(1))(1)±1
= ±1√

2
(a(1)±1 b

(1)
0 − a(1)0 b

(1)
±1 ) = 1

2 [azbx − axbz ± i (azby − aybz)]

(3.19)

From the well-known relation of vector analysis (1.2):

a × (b × c) = (a ⋅ c)b − (a ⋅ b)c→ r⃗ × l⃗ = r⃗ × (r⃗ × p⃗) = (r⃗ ⋅ p⃗) r⃗ − r2 p⃗

and the identities: p⃗ = −i∇(1), r⃗ = rC(1), r⃗ ⋅∇ = r ∂/∂r, one derives the known formula
for the gradient in tensor operator form:

−i
√

2 r (C(1)l(1))(1) = −i r2 ∂/∂rC(1) − r2 p⃗→

p⃗ = −i∇(1) = −i [C(1) ∂
∂ r

−
√

2

r
(C(1)l(1))(1)] (3.20)

The gradient formula in vector form is given by [Edmonds, 1957], equation 5.9.17;

with Φ(r) = jL(kr) and CLλ
M = (C(λ)e(1))(L)M = (4π/2λ + 1)

1
2 ⋅YLλM , one obtains:

∇ (jL(kr)C(L)M ) = k

2L + 1
{[L(2L − 1)]

1
2 jL−1(kr)CLL−1

M + [(L + 1)(2L + 3)]
1
2 jL+1(kr)CLL+1

M }

(3.21)

The spherical Bessel functions may be simplified in the long wavelength limit kr ≪ 1:

jL(kr) ≈
kL ⋅ rL

(2L + 1)(2L − 1)!!
(3.22)

which leads to the vector expression:

∇ (rLC(L)M ) = rL−1 {[L(2L − 1)]
1
2 CLL−1

M + [(L + 1)(2L + 3)]
1
2

(kr)2

(2L + 1)(2L + 3)
CLL+1
M }

≈ [L(2L − 1)]
1
2 ⋅ rL−1 ⋅CLL−1

M (3.23)

From equations (3.12) and (3.14) it is seen that:

CLλ
M ⋅ a = (C(λ)e(1))(L)

M
⋅ a = (C(λ)a(1))(L)

M
(3.24)
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This finally yields an expression often used in the long wavelength limit of multipole
expansions:

∇ (rLC(L)M ) ⋅ a = [L(2L − 1)]
1
2 ⋅ rL−1 ⋅ (C(L−1)a(1))(L)

M
(3.25)

Denoting the orthonormal unit vectors ex, ey and ez as ei (i = 1,2,3), the dyadic
form of the juxtaposing (setting side by side) of two vectors a and b yields a second
order Cartesian tensor Qij = aibj defined as:

Q = ∑
i,j

Qij eiej = ∑
i,j

aibj eiej with: Qij = Q(0)ij +Q(1)ij +Q(2)ij (3.26)

where:

Q
(0)
ij = δij

a ⋅ b

3
(3.27a)

Q
(1)
ij =

aibj − ajbi
2

(3.27b)

Q
(2)
ij =

aibj + ajbi
2

− δij
a ⋅ b

3
(3.27c)

The spherical tensor components of these three tensors are found to be:

Q
(0)
0 = 1

3
∑
i

Qii (3.28a)

Q
(1)
0 = Q(1)xy (3.28b)

Q
(1)
±1 = ∓ 1√

2
(Q(1)yz ± iQ(1)zx ) (3.28c)

Q
(2)
0 = Q(2)zz (3.28d)

Q
(2)
±1 = ∓

√
2

3
(Q(2)zx ± iQ(2)zy ) (3.28e)

Q
(2)
±2 = 1√

6
(Q(2)xx −Q(2)yy ± 2iQ

(2)
xy ) (3.28f)

The according unit dyadic I is then given by:

I = ∑
i

eiei = −e(1)+1 e
(1)
−1 + e(1)0 e

(1)
0 − e(1)+1 e

(1)
−1 (3.29)

The double contraction of two dyadics P and Q is:

P ∶Q = ∑
i,j

PijQij (3.30)

In fact, the coupling of two spherical tensors in equation (3.7) can be seen as a
dyadic product.
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3.2 Baryon magnetic moment calculated from the

constituent quarks

From the symmetry properties of the three-quark wavefunction of protons and neu-
trons, one can calculate the total magnetic moments as vector sums of the individual
quark moments. In this, quarks are assumed to behave as point-like Dirac fermions,
like the electron. Contributions other than those from the stationary baryon model
(such as the currents from virtual quark-antiquark pairs) are neglected.
First, we will build the total angular momentum function of a proton.
The proton is composed of three generation I type quarks, two up- and one down-
quark: (uud). We choose to describe a (spin-up) proton as: ∣ J,MJ⟩ = ∣ 1

2 ,
1
2
⟩. 1

In the groundstate, the two equivalent u−quarks will be in a (symmetric) triplet
spin state u ↑ u ↑ designated by: ∣ j1,m1⟩ = ∣ 1,0⟩ or ∣ 1,±1⟩, respectively.
Similarly, the d−quark function reads: ∣ j2,m2⟩ = ∣ 1

2 ,±
1
2
⟩. To find the total spin

function ∣ J,MJ⟩ as eigenfunction of J⃗2, we have to form a linear combination by
means of Clebsch-Gordan coefficients:

∣ (j1j2)JMJ⟩ = ∑
m1,m2

∣ j1m1, j2m2⟩ (j1m1 j2m2∣JMJ)

where ∶ (j1m1 j2m2∣JMJ) = (−1)j1−j2+MJ [J]
1
2 ( j1 j2 J

m1 m2 −MJ
) (3.31)

If we abbreviate ∣ 1 m1,
1
2 m2⟩by ∣m1,m2⟩, we find:

∣ 1
2 ,

1
2
⟩ = ∑

m1,m2

(1m1
1
2 m2∣12 ,

1
2) ∣m1,m2⟩

=
√

2
3 ∣ 1,−1

2
⟩ −

√
1
3 ∣ 0, 1

2
⟩ (3.32)

With ∣ 1,−1
2
⟩, a magnetic moment (µu +µu −µd) is associated: both u−quarks point

upward whereas the d−quark points downward. In the same way, a magnetic moment
µd is associated with ∣ 0, 1

2
⟩. Taking expectation values, we finally arrive at:

µp =
2

3
(2µu − µd) +

1

3
µd =

4

3
µu −

1

3
µd. (3.33a)

For neutrons, we only have to interchange the labels u and d:

µn =
4

3
µd −

1

3
µu. (3.33b)

To find an expression for the quark magnetic moment, recall that for the electron
spin:

µ⃗e = −gs
eh̵

2me

s⃗ = −gs µB s⃗ [where in au: µB = 1
2
] (3.34)

Similarly, the general expression for nuclei is:

µ⃗I = (µI
I

) I⃗ = gI (
me

mp

)µB I⃗ = gI µN I⃗ (3.35)

1This amounts to stating what was chosen ’upward’ in the following; naturally, starting from a
spin-down proton would yield the same result.
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where gI = (µI/I) ⋅ µ−1
N is the nuclear g-factor. For our purpose, the above can be

generalized to the magnetic moment magnitude of any particle with charge q and
mass mq:

∣µ⃗q ∣ =
qh̵

2mq

(3.36)

The electric charges of the up- and down quarks being 2
3e and −1

3e respectively, it
is straightforward to express the quark magnetic moments in terms of the nuclear
Bohr magneton (eh̵)/(2mp) = (me/mp)µB ≡ µN .

µu = 2

3

mp

mu

µN ≈ 2 µN (3.37a)

µd = −1

3

mp

md

µN ≈ −µN (3.37b)

Thus in a very first model, one could substitute mu = md = 1/3mp into equations
3.37 yielding the above approximate results. Inserting these into equations 3.33a
and 3.33b, one finds µp = 3µN and µn = −2µN ; these numbers should be compared
with the experimental result µp = 2.79µN and µn = −1.91µN , respectively, with a
ratio of −1.46 instead of −1.5.

The spins of a proton and a neutron are both s = 1
2 , so their g-factors g = µ/s

equal twice the above numbers: gp = 5.59 and gn = −3.83; all nuclear g-factors are
observed to lie in between those two values: ∀I ∶ gn < gI < gp.

A modest improvement can be achieved by a better mass ratio. Several small
effects outside the above simple picture affect the mass, like the Coulomb interaction,
the magnetic moment interaction (Fermi-contact type) or a mass difference between
the u− and the d−quark; all these effects are in the order of a few MeV. Using
experimental mass values mp = 938 MeV and the effective quark masses mu = md =
336 MeV, we arrive at µp = 2.79µN and µn = −1.86µN , respectively. Actually, the
effective or dressed quark mass is predominantly determined by the binding energy
of the gluon field, as the bare mass is much smaller: mu ≈ 2.3 MeV and md ≈ 4.8
MeV, respectively.

3.3 Derivation WE theorem

Both the simultaneous rotation of two eigenstates ∣j1m1 > ∣j2m2 >, and the compa-

rable operator-state combination T
(k)
q ∣j1m1 >, are determined by the direct product

of the rotation matrices: D(j1) ⊗D(j2) and D(k) ⊗D(j1), respectively.
Using Clebsch-Gordan coefficients to express the one-electron product in terms of a
total angular momentum state:

∣j1m1⟩ ∣j2m2⟩ = ∑
j

(j1m1 j2m2∣jm) ∣jm⟩

Similarly, with m = q +m2:

T
(k)
q ∣j2m2⟩ = ∑

j

(kq j2m2∣jm) Φ(jm)
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Expansion of the function Φ yields:

Φ(jm) = ∑
γ′
c(γ′) ∣γ′ j′m′⟩ so:

T
(k)
q ∣j2m2⟩ = ∑

j,γ′
(kq j2m2∣jm) c(γ′) ∣γ′ j′m′⟩

Application of the orthogonality constraint ⟨j1m1∣j′m′⟩ = δ(j1, j′)δ(m1,m′) now
gives with (kq j2m2∣j1m1) = (−1)k+j2−j1 ⋅ (j2m2 kq∣j1m1):

⟨γ1j1m1∣T (k)q ∣γ2j2m2⟩ = c(γ1)(kq j2m2∣j1m1)

≡ (−1)2k ⋅ (j2m2 kq∣j1m1) [j1]−
1
2 ⋅ ⟨γ1j1 ∥ T (k) ∥ γ2j2⟩

= (−1)j1−m1( j1 k j2
−m1 q m2

) ⟨γ1j1 ∥ T (k) ∥ γ2j2⟩ (3.38)

Implicitly defining the reduced matrix element ⟨γ1j1 ∥ T (k) ∥ γ2j2⟩, this relation is
called the Wigner-Eckart theorem. 2

It turns out that every matrix element can be split into a physical part, the reduced
matrix element, and a geometrical part containing the rotation dependence in the
3j-symbol, which is thus responsible for the selection rules.
In the absence of any preference direction, the magnetic sublevels become degenerate
and the corresponding quantum numbers may be summed over:

∑
m1,q,m2

∣⟨γ1j1m1∣T (k)q ∣γ2j2m2⟩∣
2
= ∣⟨γ1j1 ∥ T (k) ∥ γ2j2⟩∣

2

⟨γj1j2 J mJ ∣ T (k)q ∣ γ′j′1j′2 J ′m′
J⟩ (Wigner-Eckart theorem, generally:)

= (−1)J−mJ( J k J ′

−mJ q m′
J

) ⟨γj1j2 J ∥ T (k) ∥ γ′j′1j′2 J ′⟩ (3.39)

3.4 Applications

( j 0 j
−m 0 m

) = (−1)j−m[j]−
1
2 → ⟨jmj ∣T (0)Q ∣j′m′

j⟩ = δ(jj′) [j]−
1
2 ⟨j ∥ T (0) ∥ j⟩ (3.40)

( j 1 j
−m 0 m

) = (−1)j−m m√
j(j + 1)(2j + 1)

(Zeeman effect) →

⟨αJmJ ∣M (1)
0 ∣αJmJ⟩ =

mJ√
J(J + 1)(2J + 1)

⟨αJ ∥M (1) ∥ αJ⟩ (3.41)

Tensor operators may be expressed in terms of so-called double tensors, i.e. tensors
that carry a rank κ in the spin space as well as a rank k in the orbital space, while

2The reduced matrix elements defined by [Brink and Satchler, 1968] differ by a factor [j1]
1
2 ∶

⟨γ1j1 ∥ T (k) ∥ γ2j2⟩BS = [j1]−
1
2 ⟨γ1j1 ∥ T (k) ∥ γ2j2⟩
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κ and k are coupled to a total rank t. By the Wigner-Eckart theorem, the reduced
matrix element of a double tensor T is defined as follows:

⟨ΨSLJMJ
∣T (κk)tQ ∣ΨS′L′J ′MJ′ ⟩ = (−1)J−MJ( J t J ′

−MJ Q MJ ′
) ⟨ΨSLJ ∥ T (κk)t ∥ ΨS′L′J ′⟩

= (−1)J−MJ( J t J ′

−MJ Q MJ ′
) [J, J ′, t]

1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ κ
L L′ k
J J ′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟨ΨSL ∥ T (κk) ∥ ΨS′L′⟩ (3.42)

For energy operators with t = 0, this reduces to:

⟨ΨSLJMJ
∣T (kk)00 ∣ΨS′L′J ′MJ′ ⟩

= (−1)J−MJ( J 0 J ′

−MJ 0 MJ ′
) [J, J ′,0]

1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ k
L L′ k
J J ′ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟨ΨSL ∥ T (kk) ∥ ΨS′L′⟩

= δ(J, J ′)δ(MJ ,MJ ′)(−1)k[k]−
1
2 (−1)L+S′+J{S L J

L′ S′ k
} ⟨ΨSL ∥ T (kk) ∥ ΨS′L′⟩

(3.43)

With the result for electrostatic operators:

⟨ΨSLJ ∣T (00)0∣Ψ′
S′L′J ′⟩ = δ(J, J ′)δ(S,S′)δ(L,L′) ⋅ [S,L]−

1
2 ⟨ΨSL ∥ T (00) ∥ Ψ′

SL⟩

It follows immediately:

⟨ψSL ∥ 1 ∥ ψ′ S′L′⟩ = δ(ψ,ψ′) ⋅ δ(S,S′) ⋅ δ(L,L′) ⋅ [S,L]
1
2 (3.44)

For the real matrix elements of Hermitian operators, one obtains following the phase
convention (3.6):

⟨αj ∥ T (k) ∥ α′j′⟩ = (−1)j−j′ ⋅ ⟨α′j′ ∥ T (k) ∥ αj⟩ (3.45)

and correspondingly for double tensors:

⟨αSL ∥ T (κk) ∥ α′S′L′⟩ = (−1)(S−S′)+(L−L′) ⋅ ⟨α′S′L′ ∥ T (κk) ∥ αSL⟩ (3.46)

Matrix elements of the tensor product of two tensor operators operating on the same
system [Edmonds, 1957] (7.1.1 and further):

⟨γj ∥X(k) ∥ γ′j′⟩ = ⟨γj ∥ (T (k1)U (k2))(k) ∥ γ′j′⟩ = [k]
1
2 ⋅ (−1)j+j′+k

⋅∑
γ′′

{k1 k2 k
j′ j j′′

} ⟨γj ∥ T (k1) ∥ γ′′j′′⟩ ⟨γ′′j′′ ∥ U (k2) ∥ γ′j′⟩ (3.47)

A straightforward generalization of this equation to double tensors:

⟨ψ ∥ (T (κ′k′)U (κ′′k′′))(κk) ∥ ψ′⟩ = [κ, k]
1
2 ⋅ (−1)S+S′+κ ⋅ (−1)L+L′+k

⋅∑
ψ′′

{κ
′ κ′′ κ
S′ S S′′

} ⋅ {k
′ k′′ k
L′ L L′′

} ⟨ψ ∥ T (κ′k′) ∥ ψ′′⟩ ⟨ψ′′ ∥ U (κ′′k′′) ∥ ψ′⟩ (3.48)
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For two commuting tensor operators operating on different systems:

⟨γj1j2J ∥X(k) ∥ γ′j′1j′2J ′⟩ = ∑
γ′′

⟨γj1 ∥ T (k1) ∥ γ′′j′1⟩ ⟨γ′′j2 ∥ U (k2) ∥ γ′j′2⟩

× [J, k, J ′]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j′1 k1

j2 j′2 k2

J J ′ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.49)

Special cases for k1, k2 or k equal to zero:

⟨γj1j2JMJ ∣T (k) ⋅U (k)∣ γ′j′1j′2J ′M ′
J⟩

= (−1)k+J−MJ [k]−
1
2( J 0 J ′

−MJ 0 M ′
J

) ⟨γj1j2J ∥ (T (k)U (k))(0) ∥ γ′j′1j′2J ′⟩

= (−1)j′1+j2+Jδ(J, J ′)δ(MJ ,M
′
J){

j′1 j′2 J
j2 j1 k

} ∑
γ′′

⟨γj1 ∥ T (k) ∥ γ′′j′1⟩ ⟨γ′′j2 ∥ U (k) ∥ γ′j′2⟩

(3.50)

⟨γj1j2J ∥ T (k)1 ∥ γ′j′1j′2J ′⟩

= δ(j2, j
′
2)(−1)j1+j2+J ′+k [J, J ′]

1
2 {J k J ′

j′1 j2 j1
} ⟨γj1 ∥ T (k)1 ∥ γ′j′1⟩ (3.51a)

for an operator T
(k)
1 acting only on part 1.

⟨γj1j2J ∥ U (k
′)

2 ∥ γ′j′1j′2J ′⟩

= δ(j1, j
′
1)(−1)j′1+j′2+J+k′ [J, J ′]

1
2 {J k′ J ′

j′2 j1 j2
} ⟨γj2 ∥ U (k

′)
2 ∥ γ′j′2⟩ (3.51b)

for an operator U
(k′)
2 acting only on part 2.

Both equations (3.51a) or (3.51b) can be used to decouple spectator electrons in the
calculation.
When the operator ranks k or k′ equal zero, as is the case with Coulomb operators,
full matrix elements are used. For single zero ranked tensors, this leads analogous
to equation (3.44) to:

⟨J ∣T (0)∣ J ′⟩ = δ(J, J ′) ⋅ [J]−
1
2 ⋅ ⟨J ∥ T (0) ∥ J ′⟩ (3.52)

Using this in both the LHS and RHS of equation (3.51a), it simply follows:

⟨j1j2J ∣T (0)1 ∣ j1j
′
2J⟩ = δ(j2, j

′
2) ⋅ ⟨j1 ∣T (0)1 ∣ j1⟩ (3.53)

More specifically for SL-coupling, applying the Wigner-Eckart theorem (3.39) twice
and inserting the analytical expressions for the 3j- and 6j-symbols, one immediately
derives:

⟨S1L1, S2L2(SL) ∣C(00)
1 ∣ S1L1, S2L2(SL)⟩ = ⟨S1L1 ∣C(00)

1 ∣ S1L1⟩ (3.54a)

for (Coulomb) operators acting only on part 1, and

⟨S1L1, S2L2(SL) ∣C(00)
2 ∣ S1L1, S2L2(SL)⟩ = ⟨S2L2 ∣C(00)

2 ∣ S2L2⟩ (3.54b)
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for (Coulomb) operators acting only on part 2.

For magnetic operators in SL-coupling, decoupling is carried out in the S- and
L- space separately, see the below application of equations (3.51a) and (3.51b):

⟨S1L1, S2L2(SL) ∥ A(κk)1 ∥ S′1L′1, S′2L′2(S′L′)⟩ = δ(S2, S
′
2)δ(L2, L

′
2) ⋅ ⟨S1L1 ∥ A(κk)1 ∥ S′1L′1⟩

⋅[S,L,S′, L′]
1
2 ⋅ (−1)S1+S2+S′+κ ⋅ (−1)L1+L2+L′+k ⋅ {S κ S′

S′1 S2 S1
} ⋅ {L k L′

L′1 L2 L1
}

(3.55a)

⟨S1L1, S2L2(SL) ∥ A(κk)2 ∥ S′1L′1, S′2L′2(S′L′)⟩ = δ(S1, S
′
1)δ(L1, L

′
1) ⋅ ⟨S2L2 ∥ A(κk)2 ∥ S′2L′2⟩

⋅[S,L,S′, L′]
1
2 ⋅ (−1)S′1+S′2+S+κ ⋅ (−1)L′1+L′2+L+k ⋅ {S κ S′

S′2 S1 S2
} ⋅ {L k L′

L′2 L1 L2
}

(3.55b)

Subsequently, equation (3.43) has to be applied to incorporate the J-dependence
and arrive at the full matrix elements of A(kk)0.

3.5 Racah spherical tensors

C
(k)
m (Ω) = ( 4π

2k + 1
)

1
2
Ykm(θ, φ) thus, in view of equations (3.11): (3.56)

rY1q(θ, φ) =
√

3

4π
r
(1)
q → r = rC(1)q (3.57)

(rij)−1 = ∑
k

rk<
rk+1
>

⋅ (C(k)i ⋅ C
(k)
j ) (3.58a)

(rij)−3 = 1

r2
> − r2

<
∑
k

rk<
rk+1
>

⋅ [k] ⋅ (C(k)i ⋅ C
(k)
j ) (3.58b)

(rij)−5 = 1

3(r2
> − r2

<)3 ∑
k

rk<
rk+1
>

⋅ [k] ⋅ [(2k + 3)r2
> − (2k − 1)r2

<] ⋅ (C
(k)
i ⋅ C

(k)
j ) (3.58c)

Table 3.1: Values of C(k)

m = 0 ±1 ±2

k = 0 1 — —
k = 1 cos θ ∓ 1√

2
sin θe±iφ —

k = 2 (3
2 cos2 θ − 1

2) ∓
√

3
2 sin θ cos θe±iφ

√
3
8 sin2 θe±2iφ
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It follows directly that:

C
(k)
0 (θ, φ) = Pk(cos θ) (3.59a)

C
(k)
m (0, φ) = δ(m,0) (3.59b)

The inner product is given by the addition theorem of spherical harmonics:

C
(k)
1 ⋅C(k)2 = Pk(cos θ12) with θ12 the angle between Ω1 and Ω2. (3.60)

For the case 1 = 2:

(C(k)C(k′))(K)
Q

= ∑
qq′

(kq k′q′∣KQ) C(k)q C
(k′)
q′ = (k0 k′0∣K0) C(K)Q

= (−1)K[K]
1
2(k k′ K

0 0 0
) C(K)Q (3.61)

Notice the application of the above to a dyadic, i.e. a tensor of order 2 formed by
two vectors:

(C(1)C(1))(2)
Q

=
√

2/3 ⋅C(2)Q (3.62)

3.6 Reduced matrix elements

⟨αj ∥ j(1) ∥ α′j′⟩ = δαα′δjj′
√
j(j + 1)(2j + 1) (3.63)

⟨l ∥ C(k) ∥ l′⟩ = (−1)l [l, l′]
1
2 ( l k l′

0 0 0
) (3.64)

It follows from equation (2.1) that l + k + l′ is even.
For a 3j-symbol, every odd permutation of columns yields a phase (−1)j1+j2+j3 .
As a result:

⟨l ∥ C(k) ∥ l′⟩ = (−1)k ⟨l′ ∥ C(k) ∥ l⟩

With the integer g defined as g = 1
2 (l + k + l′):

(k = 0, g = l) ⟨l ∥ C(0) ∥ l′⟩ = δ(l, l′) (−1)l [ l ] ( l 0 l
0 0 0

) = δ(l, l′) [ l ]
1
2 (3.65)

(l′ = s, g = l) ⟨s ∥ C(l) ∥ l⟩ = [ l ]
1
2 (0 l l

0 0 0
) = (−1)l (3.66)

⟨l ∥ C(1) ∥ l′⟩ = (−1)l>−l
√
l> and ⟨l ∥ C(2) ∥ l⟩ = −[ l(l + 1)(2l + 1)

(2l − 1)(2l + 3)
]

1
2

(3.67)

The second identity results from the below useful recursion relation for k = 1:

⟨l ∥ C(k+1) ∥ l⟩ = −[(2l + k + 1)(2l − k + 1)
(2l + k + 2)(2l − k)

]
1
2

⋅ k

k + 1
⋅ ⟨l ∥ C(k−1) ∥ l⟩ (3.68)

In the more general form:

⟨l ∥ C(k+1) ∥ l′⟩ = −[ (l + l′ + k + 1)(l + l′ − k + 1) (k2 − (l − l′)2)
(l + l′ + k + 2)(l + l′ − k) ((k + 1)2 − (l − l′)2)

]
1
2

⋅ ⟨l ∥ C(k−1) ∥ l′⟩

(3.69)
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3.7 Zeeman effect(1)

The magnetic moment of a charged particle like an electron may be related to its
angular momentum with the Bohr magneton µB = eh̵/2m = 1

2 as a proportionality
factor (the minus sign applies to negative particles):

µ⃗j = −gj ⋅ µB ⋅ j⃗ (3.70)

For atomic electrons, M (1) = L(1) + gs ⋅ S(1) with gl = 1 and gs = 2.002319304.
The spin g-factor is QED corrected by 2 + (gs − 2) ≈ 2 + α/π. Therefore:

µ⃗ = µ⃗L + µ⃗S = −µB(L⃗ + gs ⋅ S⃗) = −µB M (1) = −µB (J(1) + (gs − 1) ⋅ S(1)) (3.71)

If the atom is exposed to a uniform magnetic field B0 = Bz, the perturbation

VZ = −µ⃗ ⋅ B⃗0 = µBB0M
(1)
0 = µBB0 (J(1)0 + (gs − 1) ⋅ S(1)0 )

leads to Zeeman splitting. The Zeeman correction to the energy due to VZ is:

∆EZ = ⟨αJmJ ∣VZ ∣αJmJ⟩ = µBB0 ⟨αJmJ ∣M (1)
0 ∣αJmJ⟩

=mJ ⋅ µB ⋅B0 ⋅
⟨αJ ∥M (1) ∥ αJ⟩√
J(J + 1)(2J + 1)

=mJ ⋅ µB ⋅B0 ⋅ gJ . (3.72)

where the Wigner-Eckart equation (3.41) is applied in the last step; the last factor
implicitly defines the Landé g-factor gJ . As obviously M (1) is a vector, its matrix
elements are (by the WE theorem) necessarily proportional to the matrix elements
of any other vector, the obvious choice being the vector J(1) for ∣JmJ ⟩ states:

⟨αJ ∥M (1) ∥ αJ⟩ = gJ ⋅ ⟨αJ ∥ J(1) ∥ αJ⟩ (3.73)

The Landé g-factor is therefore simply defined as the proportionality factor between
the matrix elements of the magnetic moment and the matrix elements of the total
angular momentum.
In pure (SL)J-coupling, the numerator can be further elaborated with equations
(3.63) and (3.51a), e.g.:

⟨(SL)J ∥ S(1) ∥ (SL)J⟩ = (−1)S+L+J+1 [J] {J 1 J
S L S

}
√
S(S + 1)(2S + 1)

= (−1)S+L+J+1 [J] (−1)S+L+J+1 S(S + 1) + J(J + 1) −L(L + 1)
2
√
J(J + 1)(2J + 1)S(S + 1)(2S + 1)

√
S(S + 1)(2S + 1)

=
√

2J + 1

J(J + 1)
⋅ (S(S + 1) + J(J + 1) −L(L + 1))

2

As a result, the Landé g-factor gJ in the (SL)J-coupling scheme is given by:

gJ(SLJ) = 1 + (gs − 1) (S(S + 1) + J(J + 1) −L(L + 1)
2J(J + 1)

) (3.74)

where again (gs − 1) = 1.002319. The Zeeman splitting is now simply given as:

∆EZ = ⟨αJmJ ∣VZ ∣αJmJ⟩ =mJ ⋅ µB ⋅ gJ ⋅B0 = 1
2mJ ⋅ gJ ⋅B0 (3.75)
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Actual g-factors are calculated in intermediate coupling from the (SL)J eigenvector
percentages; sums of actual and pure g-factors are therefore equal for a given value of
J (the Pauli g-sum rule: the sum of the g-factors over a particular J of a configuration
should be equal to the sum of the g-factors for all possible LS-basis states in that
configuration of that same J). The use of g-factors and all of the above is based
on pure, diagonal J-values: the magnetic field should be small enough not to mix
different values of J .
For larger fields, calculation of off-diagonal matrix elements may however be
performed by straightforward angular momentum techniques, again using the
WE theorem:

⟨(SL)JmJ ∣L(1)0 + gsS(1)0 ∣(SL)J ′mJ⟩ = (−1)J−mJ( J 1 J ′

−mJ 0 mJ
) ⟨(SL)J ∥ L(1) + gsS(1) ∥ (SL)J ′⟩

(3.76)

NMR (or MRI medical imaging) is based on the nuclear Zeeman effect V = −µ⃗p ⋅B⃗
as a result of the interaction of an external magnetic field and the proton magnetic
moment, proportional to the nuclear hydrogen spin:

µ⃗p = µ⃗I = gI ⋅
eh̵

2mp

⋅ I⃗ = gI ⋅ µN ⋅ I⃗ with the Larmor frequency:

ω = gI ⋅ e
2mp

⋅B0 =
5.5856947 ⋅ 1.60218 × 10−19

2 ⋅ 1.67262 × 10−27
⋅B0 = 2.6752 × 108 ⋅B0. (3.77)

Therefore, the linear MRI (radio) frequencies are given by: ν = 42,58 MHz T−1. The
relaxation of the nuclear magnetization after application of a radiofrequency pulse
of Larmor frequency is described by the Bloch equations [Bloch, 1946].
There is some similarity between MRI and (the origin of) the well-known 21 cm
line to be discussed in section 7.11. There, the part of the external magnetic field
is taken over by the internal magnetic field of the electron spin.

3.8 Hyperfine structure(1)

3.8.1 General theory

To describe the effect of the electronic electromagnetic field at a nucleus of non-
zero nuclear spin I⃗, [Schwartz, 1955] proposed an expansion of inner products of
electronic and nuclear spherical tensors:

Hhfs = ∑
t

T
(t)
e ⋅ T (t)n (3.78)

The total electronic angular momentum J⃗ is coupled to the nuclear spin I⃗: J⃗+ I⃗ = F⃗ .
Actually, F and I are the only good quantum numbers here and equation (3.50) is
used to factor this F−dependence out:

⟨γJIF ∣T (t)e ⋅ T (t)n ∣γ′J ′IF ⟩ = (−1)J ′+I+F ⋅ {J
′ I F
I J t

} ⋅ ⟨γJ ∥ T (t)e ∥ γ′J ′⟩ ⟨I ∥ T (t)n ∥ I⟩

(3.79)



36 CHAPTER 3. WIGNER-ECKHART THEOREM

Nuclear multipole moments are commonly defined as the (maximized for mI = I)

matrix element of the corresponding nuclear tensor: Mt = ⟨II ∣T (t)n,0 ∣II⟩.
The WE theorem is then used to display this manifestly:

⟨γJIF ∣T (t)e ⋅ T (t)n ∣γ′J ′IF ⟩ = (−1)J ′+I+F ⋅ {J
′ I F
I J t

} ⋅ ⟨γJ ∥ T (t)e ∥ γ′J ′⟩ Mt

( I t I
−I 0 I

)

(3.80)

In what follows, the summation over t is restricted to the magnetic dipole interaction
(t = 1) and the electric quadrupole interaction (t = 2). Then, M1 = µI and M2 = 1

2Q;
nuclear magnetic dipole and electric quadrupole moments are commonly given in
nuclear magnetons (µN = 1

2 ⋅ me/mp in au) and barns, respectively [Stone, 2005].
Equations (C.2) are used to express the 3j-symbol in the denominator explicitly:

M1

( I 1 I
−I 0 I

)
= µI
I
⋅
√
I(I + 1)(2I + 1) (3.81a)

M2

( I 2 I
−I 0 I

)
= 1

2Q ⋅ [(I + 1)(2I + 1)(2I + 3)
I(2I − 1)

]
1
2

(3.81b)

Expanded in terms of single particle double tensors, the electronic hyperfine
structure (hfs) tensor is written as: T

(t)
e = ∑κk F

(κk)t.
As κ + k + t is even for reasons of Hermiticity, (κk) equals (01), (12) and (10) for
magnetic dipole and (02), (11) and (13) for electric quadrupole interactions.

Next, the J−dependence of ⟨γJ ∥ T (t)e ∥ γ′J ′⟩ is factored out by equation (3.42):

⟨γSLJ ∥ F (κk)t ∥ γ′S′L′J ′⟩ = [J, J ′, t]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ κ
L L′ k
J J ′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ ⟨γSL ∥ F (κk) ∥ γ′S′L′⟩ (3.82)

If the hyperfine interaction is weak so that the interaction energy is small compared
to the fine-structure separation and J remains a good quantum number, HD

hfs +H
Q
hfs

can be treated in first-order perturbation theory with diagonal matrix elements only.
The energy of hyperfine structure multiplets is then given by:

EF = EJ + 1
2AJ ⋅C + 1

2BJ ⋅
3
4C(C + 1) − J(J + 1)I(I + 1)

I(2I − 1)J(2J − 1)
(3.83)

where EJ is the energy of the fine structure level of quantum number J and
C = F (F + 1) − J(J + 1) − I(I + 1).
AJ and BJ are the magnetic dipole and electric quadrupole hyperfine interaction
constants proportional to µI/I and Q, respectively; they may directly be determined
from experiment with equation (3.83).



3.8. HYPERFINE STRUCTURE(1) 37

3.8.2 Magnetic dipole

The electronic part of the magnetic dipole interaction of an electron i with the
nucleus is described by the hyperfine magnetic dipole operator T

(1)
i :

∑
i

T
(1)
i = ∑

i,l≠0

(l(1)i − (10)
1
2 (sC(2))(1)

i
) ⋅ ⟨r−3

i ⟩ + ∑
i,l=0

s
(1)
i ⋅ 2

3
⟨δ(r)r−2⟩

i
= ∑

i

N
(1)
i ⋅ ⟨r−3

i ⟩

(3.84)

In a non-relativistic single configuration model, the first two terms of Ti have a
common radial factor ⟨r−3

i ⟩. The description is much improved, however, if ⟨r−3
i ⟩ is

effectively replaced by separate (and different) radial parameters a01
nl , a

12
nl and a10

nl

for the orbital, spin-dipole and contact terms, respectively. The aκknl (and bκknl for
the electric quadrupole effects) are effective radial parameters which are treated as
adjustable quantities to be fitted to the experimental data in order to take into
account relativistic and CI effects.
Again non-relativistically, the dominant a10

nl term is only non-vanishing for un-
paired s-electrons, in which case the factor ⟨r−3⟩ is replaced by the contact term3

(8π/3) ⟨δ(r)⟩ = 2
3 ⋅ ⟨δ(r)r−2⟩ = 2

3 ⋅AZ2. This contact term, essential for understanding
the 21 cm line, is worked out non-relativistically in equation (7.95) for hydrogenic
atoms; the general relativistic counterpart is found in equation (22.19h).

Given the electronic part (3.84), it follows:

HD
hfs = α2∑

i

T
(1)
i ⋅µI =

α2

2
⋅ (me

mp

) ⋅ µI
I
∑
i

T
(1)
i ⋅ I (3.85)

In some earlier publications, [Judd, 1963, Bauche-Arnoult, 1971, Bauche-Arnoult, 1973],
the prefactor 2ββN = α2/2 ⋅ (me/mp) is used.

As mentioned earlier with equation (3.84), the magnetic dipole interaction is
effectively replaced by:

HD
hfs = ∑

i

(a01
nl l
(1)
i − (10)

1
2 ⋅ a12

nl (siC
(2)
i )

(1)
+ a10

nl s
(1)
i ) ⋅ I (3.86)

where the aκknl parameters are defined as:

aκknl =
α2

2
⋅ (me

mp

) ⋅ µI
I
⋅ ⟨r−3⟩κk

nl
= 3.1825571 × 10−3 ⋅ µI

I
⋅ ⟨r−3⟩κk

nl
(3.87)

The numerical factor yields parameters in cm−1 with ⟨r−3⟩κknl given in atomic units
and µI in nuclear magnetons; the spin term (κk) = (10) is multiplied with the
additional QED factor gs/2, replacing the numerical factor by 3.1862477 × 10−3.
Frequently, the hyperfine structure is small enough to treat as a perturbation and
only diagonal matrix elements have to be considered. The F−dependence is then

3Here, the MCHF definition AZ = limr→0 (dPns(r)/dr) is used.
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factored out by equations (3.50) and (C.11):

⟨γJIF ∣N (1) ⋅ I(1)∣γJIF ⟩ = (−1)J+I+F{J I F
I J 1

} ⟨γJ ∥ N (1) ∥ γJ⟩ ⟨I ∥ I(1) ∥ I⟩

= 1
2 ⋅ (F (F + 1) − J(J + 1) − I(I + 1)) ⟨γJ ∥ N (1) ∥ γJ⟩

⟨γJ ∥ J(1) ∥ γJ⟩
(3.88)

Like M (1) in the Zeeman effect discussed in the above, N (1) is proportional to J(1)

and one may write HD
hfs = AJ (I ⋅ J). The expectation value ⟨I ⋅ J⟩ is readily found

from considering (F )2 = (I + J)2 → F (F + 1) = I(I + 1) + 2 ⟨I ⋅ J⟩ + J(J + 1) →
⟨I ⋅ J⟩ = 1

2C where C = F (F + 1) − J(J + 1) − I(I + 1). Therefore:

⟨γJIF ∣HD
hfs∣γJIF ⟩ = ∆ED

hfs = AJ ⋅ 1
2 (F (F + 1) − J(J + 1) − I(I + 1)) = AJ ⋅ 1

2C (3.89)

here, AJ is defined as:

AJ = α2

2
⋅ (me

mp

) ⋅ µI
I
⋅
∑i ⟨γJ ∥ T (1)i ∥ γJ⟩
⟨γJ ∥ J(1) ∥ γJ⟩

= α2

2
⋅ (me

mp

) ⋅ µI
I
⋅

⋅
∑i,l≠0 ⟨γJ ∥ (l(1)i − (10)

1
2 (sC(2))(1)i ) ∥ γJ⟩ ⋅ ⟨r−3

i ⟩ + ∑i,l=0 ⟨γJ ∥ s(1)i ∥ γJ⟩ ⋅ 2
3 ⟨δ(r)r−2⟩i

[J(J + 1)(2J + 1)]
1
2

(3.90)

in its generalized, relativistic formulation:

AJ =
∑i (a01

nl ⟨γJ ∥ l
(1)
i ∥ γJ⟩ − (10)

1
2 ⋅ a12

nl ⟨γJ ∥ (siC(2)i )
(1)
∥ γJ⟩ + a10

nl ⟨γJ ∥ s(1)i ∥ γJ⟩)

[J(J + 1)(2J + 1)]
1
2

(3.91)

As an example, it follows for a single unpaired s−electron directly that AJ = a10
ns. The

detailed calculation of the matrix elements ∑i ⟨γJ ∥ T
(1)
i ∥ γJ⟩ is best carried out

in second quantization as outlined in chapter 5 below. If configuration interaction
outside the model space is taken into account, additional two- and three-particle
hfs operators appear and T (1) = ∑κk F

(κk)1 is expanded to include these as well, see
section 15.6 for further elaboration.
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The more general expression for the dipole hyperfine interaction is given by:

⟨γJF ∣HD
hfs∣γ′J ′F ⟩ =

√
I(I + 1)(2I + 1) ⋅ (−1)J ′+I+F{J

′ I F
I J 1

}

⋅ α
2

2
⋅ (me

mp

) ⋅ µI
I
⋅ ⟨r−3⟩ ⋅ ⟨γJ ∥ ∑

i

N
(1)
i ∥ γ′J ′⟩

=
√
I(I + 1)(2I + 1) ⋅ (−1)J ′+I+F{J

′ I F
I J 1

}

⋅∑
i

(a01
nl ⟨γJ ∥ l

(1)
i ∥ γ′J ′⟩ − (10)

1
2 ⋅ a12

nl ⟨γJ ∥ (siC(2)i )
(1)
∥ γ′J ′⟩ + a10

nl ⟨γJ ∥ s(1)i ∥ γ′J ′⟩)

see equation (5.67a) for the expression in second quantization. (3.92)

3.8.3 Electric quadrupole

Using equation (3.58a), the electrostatic interaction between the individual nucleons
and the individual electrons may be expressed as a multipole expansion in terms
of Legendre polynomials Pk(cos θ). If r is the distance between the two charge
distributions, it follows:

1

r12

= ∑
k

rk<
rk+1
>

⋅ Pk(cos θ) = 1

re
+ rn
r2
e

⋅ P1(cos θ) + r
2
n

r3
e

⋅ P2(cos θ) +⋯ (3.93)

The first term is the usual nuclear Coulomb attraction and the second vanishes for
symmetry reasons. The present focus is therefore on the third (electric quadrupole)

term, which is of the form (r−3
e C

(2)
e ⋅ r2

nC
(2)
n ).

The classical expression for the electric quadrupole moment is given by:

Q = ∫ (3z2 − r2)ρ(r)dr ≈ 2

5
Z (b2 − a2) (3.94)

where in the last step, a and b denote the semi-major and semi-minor axes of a
homogeneous spheroidal object. Therefore, the nuclear quadrupole moment Q is
positive for cigar-shaped objects and negative for flattened objects (like planets).
In its quantummechanical formulation, using table 3.1, this becomes:

Q = ⟨3z2 − r2⟩ = ⟨2r2 ⋅ P2(cos θ)⟩ = ⟨2r2 ⋅C(2)0 ⟩ (3.95)

leading to the definition:

⟨II ∣r2
n ⋅C

(2)
n,0 ∣II⟩ =M2 = 1

2Q (3.96)

Some care is in order with the above factor 1
2 , as it occurs in the literature in various

other places like in the angular, nuclear or electronic part. In line with the above
discussion, the electric quadrupole Hamiltonian is given by:

HQ
hfs = − ∑

i

C
(2)
i ⋅Q(2) r−3

i (3.97)
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From equations (3.80) and (3.81b), the below general expression also valid for off-
diagonal matrix elements follows directly:

⟨γJF ∣HQ
hfs∣γ

′J ′F ⟩ = − ⟨r−3⟩ ⋅ 1
2Q ⋅ [(I + 1)(2I + 1)(2I + 3)

I(2I − 1)
]

1
2

⋅(−1)J ′+I+F{J
′ I F
I J 2

} ⋅ ⟨γJ ∥ ∑
i

C
(2)
i ∥ γ′J ′⟩ (3.98)

The radial parameters are related to the effective expectation values of ⟨r−3⟩ (in
au) and the nuclear quadrupole moment Q (in barns). To calculate the elec-

tronic quadrupole moment ⟨JJ ∣∑i C
(2)
i ∣JJ⟩, one may use the equivalent operator

C(2) ∝ 3J2
z − J(J + 1). Similar to the magnetic dipole case, the dominant diagonal

contribution ⟨γJF ∣HQ
hfs∣γJF ⟩ = ∆EQ

hfs may thereby be simplified to:

∆EQ
hfs = 1

2BJ ⋅
3 ⟨(I ⋅ J)2⟩ + 3

2 ⟨I ⋅ J⟩ − J(J + 1)I(I + 1)
I(2I − 1)J(2J − 1)

= 1
2BJ ⋅

3
4C(C + 1) − J(J + 1)I(I + 1)

I(2I − 1)J(2J − 1)
(3.99)

This corresponds exactly to the expression already given by [Casimir, 1935]:

∆EQ
hfs = −{ 1

r3

3 cos2 θ − 1

J(2J − 1)
}
JJ

⋅ { 3z2 − r2

I(2I − 1)
}
II

⋅ [3
8C(C + 1) − 1

2IJ(I + 1)(J + 1)]

= − ⟨r−3⟩ ⋅ ⟨JJ ∣2C(2)0 ∣JJ⟩ ⋅Q ⋅ 1
2 ⋅

3
4C(C + 1) − J(J + 1)I(I + 1)

I(2I − 1)J(2J − 1)
(3.100)

where the present notation is used in the second line. Obviously:

1
2BJ = − ⟨r−3⟩ ⋅Q ⋅ ( J 2 J

−J 0 J
) ⋅ ⟨γJ ∥ ∑

i

C
(2)
i ∥ γJ⟩ (3.101a)

Returning to the general expression 3.97 again, one recognizes from equations (C.2)
and (C.12) the below equality, symmetric in I and J :

1
2 ⋅ (−1)I+J+F{J I F

I J 2
}

( J 2 J
−J 0 J

) ⋅ ( I 2 I
−I 0 I

)
=

3
4C(C + 1) − J(J + 1)I(I + 1)

I(2I − 1)J(2J − 1)
(3.101b)

Comparison of equations (3.98) and (3.99) yields once more:

1
2BJ = − ⟨r−3⟩ ⋅Q ⋅ [ J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
]

1
2

⋅ ⟨γJ ∥ ∑
i

C
(2)
i ∥ γJ⟩ (3.101c)

In the relativistic approach, radial parameters bκknl are introduced for (κk) = 02,11
and 13.
With ⟨r−3⟩κknl in atomic units, bκknl in cm−1 and Q in barns, they are defined as:

bκknl = 7.83758136 × 10−3 ⋅Q ⋅ ⟨r−3⟩κk
nl

(3.102)
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Anticipating the development of the theory of second quantization in chapter 5,
the complete electronic quadrupole operator is written as a sum over orthogonal
operators:

T
(2)
e = −S02

nl (a†a)(02)2 − S11
nl (a†a)(11)2 − S13

nl (a†a)(13)2

= − ⟨r−3⟩02

nl
∑
i

C
(2)
i − 1√

30
⟨r−3⟩11

nl
(a†a)(11)2 − 1√

70
⟨r−3⟩13

nl
(a†a)(13)2

(3.103)

As a result, the relativistic quadrupole interaction is given by:

⟨γJF ∣HQ
hfs∣γ

′J ′F ⟩ = −1
2 [(I + 1)(2I + 1)(2I + 3)

I(2I − 1)
]

1
2

⋅ (−1)J ′+I+F{J
′ I F
I J 2

}

⋅ (b02
nl ⟨γJ ∥ ∑

i

C
(2)
i ∥ γ′J ′⟩ + 1√

30
b11
nl ⟨γJ ∥ (a†a)(11)2 ∥ γ′J ′⟩ + 1√

70
b13
nl ⟨γJ ∥ (a†a)(13)2 ∥ γ′J ′⟩)

see equation (5.67b) for the complete expression in second quantization. (3.104)

Realizing from equation (5.58) that ∑i C
(2)
i = −

√
2/5 ⟨l ∥ C(2) ∥ l⟩ ⋅ (a†a)(02)2

, all the
above reduced matrix elements may be calculated in the SL-coupling scheme from:

⟨γSLJ ∥ (a†a)(κk)t ∥ γ′S′L′J ′⟩ = [J, J ′, t]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ κ
L L′ k
J J ′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟨γSL ∥ (a†a)(κk) ∥ γ′S′L′⟩

(3.105)

Comparison of equations (3.104) and (3.99) now gives in the relativistic case:

1
2 ⋅BJ = −[ J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
]

1
2

⋅ (b02
nl ⟨γJ ∥ ∑

i

C
(2)
i ∥ γJ⟩ + 1√

30
b11
nl ⟨γJ ∥ (a†a)(11)2 ∥ γJ⟩ + 1√

70
b13
nl ⟨γJ ∥ (a†a)(13)2 ∥ γJ⟩)

(3.106)

Again, if configuration interaction outside the model space is taken into account,
T (2) = ∑κk F

(κk)2 is to be expanded to include the additional two- and three-particle
hfs operators, see section 15.6.
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Graphical representations

+ j2m2 = ( j1 j2 j3
m1 m2 m3

) =

j3m3

j1m1

+ j2m2 =

j3m3

j1m1

+ j2m2

j3m3

j1m1 (4.1)

a

+ b = (−1)a+b+c ×

c

a

− b

c (4.2)

+
j3 −m3

j2m2 = (−1)j3−m3 ( j1 j2 j3

m1 m2 −m3
)

j3m3

j1m1 (4.3a)

⟨j1m1 ∣T (k)q ∣ j2m2⟩ = − kq × ⟨j1 ∥ T (k) ∥ j2⟩

j1m1

j2m2 (4.3b)

+
j3 −m3

j2m2 = (−1)j3+m3 ( j1 j2 j3

m1 m2 −m3
)

j3m3

j1m1 (4.3c)

42



43

j = j = j
(4.4)

j = (−1)2j ⋅ j
(4.5)

Therefore, an undirected arrow may be used for integer angular momenta:

l = l = l (4.6)

+

j2 j3 = {j1j2j3}

−

j1 j = [j]

(4.7)

j = [j]
1
2 ⋅ j

(4.8)

+ = ⟨j1j2(j)∣
j

j1

j2

− = ∣j1j2(j)⟩
j

j1

j2 (4.9)

+ 0 =⨉

j1

j2

− =0 ⨉

j1

j2

j1

⋅ δ(j1, j2) ⋅ [j1]−
1
2

(4.10a)

− 0 =⨉

j1

j2

+ =0 ⨉

j1

j2

j1

⋅ δ(j1, j2) ⋅ [j1]−
1
2

(4.10b)
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4.1 Jucys, Levinson and Vanagas [Jucys et al., 1962]

JLV1

α −

j1

j+

j2

j3

j4

β

= δ(j1, j2) ⋅ δ(j3, j4) ⋅ δ(j,0) ⋅ [j1, j3]−
1
2 ⋅

α

j1 j3

β

(4.11)

JLV2a

α

j1

j2

β

= δ(j1, j2) ⋅ [j1]−1⋅

α

j1 j2

β

(4.12a)

JLV2b

α

j1 j2

β

= δ(j1, j2) ⋅

α

β

j1

j1

(4.12b)
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JLV3

α

j1

j2

j3

β

=

α +
j3

j2

j1

β−
j3

j2

j1

(4.13)

For empty β, JLV3 essentially represents the Wigner-Eckart theorem.

JLV4

α

j1

j2

j3

j4

β

= ∑j [j]

α

j4

−j3

j2 −
j1

j β

j4

+ j3

j2+
j1

j

(4.14)

∑j [j]

α −

j1

j+

j2

j1

j2

β

=

α

j1

j2

β

(4.15)

∑x [x] +
(α)

− =
j1

j2

j1

j2

x

j1

j2

(α)

(4.16)
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4.2 Basic nj-symbols

j6

−

j1 j5

−

j4j2

+ + = {j1 j2 j3

j4 j5 j6
} =j3

j6

+

j1 j5

+

j4j2

− −j3

(4.17)

+

j6

+

j5 = {j1 j2 j3

j4 j5 j6
} =

+
j4

+
j2

j1

j3

−

j6

−

j5

−
j4

−
j2

j1

j3

(4.18)

j3m3

j1m1

JLV3 may also be used to remove closed triangles:

j2m2
+ = {j1 j2 j3

j4 j5 j6
} ×

+

j5

j4

j6

+

j3m3

j1m1

j2m2
−

(4.19)

a

b

c

d

e

f

g

h i

+ + =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a b c
d e f
g h i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

++

+ +

a

b

c

d

e

f

g

h i

− −

−−

− −
(4.20)

+

+

++

+

+

+ +

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 k4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

j1

k1

j3 k3

j2

k2j4

k4
l1

l2

l3
l4

−

−

−−

−

−

− −

j1

k1

j3 k3

j2

k2j4

k4
l1

l2

l3
l4

(4.21a)
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−

−

+−

+

+

− +

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1 j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 k4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

l1

l4

k3 j3

k2

j4k4

j2
k1

l2

l3

j1

+

+

−+

−

−

+ −

l1

l4

k3 j3

k2

j4k4

j2
k1

l2

l3

j1

(4.21b)

+

+

+ +

+

+

+ +

= (−1)(k1−l1)−(k2−l2)−(k3−l3)+(k4−l4)

⋅
⎡⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4

l1 l2 l3 l4
k1 k2 k3 k4

⎤⎥⎥⎥⎥⎥⎦
=

k1

k2

l2 l4

j1

j4j3

j2
k3

l1 l3
k4 −

−

− −

−

−

− −

k1

k2

l2 l4

j1

j4j3

j2
k3

l1 l3
k4

(4.22)

4.3 Interactions

k

a c

b d

Velst = ∑k(−1)k ⋅Rk(ab, cd)

⋅ ⟨a ∥ C(k) ∥ c⟩ ⟨b ∥ C(k) ∥ d⟩ ×

= ∑kX
k(ab, cd)

(Feynman) →
a

c

b

d

(4.23)

−

+

1

1
2

1
2

l l

Vmagn = (−1) ⋅ ⟨1
2 ∥ s(1) ∥

1
2
⟩ ⋅ ⟨l ∥ l(1) ∥ l⟩ ζl ⋅

(4.24)

−

+

k

j j′

j j′
T (k) = ⟨j ∥ T (k) ∥ j′⟩ ⋅

(4.25)



Chapter 5

Second quantization

1 Creation and annihilation operators, implicitly defined by a†
α ∣0⟩ = ∣α⟩ and

aβ ∣β⟩ = ∣0⟩ while aγ ∣0⟩ = 0, satisfy commutation [] ánd anti-commutation {} rules:

anti-commutation commutation

aξaη + aηaξ = 0 1
2[aξ, aη] = aξaη

a†
ξa

†
η + a†

ηa
†
ξ = 0 1

2[a
†
ξ, a

†
η] = a†

ξa
†
η

a†
ξaη + aηa

†
ξ = δ(ξ, η)

1
2[a

†
ξ, aη] = a

†
ξaη −

1
2δ(ξ, η)

Table 5.1: Commutation relations

While identical operators vanish when placed side by side (aξaξ = 0 and a†
ξa

†
ξ = 0),

the useful mixed expression ∑ξ a
†
ξaξ ∣ψ⟩ = N ∣ψ⟩ is called the number operator.

Expressed in terms of second quantization, single-particle operators F and
two-particle operators G become:

F = ∑
ξ,η

a†
ξ ⟨ξ ∣f ∣ η⟩ aη (5.1a)

G = 1
2 ∑
ξ,η,ζ,λ

a†
ξa

†
η ⟨ξ1η2 ∣g12∣ ζ1λ2⟩ aλaζ (5.1b)

One may proceed to collect or couple these operators to form tensor operators:

a† = a
†(sl)
msml

a = (−1)x ⋅ a (sl)−ms−ml with x = (s + l −ms −ml). (5.2)

With ξ = (nlmsml) and η = (nl −ms −ml) and ãη = (−1)xaξ, this leads to e.g.:

(a†a)(κk)
πq

= ∑
ξη

(smsξ smsη ∣κπ)(lmlξ lmlη ∣kq) a†
ξãη (5.3)

As an example, it follows for the number operator, using

(aα bβ∣00) = δ(a, b)δ(α,−β) ⋅ [a]−
1
2 ⋅ (−1)a−α:

(a†a)(00) = −[1
2 , l]

−1
2 ∑

ξ

a†
ξaξ (5.4)

1[Judd, 1967] is used as a overarching reference for much of the basic material of this chapter.

48



49

The creation and annihilation operators are related by the anti-linear conjugation
operator C obeying C†C = C−1C = 1 and CiC−1 = −i:

C a† C−1 = a (5.5a)

C a C−1 = −a† (5.5b)

while:

C (a†a)κk C−1 = −(aa†)κk and: C (aa†)κk C−1 = −(a†a)κk (5.6)

Likewise:

C (a†a†)κk C−1 = (aa)κk and: C (aa)κk C−1 = (a†a†)κk (5.7)

(aa†)κk = (−1)κ+k (a†a)κk + δ(κ,0)δ(k,0) [1
2 , l]

1
2 (5.8a)

(a†a)κk = (−1)κ+k (aa†)κk − δ(κ,0)δ(k,0) [1
2 , l]

1
2 (5.8b)

(aa†)00 − (a†a)00 = [1
2 , l]

1
2 (5.8c)

{a (a†a†)SL}
S̄L̄

= (−1)
1
2+l−(S̄+L̄) {(a†a†)SL a}

S̄L̄

− 2[S,L]
1
2 [1

2 , l]
−1

2 δ(S̄, 1
2)δ(L̄, l) a†

(5.9a)

{(aa)SL a†}
S̄L̄

= (−1)
1
2+l−(S̄+L̄) {a† (aa)SL}

S̄L̄
− 2[S,L]

1
2 [1

2 , l]
−1

2 δ(S̄, 1
2)δ(L̄, l) a

(5.9b)

{(a†a)kK a†}
S̄L̄

= (−1)k+K+1
2+l−(S̄+L̄) {a† (a†a)kK}

S̄L̄

− (−1)k+K[k,K]
1
2 [1

2 , l]
−1

2 δ(S̄, 1
2)δ(L̄, l) a† (5.9c)

{a (a†a)kK}
S̄L̄

= (−1)k+K+1
2+l−(S̄+L̄) {(a†a)kK a}

S̄L̄

− (−1)k+K[k,K]
1
2 [1

2 , l]
−1

2 δ(S̄, 1
2)δ(L̄, l) a (5.9d)

{(aa)S′L′(a†a†)SL}kK = (−1)k+K {(a†a†)SL(aa)S′L′}kK

+ 4 ⋅ [S,L,S′, L′]
1
2{S k S′

1
2

1
2

1
2

} {L K L′

l l l
} (a†a)kK

− 2 ⋅ δ(k,0)δ(K,0)δ(SS′)δ(LL′) ⋅ [S,L]
1
2 (5.10a)
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{(a†a†)SL(aa)S′L′}kK = (−1)k+K {(aa)S′L′(a†a†)SL}kK

− 4 ⋅ [S,L,S′, L′]
1
2{S k S′

1
2

1
2

1
2

} {L K L′

l l l
} (aa†)kK

− 2 ⋅ δ(k,0)δ(K,0)δ(SS′)δ(LL′) ⋅ [S,L]
1
2 (5.10b)

{(a†a†)SL(aa)S′L′}00 − {(aa)S′L′(a†a†)SL}00

= 2[S,L]
1
2 [1

2 , l]
−1

2 {(a†a)(00) + aa†)(00)}

= −8[S,L]
1
2 [1

2 , l]
−1 Q0 (5.10c)

(ba†)(κK) = (−1)la+lb+κ+K(a†b)(κK) + δ(a, b)δ(κ,0)δ(K,0) [1
2 , la]

1
2 (5.11)

For closed shells:

(c†c)(κk) = −δ(κ,0) δ(k,0) [1
2 , lc]

1
2 (5.12)

Applied to two-particle operators:

{(c†c)κ1k1 (a†b)κ2k2}
(κk)t

= δ(κ1,0)δ(k1,0)δ(κ2, κ)δ(k2, k) ⋅ −[1
2 , lc]

1
2 ⋅ (a†b)(κk)t

(5.13a)

{(c†b)κ1k1 (a†c)κ2k2}
(κk)t

= (−1)la+lb+κ1+κ2+k1+k2+1 [κ1, κ2, k1, k2]
1
2

× {κ1 κ2 κ
1
2

1
2

1
2

} {k1 k2 k
la lb lc

} ⋅ (a†b)(κk)t (5.13b)

For virtual shells:

(vv†)(κk) = δ(κ,0) δ(k,0) [1
2 , lv]

1
2 (5.14)

Products of operators expressed in second quantization, as occur in perturbation
theory and in the theory of inner products, are reduced as follows:
(i) Creation operators c† of a closed shell are coupled to the corresponding
annihilation operators c, e.g. (c†c)(κk). As one cannot create a new electron in
a shell that is filled already, c† cannot be interchanged to become the rightmost
operator: c†∣ Aα⟩ = 0. As seen from equation (5.12), interchange will produce this
null result plus a scalar residue in which all operators c(†) have disappeared.
(ii) The same argument applies to virtual shells if one replaces creation by annihi-
lation and vice versa by application of equation (5.14).
(iii) With the above, operators referring either to closed or to virtual shells are
coupled to zero ranks and subsequently removed. Next, the remaining open shell
operators are rearranged to bring the creation operators (coupled together) to the
left and the annihilation operators (coupled together) to the right of the expression.
The number of either one determines the n-particle character of the final operator,
which is now referred to be ’in normal form’. Matrix elements of this operator can
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trivially be evaluated as unit operators in their ’parent’ configuration, i.e. the con-
figuration with n electrons where the operator appears for the first time. Equation
(5.11) provides the key to the algebraical manipulation of operators in second quan-
tized form. However, if we restrict our attention to two-particle operators, we have
to deal with 2n creation and 2n annihilation operators in the nth order of perturba-
tion, which already becomes cumbersome in the second order. For this reason, we
take recourse to graphical algebra which allows all recoupling transformations to be
carried out simultaneously.
When recoupling creation and annihilation operators, there are three additional
operations with respect to recoupling ordinary angular momenta:
(i) Each interchange of operators gives a minus sign, yielding a phase factor (−1)P
for P permutations.
(ii) When a creation and an annihilation operator of the same shell are interchanged,
one applies equation (5.11) instead of (i). This gives a branching into an n-particle
and an (n − 1)-particle operator, as the second term has one a†a pair less: inter-
change of equivalent creation/annihilation operators yields additional residues with
a lowered n−particle character. Frequently, one is only interested in the operator
involving the highest number of electrons and step (ii) can be skipped: in this so-
called ’top-of-the-tree’ formalism, the residues are not considered and only operators
with maximum n are retrieved.
(iii) After the recoupling, one multiplies the expression for the orbital angular mo-
menta with the analogous expression of the spins to obtain the final result.

5.1 Electrostatic unit operators

Operators in second quantization act as unit operators in their parent configuration:
if the operators are not coupled to the terms of the bra and the ket respectively, the
result will be zero. Example:

⟨nl ∣(a†b)(00)0∣ n′l′⟩ = −δ(l, l′) ⋅ [1
2 , l]

−1
2 (5.15)

This operator appears in the second quantized form of the electronic potential:

UAB = −δ(l, l′) ⋅ [1
2 , l]

1
2 ⋅ (a†b)(00)0 ⋅ ⟨nl ∣U ∣ n′l′⟩

where ⟨nl ∣U ∣ n′l′⟩ represents the sum over the various average Coulomb interactions
between configurations A and B.
For lN , a convenient choice for the definition of basic one-, two- and three-particle
electrostatic operators is given by:

Hl = −[1
2 , l]

1
2 (a†a)(00)

(5.16a)

HSL = −1
2[S,L]

1
2 {(a†a†)SL(aa)SL}(00)

(5.16b)

H
(S3L3)
SL,S′L′ = (−1)

1
2+l−(S3+L3)[S3, L3]

1
2 [{a†(a†a†)SL}S3L3 {(aa)S′L′a}S3L3]

(00)

(5.16c)
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Their corresponding matrix elements are:

⟨l ∣Hl∣ l′⟩ = δ(l, l′) (5.17a)

⟨l2(SL)∣HSL∣l2(S′L′)⟩ = δ(SS′) δ(LL′)
⟨lN ψA∣HSL∣lN ψB⟩ = 1

2N(N − 1) δ(ψA, ψB) (5.17b)

⟨l3(S3L3ν3)∣H(S3L3)
SL,S′L′ ∣l3(S3L3ν

′
3)⟩ = 6 (l3(S3L3ν3){∣l2(SL)) (l2(S′L′)∣}l3(S3L3ν

′
3))
(5.17c)

A similar example for l2l′ operators:

⟨l2(SL)l′(S3L3) ∣[{(a†a†)(SL)b†}(S3L3) {(aa)(S′L′)b}(S3L3)]
(00)

∣ l2(S′L′)l′(S3L3)⟩

= 2 [S3, L3]−
1
2 (5.18)

5.2 Reduced matrix elements in second

quantization

⟨a(1
2 l) ∥ a† ∥ (00)⟩ = −[1

2 , l]
1
2 (5.19a)

⟨(00) ∥ a ∥ a(1
2 l)⟩ = [1

2 , l]
1
2 (5.19b)

⟨a(1
2 la) ∥ (a†b)(κk) ∥ b(1

2 lb)⟩ = −[κ, k]
1
2 (5.20)

Equation (5.20) is a direct application of equations (5.19) and (3.48) with the vacuum
state (00) as ψ′′. This is standard procedure for calculating reduced matrix elements
of operators in normal form, with all creation operators arranged to the left and all
annihilation operators to the right.
With C(SL) = (a†

1a
†
2⋯a†

n)(SL) and A(S
′L′) = (an⋯a2a1)(S

′L′), equation (3.48) reduces
to:

⟨αSL ∥ (C(SL)A(S′L′))(κk) ∥ α′S′L′⟩

= [κ, k]
1
2 ⋅ [S,L,S′, L′]−

1
2 ⋅ ⟨αSL ∥ C(SL) ∥ (00)⟩ ⋅ ⟨(00) ∥ A(S′L′) ∥ α′S′L′⟩ (5.21)

In turn, compound expressions ⟨αSL ∥ C(SL) ∥ (00)⟩ can always be broken down
into the smaller pieces (5.19) by repeated application of equation (3.49):

⟨SL ∥ C(SL) ∥ (00)⟩ = [S,L]
1
2 ⋅ [S1, L1, S2, L2]−

1
2 ⋅ ⟨S1L1 ∥ C(S1L1)

1 ∥ (00)⟩ ⋅ ⟨S2L2 ∥ C(S2L2)
2 ∥ (00)⟩

(5.22)

In the absence of spectator electrons, matrix elements are prefactored by a statistical
weighting factor

√
Πλ qλ! ⋅Πλ′ qλ′ !, where qλ denotes the occupation number of shell λ.
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Reduced matrix elements of operators in second quantization may be reversed by:

< Ψ ∥ a±1a±2 ...a
±
i ...a

±
n ∥ Ψ′ >= (−1)P < Ψ′ ∥ a∓n...a

∓
i ...a

∓
2a∓1 ∥ Ψ > (5.23a)

with the phase:

P = (S +L) − (S′ +L′) ± (1
2 + l1)... ± (1

2 + li)... ± (1
2 + ln) (5.23b)

For the ease of notation, the above + and − superscripts refer to creation and
annihilation operators, respectively. As an example:

⟨ab(SL) ∥ (a†b†)(SL) ∥ (00)⟩ = (1 + δab)
1
2 [S,L]

1
2 (5.24a)

⟨(00) ∥ (ab)(SL) ∥ ab(SL)⟩ = −(1 + δab)
1
2 [S,L]

1
2 (5.24b)

Note that the interchange (ba)(SL) → (ab)(SL) removes the complete phase factor
(−1)P except for a minus sign. Equation (5.24a) is found by substituting equation
(5.19a) into equation (5.22).

Following equation (3.82), the J−dependence of the reduced matrix elements of
double tensor operators X(κk)t like (a†b)(κk)t is factored out by:

⟨ψSLJ ∥X(κk)t ∥ ψ′ S′L′J ′⟩ = [J, J ′, t]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ κ
L L′ k
J J ′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟨ψSL ∥X(κk) ∥ ψ′ S′L′⟩

(5.25)

⟨ψ γSLJ ∣X(kk)0 ∣ψ′ γ′S′L′J ′⟩ (here, k = 0,1,2 for electrostatic, spin-orbit and spin-spin effects)

= δ(JJ ′) ⋅ [J]−
1
2 ⟨ψ γSLJ ∥X(kk)0 ∥ ψ′ γ′S′L′J ′⟩

= δ(J, J ′)(−1)k[k]−
1
2 (−1)L+S′+J ⋅ {S L J

L′ S′ k
} ⟨ψSL ∥X(kk) ∥ ψ′ S′L′⟩ (5.26)

Equation (5.26) is identical to equation (3.44) derived earlier.
Important special cases of equation (5.25):

⟨1
2 lj ∥ (a†b)(κk)t ∥ 1

2 l
′j′⟩ = −[j, j′]

1
2 ⋅ [κ, k, t]

1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l′ k
j j′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.27)

The adjoint becomes therewith:

⟨1
2 l
′j′ ∥ (b†a)(κk)t ∥ 1

2 lj⟩ = −[j, j
′]

1
2 ⋅ [κ, k, t]

1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l′ l k
j′ j t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.28)

Hermiticity now requires that P = κ + k + t always be even!

⟨lN SLJ ∥ (a†a)(0k)k ∥ lN S′L′J ′⟩ = δ(S,S′) ⋅N ⋅ [1
2]
−1

2 ⋅ [k]
1
2 ⋅ [J, J ′, L,L′]

1
2 ⋅ {J J ′ k

L L′ S
}

⋅(−1)J+L′+S+L+l+1∑
S L

(−1)L ⋅ { l l k

L′ L L
} ⋅ (lNSL {∣lN−1S L) (lN−1S L ∣}lNS′L′) (5.29)
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The SL−dependent reduced matrix element ⟨ψSL ∥ (a†b)(κk) ∥ ψ′ S′L′⟩ is calcu-
lated from equation (5.20) in combination with equation (3.55a) or (3.55b), e.g.:

⟨l2SL ∥ (a†a)(κk) ∥ l2S′L′⟩ = 2(−1)κ+k[κ, k]
1
2 ⋅ [S,L,S′, L′]

1
2{S κ S′

1
2

1
2

1
2

} {L k L′

l l l
} (5.30)

⟨lNSL ∥ (a†a)(κk) ∥ lNS′L′⟩ = N ⋅ [κ, k]
1
2 ⋅ [S,L,S′, L′]

1
2

⋅∑
S L

(−1)z ⋅ {
1
2

1
2 κ

S′ S S
} ⋅ { l l k

L′ L L
} ⋅ (lNSL {∣lN−1S L) (lN−1S L ∣}lNS′L′) (5.31)

with z = S + κ +L + k + S +L − (1
2 + l).

⟨ll′SL ∥ (a†a)(κk) ∥ ll′S′L′⟩ = (−1)κ+k+l+l′+S′+L′[κ, k]
1
2 ⋅ [S,L,S′, L′]

1
2{S κ S′

1
2

1
2

1
2

} {L k L′

l l′ l
}

(5.32a)

⟨ll′SL ∥ (b†b)(κk) ∥ ll′S′L′⟩ = (−1)κ+k+l+l′+S+L[κ, k]
1
2 ⋅ [S,L,S′, L′]

1
2{S κ S′

1
2

1
2

1
2

} {L k L′

l′ l l′
}

(5.32b)

⟨lN SL ∥ (a†b)(κk) ∥ lN−1(S1L1) l′ S′L′⟩ = −[κ, k]
1
2 ⋅

√
N ⋅ (lN SL{∣lN−1 S1L1)

⋅[S,L,S′, L′]
1
2 ⋅ (−1)S1+

1
2+S+κ ⋅ (−1)L1+l′+L+k ⋅ {S κ S′

1
2 S1

1
2

} ⋅ {L k L′

l′ L1 l
} (5.33)

⟨lN(S1L1)l′ SL ∥ (a†a)(κk) ∥ lN(S′1L′1)l′′ S′L′⟩ = −N ⋅ δ(l′, l′′) ⋅ [κ, k]
1
2 ⋅ [S,L,S′, L′]

1
2

⋅[S1, L1, S
′
1, L

′
1]

1
2 ⋅ ∑

S L

(−1)L+l′+L′+l{L1 L′1 k
L′ L l′

} {L1 L′1 k

l l L
}

⋅ (lNS1L1{∣lN−1S L) (lN−1S L∣}lNS′1L′1) ⋅ (−1)S−S′{S1 S′1 κ
S′ S 1

2

} {S1 S′1 κ
1
2

1
2 S

} (5.34)

⟨lN(S1L1)l′ SL ∥ (b†c)(κk) ∥ lN(S′1L′1)l′′ S′L′⟩ = −[κ, k]
1
2 ⋅ δ(S1, S

′
1) ⋅ δ(L1, L

′
1)

⋅[S,L,S′, L′]
1
2 ⋅ (−1)S1+

1
2+S+κ ⋅ (−1)L1+l′′+L+k ⋅ {S κ S′

1
2 S1

1
2

} ⋅ {L k L′

l′′ L1 l′
} (5.35)

Reduced matrix elements of two-particle operators in coupled second quantized
normal form:

⟨ab(SL) ∥ {(a†b†)(SL)(cd)(S′L′)}(κk) ∥ cd(S′L′)⟩ = − ((1 + δab)(1 + δcd))
1
2 [κ, k]

1
2

(5.36)

Equation (5.36) follows directly from equation (5.21) and equations (5.24).
Examples:

⟨l2(SL) ∥ {(a†a†)(SL)(bb)(S′L′)}(κk) ∥ l′2(S′L′)⟩ = −2 ⋅ [κ, k]
1
2 (5.37)
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⟨ab(SL) ∣{(a†b†)(SL)(cd)(SL)}(00)∣ cd(SL)⟩ = − ((1 + δab)(1 + δcd))
1
2 ⋅ [S,L]−

1
2 (5.38)

In its initial form, two-particle operators are usually found as the coupled product
of two one-particle operators:

⟨ab(SL) ∥ {(a†c)(κ1k1)(b†d)(κ2k2)}(κk) ∥ cd(S′L′)⟩ = ((1 + δab)(1 + δcd))
1
2

× [κ1, k1, κ2, k2, κ, k]
1
2 ⋅ [S,L,S′, L′]

1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ1

1
2

1
2 κ2

S S′ κ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

la lc k1

lb ld k2

L L′ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.39)

For the Coulomb interaction, this specializes to:

⟨ab(SL) ∣{(a†c)(0k)(b†d)(0k)}(00)∣ cd(SL)⟩ = ((1 + δab)(1 + δcd))
1
2

× 1
2 ⋅ [k]

1
2 ⋅ (−1)lb+lc+k+L ⋅ {la lc k

ld lb L
} (5.40)

The above may straightforwardly be used to find matrix elements of two-particle
operators in more general configurations, e.g.:

⟨lN(S1L1ν1)l′(SL) ∥ {(a†a)(κk)(b†b)(κ′k′)}(tt) ∥ lN(S′1L′1ν′1)l′(S′L′)⟩ =

N ⋅ [t] ⋅ [S,L,S′, L′]
1
2 ⋅ [S1, S

′
1, L1, L

′
1]

1
2 ⋅ [κ, k, κ′, k′]

1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 S′1 κ
1
2

1
2 κ′

S S′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1 L′1 k
l′ l′ k′

L L′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⋅∑
S L

(−1)S+
1
2+S1+κ{S1 κ S′1

1
2 S 1

2

} (−1)L+l+L1+k{L1 k L′1
l L l

}

⋅ (lNS1L1ν1{∣lN−1S Lν) (lN−1S Lν∣}lNS′1L′1ν′1)
(5.41)

Three-particle operators in normal form are calculated from equation (5.21), e.g.:

⟨l2(SL)l′(S3L3) ∥ [{(a†a†)(SL)b†}(S3L3) {(aa)(S′L′)b}(S
′
3L

′
3)](κk) ∥ l2(S′L′)l′(S′3L′3⟩

= [κ, k]
1
2 ⋅ [S3, L3, S

′
3, L

′
3]−

1
2 ⋅ ⟨l2(SL)l′(S3L3) ∥ {(a†a†)(SL)b†}(S3L3) ∥ (00)⟩

⋅ ⟨(00) ∥ {(aa)(S′L′)b}(S
′
3L

′
3) ∥ l2(S′L′)l′(S′3L′3)⟩

= 2 ⋅ [κ, k]
1
2 (5.42)

the above last line follows directly from application of equations (5.22) and (5.23):

⟨l2(SL)l′(S3L3) ∥ {(a†a†)(SL)b†}(S3L3) ∥ (00)⟩ = −
√

2 ⋅ [S3, L3]
1
2 (5.43a)

⟨(00) ∥ {(aa)(S′L′)b}(S
′
3L

′
3) ∥ l2(S′L′)l′(S′3L′3)⟩ = −

√
2 ⋅ [S′3, L′3]

1
2 (5.43b)

Equation (5.18) is a special case for (κk) = (00) after application of equation (3.44).
The reversed order case (a†b†b†)(abb) manifestly yields the identical result:

⟨l l′2(SL)S3L3 ∥ [{a†(b†b†)(SL)}(S3L3) {a(bb)(S′L′)}(S
′
3L

′
3)](κk) ∥ l l′2(S′L′)S′3L′3⟩ = 2 ⋅ [κ, k]

1
2

(5.44)
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5.3 Operators put in second quantized form

[Feneuille, 1967] defined a unit one-particle double tensor operator as:

⟨sl ∥ w(κk)(la, lb) ∥ sl′⟩ = δ(l, la) ⋅ δ(l′, lb) ⋅ [κ, k]
1
2 (5.45)

differing from equation (5.20) only by a minus sign. A general one-particle operator
may now be factorized in terms of a radial part R and this angular double tensor:

F (κk)t = ∑
i

Ri ⋅w(κk)ti (5.46)

Operators acting on spin only now become:

T
(κ)
i = [li]

1
2 [κ]−

1
2 ⟨si ∥ T (κ) ∥ s′i⟩ w

(κ0)κ
i (5.47a)

Whereas operators acting only on orbital angular momenta:

A
(k)
i = [si]

1
2 [k]−

1
2 ⟨li ∥ A(k) ∥ l′i⟩ w

(0k)k
i (5.47b)

Note that the reduction of a double tensor with one zero rank differs from the

reduction of the corresponding single tensor by the first factors [li]
1
2 and [si]

1
2 in

the above equations.
[Racah, 1942b] defined the tensor u

(k)
i by:

⟨li ∥ u(k) ∥ l′i⟩ = δ(li, l′i) → u
(k)
i = [si]

1
2 [k]−

1
2 w

(0k)k
i (5.48)

Spin- and orbital operators can be combined using straightforward angular momen-
tum algebra, e.g. the coupled product of a pure ’spin’ and a pure ’orbital’ operator
yields:

(T (κ)i A
(k)
i )

(t)
= [κ, k]−

1
2 ⋅ ⟨si ∥ T (κ) ∥ si′⟩ ⟨li ∥ A(k) ∥ li′⟩ w(κk)ti (5.49)

To be compared with:

(w(κ0)
i w

(0k)
i )

(κk)t
= [si, li]−

1
2 ⋅w(κk)ti (5.50)

Furthermore:

(w(κ1k1)i w
(κ2k2)
j )

(kk)0
= ∑

t

(−1)k1+κ2+k ⋅ [k]
1
2 ⋅ {κ1 k1 t

k2 κ2 k
} w

(κ1k1)t
i ⋅w

(κ2k2)t
j (5.51a)

with the reverse relation:

w
(κ1k1)t
i ⋅w

(κ2k2)t
j = ∑

k

(−1)k1+κ2+k ⋅ [t] ⋅ [k]
1
2 ⋅ {κ1 k1 t

k2 κ2 k
} (w(κ1k1)i w

(κ2k2)
j )

(kk)0
(5.51b)

Keeping in mind the Hermiticity requirement that κ + k + t is even, the following
basic equality now holds [Judd, 1967]:

∑
i

w
(κk)t
i (la, lb) =W (κk)t = −(a†b)(κk)t (5.52)
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Therefore:

F (κk)t = −[κ, k]−
1
2 ⟨a ∥ F (κk) ∥ b⟩ (a†b)(κk)t (5.53)

∑
i

T
(k)
i ⋅A

(k)
i = (−1)k+1[k]−

1
2 ⋅ ⟨s ∥ T (κ) ∥ s′⟩ ⟨l ∥ A(k) ∥ l′⟩ (a†b)(kk)0 (5.54)

Equation (5.48) thus results in:

U (k) = ∑
i

u
(k)
i = −[s]

1
2 [k]−

1
2 ⋅ δ(l, l′) ⋅ (a†b)(0k)k (5.55)

The reduced matrix elements ⟨lN SL ∥ U (k) ∥ lN S′L′⟩ are tabulated by [Nielson and Koster, 1963].
Combining the above with equation (5.31) e.g. directly yields:

⟨lN SL ∥ U (2) ∥ lN S′L′⟩ = N ⋅ δ(S,S′) ⋅ [S,L,L′]
1
2 ⋅ ∑

S L

(−1)L+l+L ⋅ { l l 2
L′ L l

}

⋅ (lN SL{∣ lN−1 S L) (lN S′L′{∣ lN−1 S L) (5.56)

Earlier, [Sandars and Beck, 1965] introduced U
(κk)t
i for similar purposes:

∑
i

U
(κk)t
i = ∑

i

[κ, k]−
1
2 ⋅w(κk)ti = −[κ, k]−

1
2 ⋅ (a†a)(κk)t (5.57)

From equation (5.47b), with the single → double tensor reduction implied, one
obtains:

C
(k)
i = [si]

1
2 [k]−

1
2 ⋅ ⟨li ∥ C(k) ∥ l′i⟩ ⋅w

(0k)k
i

Therefore:

∑
i

C
(k)
i = −[s]

1
2 [k]−

1
2 ⋅ ⟨l ∥ C(k) ∥ l′⟩ ⋅ (a†b)(0k)k (5.58)

∑
i

C
(2)
i = −

√
2/5 ⋅ ⟨l ∥ C(2) ∥ l′⟩ ⋅ (a†b)(02)2 = f 02 ⋅ (a†b)(02)2 (5.59)

Direct comparison learns:

δ(l, l′) ⋅∑
i

C
(k)
i = ⟨l ∥ C(k) ∥ l⟩ ⋅U (k) (5.60)

Some other physically interesting examples are:

∑
i

(sC(k))(t)
i

= −[k, 1
2]
−1

2 ⋅ ⟨l ∥ C(k) ∥ l′⟩ ⋅ (a†b)(1k)t with: 1 + k + t even. (5.61)

∑
i

(C(k)l)(t)
i

= (−1)l+t+l′+1 [2l′(l′ + 1)(2l′ + 1)]
1
2 ⋅ { l l′ t

1 k l′
} ⋅ ⟨l ∥ C(k) ∥ l′⟩ ⋅ (a†b)(0t)t

(5.62)
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where equation (3.47) is used in the above. For t = k, from comparison with equation
(5.58) and using equation (C.11), one finds:

∑
i

(C(k)l)(k)
i

= l(l + 1) − k(k + 1) − l′(l′ + 1)
2
√
k(k + 1)

⋅∑
i

C
(k)
i (5.63)

A related useful reduction formula may be derived from equations (5.62) and (3.69):

(C(k+1)l)(k)
i

= [ k(2k − 1)
(k + 1)(2k + 3)

]
1
2

⋅ (C(k−1)l)(k)
i

(5.64)

from which e.g.: ∑i l
(1)
i = (10)

1
2 ∑i (C(2)l)

(1)
i , which may also be verified from

equations (3.67), (5.62) and (C.13). This unveils a resemblance with the spin-dipole

term: −(10)
1
2 ∑i (sC(2))

(1)
i = −(10)

1
2 ∑i (C(2)s)

(1)
i .

Also, by equation (3.61):

(C(k)C(k′))(K)
i

= (−1)K ⋅ [K]
1
2 ⋅ (k k′ K

0 0 0
) C(K)i (5.65)

Further examples are given below; they are notably relevant to the hyperfine dipole

operator: ∑i T
(1)
i = ∑i a

01
i ⋅ l(1)i − a12

i ⋅ (10)
1
2 (sC(2))(1)i + a10

i ⋅ s(1)i as well as to the
atomic dipole moment:

M
(1)
i = l(1)i + gs ⋅ s(1)i − 2 (10)

1
2 a12 (sC(2))(1)i where a12 → 0 in the Pauli limit.

To include relativity and correlation effects, however, it is essential to consider these
operators separately:

∑
i

l
(1)
i = −δ(l, l′) ⋅ [2l(l + 1)(2l + 1)

3
]

1
2

⋅ (a†b)(01)1 = f 01 ⋅ (a†b)(01)1 (5.66a)

−(10)
1
2 ∑

i

(sC(2))(1)
i

= ⟨l ∥ C(2) ∥ l′⟩ ⋅ (a†b)(12)1 = f 12 ⋅ (a†b)(12)1 (5.66b)

∑
i

s
(1)
i = −δ(l, l′) ⋅ [2l + 1

2
]

1
2
⋅ (a†b)(10)1 = f 10 ⋅ (a†b)(10)1 (5.66c)

In terms of second quantization, the complete expression for the hyperfine interac-
tion thus becomes:

⟨γ(SL)JF ∣HD
hfs∣γ′(S′L′)J ′F ⟩ =

√
I(I + 1)(2I + 1) ⋅ (−1)J ′+I+F ⋅ {J

′ I F
I J 1

}

⋅ ∑
κk,nl

[J, J ′,1]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ κ
L L′ k
J J ′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ aκknl ⋅ fκk ⋅ ⟨γ(SL) ∥ (a†a)(κk) ∥ γ′(S′L′)⟩ (5.67a)
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⟨γ(SL)JF ∣HQ
hfs∣γ

′(S′L′)J ′F ⟩ = −1
2 [(I + 1)(2I + 1)(2I + 3)

I(2I − 1)
]

1
2

⋅ (−1)J ′+I+F ⋅ {J
′ I F
I J 2

}

⋅ ∑
κk,nl

[J, J ′,2]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ κ
L L′ k
J J ′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ bκknl ⋅ fκk ⋅ ⟨γ(SL) ∥ (a†a)(κk) ∥ γ′(S′L′)⟩ (5.67b)

Here, aκknl and bκknl are the hfs interaction parameters given in equations (3.87) and

(3.102), fκk the RHS prefactors of equations (5.66) and (5.59) (assuming f 11 = 1/
√

30
and f 13 = 1/

√
70) and the reduced matrix elements are calculated straightforwardly

using the formulae of section 5.2.

In conclusion, with the definition:

S(a, b) = ∫
∞

0
a(r)R(r)b(r) dr = [κ, k]−

1
2 ⟨a ∥ F (κk) ∥ b⟩ (5.68)

one arrives at the general expression of a one-particle operator in terms of second
quantization:

F (κk)t = −S(a, b) (a†b)(κk)t (5.69)

Next, a corresponding procedure may be followed for two-particle operators. Similar
to the use of equation (5.46) for one-particle operators, two-particle operators are
expressed in terms of unit double tensors as follows:

G(κk)t = ∑
i≠j
Rij ⋅ (w(κ1k1)i w

(κ2k2)
j )

(κk)t
(5.70)

Equation (5.70) also serves to identify the remaining radial factor Rij for each par-
ticular operator in question.
The two-particle analog of equation (5.53) becomes in normal form:

G(κk)t = − ((1 + δab)(1 + δcd))−
1
2 [κ, k]−

1
2 ∑
SL,S′L′

⟨ab(SL) ∥ G(κk) ∥ cd(S′L′)⟩

× {(a†b†)SL (cd)S
′L′}

(κk)t
(5.71)

In accordance with equation (5.70), however, two-particle operators in their initial
form usually appear as coupled products of one-particle operators. Direct use of
equation (5.52) may formally contain both one- and two-particle operators if the
summation is taken over (i, j) instead of (i ≠ j): the residue term of equation (5.11)
refers to the case i = j. An example for equivalent electrons:

∑
i,j

(w(κ1k1)i w
(κ2k2)
j )

(κk)
= {(a†a)(κ1k1)(a†a)(κ2k2)}(κk)

= (−1)κ+k[κ1, k1, κ2, k2]
1
2{κ1 κ2 κ

1
2

1
2

1
2

} {k1 k2 k
l l l

} (a†a)(κk)

− ∑
SL,S′L′

[S,L,S′, L′]
1
2 ⋅ [κ1, k1, κ2, k2]

1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

κ1 κ1 κ
1
2

1
2 S

1
2

1
2 S′

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k1 k1 k
l l L
l l L′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{(a†a†)SL(aa)S′L′}(κk)

(5.72)
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Here, the first RHS term refers to i = j and the second to i ≠ j. As the sum-
mation over i and j is implicit in second quantization in the coupled form, the
electrons b and c have to be treated as inequivalent in two-particle operators

of the form {(a†c)(κ1k1) (b†d)(κ2k2)}
(κk)

, even if they are not. This is a minor

downside of the use of second quantization in the initial form. Keeping this in
mind, however, use of the initial form is the most direct way to find the second
quantization expression of physical operators. The Hermitian conjugate becomes:

{(d†b)(κ2k2) (c†a)(κ1k1)}
(κk)

= (−1)κ1+κ2−κ ⋅ (−1)k1+k2−k ⋅ {(c†a)(κ1k1) (d†b)(κ2k2)}
(κk)

.

With the definition:

S(ab, cd) = ∫
∞

0
∫

∞

0
dr1dr2 a(1)b(2)R12(r)c(1)d(2) (5.73)

and, allowing for Rij ≠ Rji, one arrives at:

G(κk)t = DS(ab, cd) {(a†c)κ1k1 (b†d)κ2k2}
(κk)t

+ E S(ab, dc) {(a†d)κ1k1 (b†c)κ2k2}
(κk)t

+ (−1)PDS(ba, dc) {(a†c)κ2k2 (b†d)κ1k1}
(κk)t

+ (−1)PE S(ba, cd) {(a†d)κ2k2 (b†c)κ1k1}
(κk)t

(5.74)

D = (1 − 1
2δabδcd) provides the correct weighting factor and E = (1 − δab)(1 − δcd)

excludes exchange terms when bra or ket contain equivalent electrons.
P = κ1 + k1 + κ2 + k2 − (κ + k) is the permutation phase.
It may be interesting to note that as a result, Hermitian operators with odd P (as
occur in the below mutual spin-orbit interactions V1 and V3) do not have direct
matrix elements within a configuration.
Effects of a closed shell c can immediately be deduced from equations (5.13), that
reduce the expressions of equation (5.74) to the general one-particle form (a†b)(κk)t
from (equation (5.69)). Analogously, virtual shells v are removed by equation (5.14)
with a similar result.
If Rij = Rji, as is the case with the Coulomb interaction C, the last two terms
coincide with the first two. More explicitly:

C = 1
2 ∑
i≠j

r−1
ij = ∑

i<j
r−1
ij = ∑

i<j,k

rk<
rk+1
>

⋅ (C(k)i ⋅C
(k)
j )

= ∑
i≠j,k

(−1)k [k]−
1
2
rk<
rk+1
>

⋅ ⟨li ∥ C(k) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩ ⋅ (w
(0k)
i w

(0k)
j )

(00)0
(5.75)

Next, identifying Rij from comparison with equation (5.70):

Rij = ∑
k

(−1)k [k]−
1
2 ⋅ r

k
<

rk+1
>

⋅ ⟨li ∥ C(k) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩ = Rji and therefore:

S(ab, cd) = ∑
k

(−1)k [k]−
1
2 ⋅ ⟨la ∥ C(k) ∥ lc⟩ ⟨lb ∥ C(k) ∥ ld⟩ ⋅Rk(ab, cd)

= ∑
k

[k]−
1
2 ⋅Xk(ab, cd) (5.76)
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Application of equation (5.74) directly gives:

C = 2 ∑
k

(−1)k [k]−
1
2 ⋅DRk(ab, cd) ⟨la ∥ C(k) ∥ lc⟩ ⟨lb ∥ C(k) ∥ ld⟩ {(a†c)0k (b†d)0k}

(00)0

+ 2 ∑
k′

(−1)k′ [k′]−
1
2 ⋅ERk′(ab, dc) ⟨la ∥ C(k

′) ∥ ld⟩ ⟨lb ∥ C(k
′) ∥ lc⟩ {(a†d)0k′ (b†c)0k′}

(00)0

(5.77)

As an example for a = b and c = d:

C = ∑
k

(−1)k [k]−
1
2 ⋅Rk(aa, bb) ⟨la ∥ C(k) ∥ lb⟩

2 {(a†b)0k (a†b)0k}
(00)0

(5.78)

For the exchange, a reordering of the ket state is required to apply equation (5.38)
or (5.40). For two electrons, cd (SL) → dc (SL) yields an additional phase of

(−1)1 ⋅ (−1)
1
2+

1
2−S ⋅ (−1)lc+ld−L, with the Pauli permutation phase as the first factor.

Application of (5.40) in equation (5.77) now automatically yields equation (6.10).

In summary, the conversion of physical operators (like Breit-Pauli Hamiltonian
terms) to second quantization generally takes place in a four-step process:

1. The interaction is first written in its original form.

2. Racah algebra is then used to put this into tensor operator form.

3. Equations (5.46) and (5.70) are used to translate to w
(κ1k1)t
i and/or w

(κ2k2)t
j .

4. Equations (5.69) and (5.74) are used to find the final expression.

5.4 Graphical second quantization

The general one-particle expression (5.69): F (κk)t = −S(a, b) (a†b)(κk)t

may graphically be expressed as:

−

a†

F (κk)t = −S(a, b) ×

k
b (5.79)

With graphical second quantization, operators are coupled towards expressions (5.36)
or (5.38) to find the (reduced) matrix element. The conversion of reduced matrix
elements of operators in initial form (5.39) to normal form (5.36) is graphically
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shown as follows:

b†

d

1

2

3

4

5

6

L

−
L′

−

+

−
k2

a†

c

+ −

k1

k

(5.80)

The Hamiltonian line placing all nodes or vertices on the periphery is indicated by
consecutive red numbers. The interchange of b† and c (treated as inequivalent!)
yields an additional minus sign.

1

2

3 4

5

6

la

lc

k1

lb

ld

k2

L

L′ k

− −

−−

− −

× − [κ1, k1, κ2, k2]
1
2

[S,L,S′, L′]
1
2 ×

1
2

1
2

κ1

1
2

1
2

κ2

S

S′ κ

− −

−−

− −
(5.81)

it follows:

⟨ab(SL) ∥ {(a†c)(κ1k1)(b†d)(κ2k2)}(κk) ∥ cd(S′L′)⟩ = − [κ1, k1, κ2, k2]
1
2

⋅[S,L,S′, L′]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ1

1
2

1
2 κ2

S S′ κ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

la lc k1

lb ld k2

L L′ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟨ab(SL) ∥ {(a†b†)(SL)(cd)(S′L′)}(κk) ∥ cd(S′L′)⟩

= ((1 + δab)(1 + δcd))
1
2 [κ1, k1, κ2, k2, κ, k]

1
2 ⋅ [S,L,S′, L′]

1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ1

1
2

1
2 κ2

S S′ κ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

la lc k1

lb ld k2

L L′ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.82)

in complete accordance with equation (5.39).
The representation of a two-particle operator in initial form by its graphical coupling
scheme is therefore:

+a† c

−b† d

+
k1

k2

For K = 0→ k1 = k2 = k
this reduces to:

K

+a† c

−b† d

k

(5.83)
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As a result, the graphical representation of the direct term of the Coulomb
interaction is given below:

+a† c

−b† d

k Comparison with equation (5.77) yields the multiplication factor:
2∑k(−1)k ⋅D ⋅ ⟨la ∥ C(k) ∥ lc⟩ ⟨lb ∥ C(k) ∥ ld⟩Rk(ab, cd).
= 2D ⋅ ∑kX

k(ab, cd) with D = (1 − 1
2δabδcd)

(5.84)

To find the two-electron matrix element in this way, the operator is recoupled to
equation (5.38), again with an extra minus sign for the interchange of b† and c:

+a† c

−b† d

L L
+
⨉
0

k
+ − = −1

2 ⋅ (−1)lc+ld+L ⋅ [S,L]
1
2 ⋅ {L lc ld

k lb la
}

(5.85)

The final result becomes:

2D ⋅ ∑
k

Xk(ab, cd) ⋅ −1
2 ⋅ (−1)lc+ld+L ⋅ [S,L]

1
2 ⋅ {L lc ld

k lb la
} ⋅ − ((1 + δab)(1 + δcd))

1
2 ⋅ [S,L]−

1
2

=W ⋅ (−1)lc+ld+L ⋅ ∑
k

{L lc ld
k lb la

} ⋅Xk(ab, cd) : exactly the direct term of equation (6.10).

Likewise, the exchange becomes:

+a† d

−b† c

k′ Comparison with equation (5.77) yields the multiplication factor:
2 ⋅ ∑k′(−1)k′ ⋅E ⋅ ⟨la ∥ C(k

′) ∥ ld⟩ ⟨lb ∥ C(k
′) ∥ lc⟩Rk′(ab, dc).

= 2E ⋅ ∑k′X
k′(ab, dc) with E = (1 − δab)(1 − δcd)

(5.86)

To find the exchange two-electron matrix element, the operator is again recoupled
to equation (5.38), with minus signs for the interchange of b† ↔ d and c↔ d:

+a† d

−b† c

L L
+
⨉
0

k
+ + = 1

2 ⋅ (−1)1+S ⋅ [S,L]
1
2 ⋅ {k

′ lb lc
L ld la

}

(5.87)
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The final result becomes:

2E ⋅ ∑
k′
⋅Xk′(ab, dc) ⋅ 1

2 ⋅ (−1)1+S ⋅ [S,L]
1
2 ⋅ {k

′ lb lc
L ld la

} ⋅ − ((1 + δab)(1 + δcd))
1
2 ⋅ [S,L]−

1
2

=W ⋅ (−1)S ⋅ ∑
k′

{k
′ lb lc
L ld la

} ⋅Xk′(ab, dc) : exactly the exchange term of equation (6.10).

5.5 Application to the spin-orbit interaction

The dot product of single-electron operators Ak (spin type) and Bk (orbit type)
transposes to:

Ak
⋅Bk = (−1)k+1 [k]−

1
2 ⟨s ∥Ak ∥ s′⟩ ⟨l ∥ Bk ∥ l′⟩ (a†b)(kk)0 (5.88)

and thereby the spin-orbit operator becomes:

∑
i

si ⋅ li ζ(a, b) = δ(l, l′) (l(l + 1)(2l + 1)/2)
1
2 (a†b)(11)0 ζ(a, b) (5.89)

The corresponding reduced matrix element becomes thereby:

⟨nl ∥ ζ(a, b) ∥ n′l′⟩ = −3 ⋅ δ(l, l′) (l(l + 1)(2l + 1)/2)
1
2 ⋅ ζ(a,b) (5.90)

Analytic formulae for inner products used the theory of the spin-orbit interaction.
For l2:

[{(a†a)K1k1(a†a)K2k2}(11)0 ∶ z(l)]

= (l(l + 1)(2l + 1)/2)
1
2 [K1, k1,K2, k2]

1
2{K1 K2 1

1
2

1
2

1
2

} {k1 k2 1
l l l

}

× ((4l + 2) δ(K1,0)δ(k1,0) + (4l + 2)δ(K2,0)δ(k2,0) − 2) (5.91)

For direct operators in ll′:

[{(a†a)K1k1(b†b)K2k2}(11)0 ∶ z(l)]

= −(l(l + 1)(2l + 1)/2)
1
2 δ(K1,1)δ(k1,1)δ(K2,0)δ(k2,0) [1

2 , l
′]

1
2 (5.92)

[{(a†a)K1k1(b†b)K2k2}(11)0 ∶ z(l′)]

= −(l′(l′ + 1)(2l′ + 1)/2)
1
2 δ(K1,1)δ(k1,1)δ(K2,0)δ(k2,0) [1

2 , l]
1
2 (5.93)

5.6 Mutual spin-orbit

Following [Blume and Watson, 1962], one may separate the two-electron magnetic
interaction into three tractable parts in tensor operator form:

HMSO = α
2

2
∑
i≠j

(∇i (
1

rij
) × pi) ⋅ (si + 2sj) = −

α2

2
∑
i≠j

(
rij
r3
ij

× pi) ⋅ (si + 2sj) = V1 + V2 + V3

(5.94)
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Here, r⃗ij = r⃗i − r⃗j and [Innes and Ufford, 1958]:

rij
r3
ij

= 1√
3
∑
k

(−1)k [
rk−1
i

rk+1
j

⋅ [k(2k − 1)(2k + 1)]
1
2 ⋅ (C(k−1)

i C
(k)
j )

(1)
⋅ ε(rj − ri)

+
rkj
rk+2
i

⋅ [(k + 1)(2k + 1)(2k + 3)]
1
2 ⋅ (C(k+1)

i C
(k)
j )

(1)
⋅ ε(ri − rj)] (5.95)

Further use of equations (3.17) and (3.20) now leads to the tensorial expressions:

V1 = α2

2
√

3
∑
k,i≠j

(−1)k ⋅ rj ⋅
rk−1
<
rk+2
>

⋅ [k(k + 1)(2k + 1)]
1
2
∂

∂ri
(C(k)j C

(k)
i )

(1)
⋅ (si + 2sj)

= α2

2
∑
k,i≠j

(−1)k ⋅ rj ⋅
rk−1
<
rk+2
>

⋅ [k(k + 1)
2k + 1

]
1
2 ∂

∂ri
⋅ ⟨li ∥ C(k) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩

⋅ [(w(1k)i w
(0k)
j )

(11)0
+ 2 (w(0k)i w

(1k
j )

(11)0
] (5.96a)

V2 = α2

2
√

3
∑
k,i≠j

(−1)k ⋅ [k]
1
2 [(2k − 1)

rk−1
j

rk+2
i

ε(ri − rj) (C(k−1)
j (C(k−1)

i li)(k))
(1)

−(2k + 3)
rk−1
i

rk+2
j

ε(rj − ri) (C(k+1)
j (C(k+1)

i li)(k))
(1)

] ⋅ (si + 2sj)

= α2

2
∑
k,i≠j

(−1)k ⋅ [k]
1
2 ⋅
rk−1
j

rk+2
i

ε(ri − rj) ⋅ [l′i(l′i + 1)(2l′i + 1)]
1
2 ⋅ ⟨li ∥ C(k−1) ∥ l′i⟩ ⋅ ⟨lj ∥ C(k−1) ∥ l′j⟩

⋅ [k − 1]
1
2 ⋅ {k − 1 1 k

l′i li l′i
} [(w(1k)i w

(0k−1)
j )

(11)0
+ 2 (w(0k)i w

(1k−1)
j )

(11)0
]

− α2

2
∑
k,i≠j

(−1)k ⋅ [k]
1
2 ⋅
rk−1
i

rk+2
j

ε(rj − ri) ⋅ [l′i(l′i + 1)(2l′i + 1)]
1
2 ⋅ ⟨li ∥ C(k+1) ∥ l′i⟩ ⋅ ⟨lj ∥ C(k+1) ∥ l′j⟩

⋅ [k + 1]
1
2 ⋅ {k + 1 1 k

l′i li l′i
} [(w(1k)i w

(0k+1)
j )

(11)0
+ 2 (w(0k)i w

(1k+1)
j )

(11)0
] (5.96b)

V3 = α2

2
√

3
∑
k,i≠j

(−1)k ⋅ [k]
1
2 [k

rkj
rk+3
i

ε(ri − rj) − (k + 1)
rk−2
i

rk+1
j

ε(rj − ri)]

⋅ (C(k)j (C(k)i li)(k))
(1)

⋅ (si + 2sj)

= α2

4
∑
k,i≠j

(−1)k ⋅ [k(k + 1)
2k + 1

]
1
2

[(k + 1)−1
rkj
rk+3
i

ε(ri − rj) − k−1 r
k−2
i

rk+1
j

ε(rj − ri)]

(li(li + 1) − k(k + 1) − l′i(l′i + 1)) ⋅ ⟨li ∥ C(k) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩

⋅ [(w(1k)i w
(0k)
j )

(11)0
+ 2 (w(0k)i w

(1k
j )

(11)0
] (5.96c)

For the ab initio interpretation of one- and two-body magnetic parameters, it is
frequently helpful to use explicit formulae for the mutual spin-orbit and spin-spin
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interactions. The occurring Nk and W k integrals, with Mk(ab) = Nk(ab;ab), are
defined in accordance with [Godefroid, 1982], equations (3) and (5), respectively:

Nk(ab; cd) = 1
4α

2 ∫
∞

0
∫

∞

0
dr1dr2 a(1)b(2)

rk2
rk+3

1

ε(r1 − r2) c(1)d(2)

W k(ab; cd) = 1
4α

2 ∫
∞

0
∫

∞

0
dr1dr2 a(1)b(2)

rk<
rk+3
>

r2
∂

∂r1

c(1)d(2) (5.97)

The below further elaboration in terms of second quantization by equation (5.74)
is restricted to single configurations only.
For the V1 and V3 exchange contributions in ll′, (−1)P = −1 and E = 1:

G(11)0 = S(ab; ba) [{(a†b)(1k)(b†a)(0k)}(11)0 + 2{(a†b)(0k)(b†a)(1k)}(11)0]

−S(ba;ab) [{(a†b)(0k)(b†a)(1k)}(11)0 + 2{(a†b)(1k)(b†a)(0k)}(11)0] (5.98)

V1 = 2W k−1(ab; ba) ⋅ ⟨l ∥ C(k) ∥ l′⟩2

√
k(k + 1)
2k + 1

⋅ [{(a†b)(1k)(b†a)(0k)}(11)0 + 2{(a†b)(0k)(b†a)(1k)}(11)0]

− 2W k−1(ba;ab) ⋅ ⟨l′ ∥ C(k) ∥ l⟩2

√
k(k + 1)
2k + 1

⋅ [{(a†b)(0k)(b†a)(1k)}(11)0 + 2{(a†b)(1k)(b†a)(0k)}(11)0] (5.99)

Using equation (5.39), it is now straightforward to work out the reduced matrix
element:

⟨ll′(SL) ∥ V1 ∥ ll′(S′L′)⟩ = 3
√

2∑
k

⟨l ∥ C(k) ∥ l′⟩2 ⋅ [S,L,S′, L′]
1
2 ⋅ (−1)l+l′+L′ ⋅ [k(k + 1)(2k + 1)]

1
2

⋅{S S′ 1
1
2

1
2

1
2

} ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k
l′ l k
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [W k−1(ab; ba) (1 + 2(−1)S+S′) −W k−1(ba;ab) ((−1)S+S′ + 2)]

(5.100)

V1 and V3 can be taken together after cancellation of non-Hermitian terms, using
Kk−1(ab; ba) = kNk(ab; ba) − (k + 1)Nk−2(ba;ab) =W k−1(ab; ba) +W k−1(ba;ab)
as abbreviation:

⟨ll′(SL) ∥ V1 + V3 ∥ ll′(S′L′)⟩ = −
36√

2
⋅ δ(S,1) ⋅ δ(S′,1) ⋅∑

k

[k(k + 1)(2k + 1)]
1
2 ⟨l ∥ C(k) ∥ l′⟩2

⋅(−1)l+l′+L′ ⋅ [L,L′]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k
l′ l k
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [W k−1(ab; ba) + l(l + 1) − l′(l′ + 1) − k(k + 1)

2k(k + 1)
Kk−1(ab; ba)]

(5.101)
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For V2, (−1)P = 1 so there is both a direct and an exchange contribution:

V2,DIR =D ⋅Nk−1(ab;ab) ⋅
⎛
⎝
[k(2l + k + 1)(2l − k + 1)]

1
2 ⟨l ∥ C(k−1) ∥ l⟩ ⟨l′ ∥ C(k−1) ∥ l′⟩

⋅ [{(a†a)(1k)(b†b)(0k−1)}(11)0 + 2{(a†a)(0k)(b†b)(1k−1)}(11)0]

+ [(k + 1)(2l′ + k + 2)(2l′ − k)]
1
2 ⟨l ∥ C(k+1) ∥ l⟩ ⟨l′ ∥ C(k+1) ∥ l′⟩

⋅[{(a†a)(0k+1)(b†b)(1k)}(11)0 + 2{(a†a)(1k+1)(b†b)(0k)}(11)0]
⎞
⎠

+D ⋅Nk−1(ba; ba) ⋅
⎛
⎝
[k(2l′ + k + 1)(2l′ − k + 1)]

1
2 ⟨l ∥ C(k−1) ∥ l⟩ ⟨l′ ∥ C(k−1) ∥ l′⟩

⋅ [{(a†a)(0k−1)(b†b)(1k)}(11)0 + 2{(a†a)(1k−1)(b†b)(0k)}(11)0]

+ [(k + 1)(2l + k + 2)(2l − k)]
1
2 ⟨l ∥ C(k+1) ∥ l⟩ ⟨l′ ∥ C(k+1) ∥ l′⟩

⋅[{(a†a)(1k)(b†b)(0k+1)}(11)0 + 2{(a†a)(0k)(b†b)(1k+1)}(11)0]
⎞
⎠

(5.102)

Again using equation (5.39), it follows for l ≠ l′:

⟨ll′(SL) ∥ V2,DIR ∥ ll′(S′L′)⟩ =
3√
2
⋅ [S,L,S′, L′]

1
2 ⋅ {S S′ 1

1
2

1
2

1
2

}

⋅
⎡⎢⎢⎢⎢⎣
Nk−1(ab;ab) ⋅ ([k(2l + k + 1)(2l − k + 1)]

1
2 ⟨l ∥ C(k−1) ∥ l⟩ ⟨l′ ∥ C(k−1) ∥ l′⟩

⋅[k, k − 1]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k
l′ l′ k − 1
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S′ + 2 ⋅ (−1)S]

+ [(k + 1)(2l′ + k + 2)(2l′ − k)]
1
2 ⟨l ∥ C(k+1) ∥ l⟩ ⟨l′ ∥ C(k+1) ∥ l′⟩

⋅ [k, k + 1]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k + 1
l′ l′ k
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S + 2 ⋅ (−1)S′]

⎞
⎟
⎠

+Nk−1(ba; ba) ⋅ ([k(2l′ + k + 1)(2l′ − k + 1)]
1
2 ⟨l ∥ C(k−1) ∥ l⟩ ⟨l′ ∥ C(k−1) ∥ l′⟩

⋅[k, k − 1]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k − 1
l′ l′ k
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S + 2 ⋅ (−1)S′]

+ [(k + 1)(2l + k + 2)(2l − k)]
1
2 ⟨l ∥ C(k+1) ∥ l⟩ ⟨l′ ∥ C(k+1) ∥ l′⟩

⋅[k, k + 1]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k
l′ l′ k + 1
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S′ + 2 ⋅ (−1)S]

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎦
(5.103)
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Within a shell of equivalent electrons there is no exchange and the second quantized
form of MSO is reduced to the direct part of V2 only:

HMSO = ∑
k

([k(2l + k + 1)(2l − k + 1)]
1
2 ⋅ ⟨l ∥ C(k−1) ∥ l⟩2

×[{(a†a)(1k) (a†a)(0k−1)}
(11)0

+ 2{(a†a)(0k) (a†a)(1k−1)}
(11)0

]

+[(k + 1)(2l + k + 2)(2l − k)]
1
2 ⋅ ⟨l ∥ C(k+1) ∥ l⟩2

×[{(a†a)(1k) (a†a)(0k+1)}
(11)0

+ 2{(a†a)(0k) (a†a)(1k+1)}
(11)0

])Nk−1(aa;aa)

(5.104)

With equation (5.39), the corresponding reduced matrix element follows directly:

⟨l2(SL) ∥HMSO ∥ l2(S′L′)⟩ = ∑
k

3
√

2 ⋅ (−1)S ⋅ [S,L,S′, L′]
1
2 ⋅ {S S′ 1

1
2

1
2

1
2

} ⋅Nk−1(aa;aa)

⎛
⎜
⎝
[k(2l + k + 1)(2l − k + 1)(2k − 1)(2k + 1)]

1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k − 1
l l k
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(1 + 2(−1)L+L′) ⟨l ∥ C(k−1) ∥ l⟩2

+[(k + 1)(2l + k + 2)(2l − k)(2k + 1)(2k + 3)]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k
l l k + 1
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
((−1)L+L′ + 2) ⟨l ∥ C(k+1) ∥ l⟩2

⎞
⎟
⎠

(5.105)

For the V2 exchange contribution in ll′, (−1)P = 1 and E = 1:

G(11)0 = S(ab; ba) [{(a†b)(1k)(b†a)(0k−1)}(11)0 + 2{(a†b)(0k)(b†a)(1k−1)}(11)0]

+S(ba;ab) [{(a†b)(1k)(b†a)(0k+1)}(11)0 + 2{(a†b)(0k)(b†a)(1k+1)}(11)0] (5.106)

⟨ll′(SL) ∥ V2,EXCH ∥ ll′(S′L′)⟩ =
3√
2
⋅ [S,L,S′, L′]

1
2 ⋅ {S S′ 1

1
2

1
2

1
2

} ⋅ (−1)l+l′−(S′+L′)

⋅
⎡⎢⎢⎢⎢⎣
Nk−1(ab; ba) ⋅

√
(l + l′ + k + 1)(l + l′ − k + 1)(k2 − (l − l′)2)

k
⋅ ⟨l ∥ C(k−1) ∥ l′⟩2

⋅[k, k − 1]
1
2 ⋅

⎛
⎜
⎝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k
l′ l k − 1
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S′ + 2 ⋅ (−1)S] +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k − 1
l′ l k
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S + 2 ⋅ (−1)S′]

⎞
⎟
⎠

+Nk−1(ba;ab) ⋅
√

(l + l′ + k + 2)(l + l′ − k)((k + 1)2 − (l − l′)2)
k + 1

⋅ ⟨l ∥ C(k+1) ∥ l′⟩2

⋅[k, k + 1]
1
2 ⋅

⎛
⎜
⎝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k
l′ l k + 1
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S′ + 2 ⋅ (−1)S] +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k + 1
l′ l k
L L′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [(−1)S + 2 ⋅ (−1)S′]

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎦
(5.107)
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The above may be exemplified by the full MSO for the case ll′ = ls:

⟨ls(SL) ∥HMSO ∥ ls(S′L′)⟩ = −36

√
l(l + 1)
4l + 2

⋅ δ(S,1) ⋅ δ(S′,1) ⋅W l−1(ls; sl)

+ 3
√

2 ⋅ [l(l + 1)(2l + 1)]
1
2 ⋅ [S,S′]

1
2{S S′ 1

1
2

1
2

1
2

} ⋅ [(−1)S′ + 2(−1)S] ⋅N0(ls; ls)(5.108)

5.7 Spin-spin

Hss = α2

2
∑
i≠j

1

r3
ij

(si ⋅ sj − 3
(si ⋅ rij)(sj ⋅ rij)

r2
ij

)

= −α2

2
√

5
∑
k,i≠j

(−1)k
rkj
rk+3
i

[(2k + 5)!
(2k)!

]
1
2

⋅ ε(ri − rj) ⋅ (C(k+2)
i C

(k)
j )

(2)
⋅ (sisj)(2)

= −α2

2
∑
k,i≠j

(−1)k
rkj
rk+3
i

[(k + 1)(k + 2)(2k + 3)]
1
2 ⋅ ε(ri − rj)

⋅ ⟨li ∥ C(k+2) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩ (w
(1k+2)
i w

(1k)
j )

(22)0

(5.109)

As an illustration of equation (5.74), we give the full expression for the spin-spin
interaction below (replacing k → k − 1 for symmetry purposes):

Hss = 2∑
k

(−1)k (k(k + 1)(2k + 1))
1
2

× (DNk−1(ab; cd) ⟨la ∥ C(k+1) ∥ lc⟩ ⟨lb ∥ C(k−1) ∥ ld⟩ {(a†c)(1k+1) (b†d)(1k−1)}
(22)0

+ ENk−1(ab;dc) ⟨la ∥ C(k+1) ∥ ld⟩ ⟨lb ∥ C(k−1) ∥ lc⟩ {(a†d)(1k+1) (b†c)(1k−1)}
(22)0

+ DNk−1(ba;dc) ⟨la ∥ C(k−1) ∥ lc⟩ ⟨lb ∥ C(k+1) ∥ ld⟩ {(a†c)(1k−1) (b†d)(1k+1)}
(22)0

+ ENk−1(ba; cd) ⟨la ∥ C(k−1) ∥ ld⟩ ⟨lb ∥ C(k+1) ∥ lc⟩ {(a†d)(1k−1) (b†c)(1k+1)}
(22)0

)

(5.110)
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With equation (5.39), the reduced matrix element for ll′ then becomes:

⟨ll′(SL) ∥Hss ∥ ll′(S′L′)⟩ = 10 ⋅ δ(S,1) ⋅ δ(S′,1)[L,L′]
1
2 ∑

k

(−1)k [k(k + 1)(2k − 1)(2k + 1)(2k + 3)]
1
2

⋅
⎡⎢⎢⎢⎢⎣
Nk−1(ab;ab) ⋅ ⟨l ∥ C(k+1) ∥ l⟩ ⟨l′ ∥ C(k−1) ∥ l′⟩

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k + 1
l′ l′ k − 1
L L′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+Nk−1(ab; ba) ⋅ (−1)l+l′−(S′+L′) ⋅ ⟨l ∥ C(k+1) ∥ l′⟩ ⟨l′ ∥ C(k−1) ∥ l⟩
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k + 1
l′ l k − 1
L L′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+Nk−1(ba; ba) ⋅ ⟨l ∥ C(k−1) ∥ l⟩ ⟨l′ ∥ C(k+1) ∥ l′⟩
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k − 1
l′ l′ k + 1
L L′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+Nk−1(ba;ab) ⋅ (−1)l+l′−(S′+L′) ⋅ ⟨l ∥ C(k−1) ∥ l′⟩ ⟨l′ ∥ C(k+1) ∥ l⟩
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l′ k − 1
l′ l k + 1
L L′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎦
(5.111)

A simple example for illustration:

⟨ls(SL) ∥Hss ∥ ls(S′L′)⟩ = 10
√

6

¿
ÁÁÀ l(l + 1)(2l + 1)

(2l − 1)(2l + 3)
⋅ δ(S,1) ⋅ δ(S′,1) ⋅N0(ls; ls)

(5.112)

For a shell of equivalent electrons the interaction Hss simplifies to:

Hss = 2 ∑
k=0,2(l−1)

(−1)k+1 ⋅ [(k + 1)(k + 2)(2k + 3)]
1
2 ⋅Nk(aa;aa)

× ⟨l ∥ C(k) ∥ l⟩ ⟨l ∥ C(k+2) ∥ l⟩ {(a†a)(1k) (a†a)(1k+2)}
(22)0

(5.113)

Again using equation (5.39), the corresponding reduced matrix element becomes:

⟨l2(SL) ∥Hss ∥ l2(S′L′)⟩ = 60 ⋅ ∑
k=0,2(l−1)

[S,L,S′, L′]
1
2 ⟨l ∥ C(k) ∥ l⟩ ⟨l ∥ C(k+2) ∥ l⟩ ⋅Nk(aa;aa)

(−1)k+1 ⋅ [(k + 1)(k + 2)(2k + 1)(2k + 3)(2k + 5)]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

1
2

1
2 1

S S′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k
l l k + 2
L L′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.114)

The fact that there are no closed-shell effects of the spin-spin interaction becomes
obvious from application of equations (5.13): (a†b)(22) cannot exist as two electrons
cannot couple to spin 2.

5.8 Spin-spin-contact and two-body Darwin

In addition to the electrostatic energy, only the spin-spin-contact, the two-body
Darwin and the orbit-orbit interactions carry ranks (κk) = (00) in the Breit-Pauli
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Hamiltonian and may therefore contribute to the average energy of the system. The
dependence on the number of electrons and the partial cancellation of the first and
second term have not always been taken into account properly.

With the k−independent integral: A(ab; cd) = 1
4α

2∫
∞

0
dr r−2 Pa(r)Pb(r)Pc(r)Pd(r)

(5.115)

the spin-spin-contact and the two-body Darwin terms are written as follows:

Hssc = −2α2

3
∑
i<j

(si ⋅ sj) 4π δ(ri − rj) = −
2α2

3
∑
i<j,k

(si ⋅ sj)
δ(rij)
r2
i

⋅ [k] ⋅ (C(k)i ⋅C
(k)
j )

= 1
4α

2 ⋅ r−2 ⋅ 2√
3
∑
i≠j,k

δ(rij)(−1)k ⋅ [k]
1
2 ⋅ ⟨li ∥ C(k) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩ (w

(1k)
i w

(1k)
j )

(00)0

= 4√
3
A(ab; cd)∑

k

(−1)k [k]
1
2 ⋅D ⟨la ∥ C(k) ∥ lc⟩ ⟨lb ∥ C(k) ∥ ld⟩ {(a†c)1k (b†d)1k}

(00)0

+ 4√
3
A(ab;dc)∑

k′
(−1)k′ [k′]

1
2 ⋅E ⟨la ∥ C(k

′) ∥ ld⟩ ⟨lb ∥ C(k
′) ∥ lc⟩ {(a†d)1k′ (b†c)1k′}

(00)0

(5.116a)

HD2 = −α
2

4
∑
i<j

4π δ(ri − rj) = −
α2

4
∑
i<j,k

δ(rij)
r2
i

⋅ [k] ⋅ (C(k)i ⋅C
(k)
j )

= 1
4α

2 ⋅ r−2 ∑
i≠j,k

δ(rij)(−1)k+1 ⋅ [k]
1
2 ⋅ ⟨li ∥ C(k) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩ (w

(0k)
i w

(0k)
j )

(00)0

= 2A(ab; cd)∑
k

(−1)k+1 [k]
1
2 ⋅D ⟨la ∥ C(k) ∥ lc⟩ ⟨lb ∥ C(k) ∥ ld⟩ {(a†c)0k (b†d)0k}

(00)0

+ 2A(ab;dc)∑
k′

(−1)k′+1 [k′]
1
2 ⋅E ⟨la ∥ C(k

′) ∥ ld⟩ ⟨lb ∥ C(k
′) ∥ lc⟩ {(a†d)0k′ (b†c)0k′}

(00)0

(5.116b)

Equation (6.38) from [Brink and Satchler, 1968] is used in the above to retrieve
the tensor operator form:

4π δ(ri − rj) =
δ(ri − rj)

r2
i

∑
k

[k] C(k)i ⋅C
(k)
j (compare with: 4π δ(r) = δ(r)

r2
) (5.117)

For the second line of both equations, straight recoupling gives e.g.:

[k] (si ⋅ sj) (C(k)i ⋅C
(k)
j ) = −1

2

√
3(−1)k [k]

1
2 ⟨li ∥ C(k) ∥ l′i⟩ ⟨lj ∥ C(k) ∥ l′j⟩ (w

(1k)
i w

(1k)
j )

(00)0

In order to be able to project these operators onto an orthogonal basis, and thus
account for their effects, one has to find their matrix elements in the pertinent two-
electron configurations, l2 and ll′. Radial integrals are defined in accordance with
[Dankwort, 1977]; for relations between them, we refer to this paper. Although
the spin-spin-contact term Hssc and the two-body Darwin term HD2 differ both in
tensorial character and in origin (Hssc derives from the transverse Breit correction
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and HD2 from the relativistic part of the Coulomb interaction), their matrix elements
are quite similar.
Comparison with equation (3.58a) learns that the angular matrices of both Hssc and
HD2 are proportional to a sum over angular Coulomb matrix elements.
Denoting the spherical tensor expansion of the Coulomb interaction as ∑k ck, its
sum can be carried out by the following lemma:

∑
k

[k] ⟨lalb(SL) ∣ck∣ lcld(SL)⟩ =W (1 + (−1)SE)(−1)la+lc ⟨la ∥ C(L) ∥ lb⟩ ⟨lc ∥ C(L) ∥ ld⟩

(5.118)

where W = ((1 + δab)(1 + δcd))1/2(1 − 1
2δabδcd) gives the weighting factor and

E = (1 − δab)(1 − δcd) vanishes if bra or ket contain equivalent electrons.
Adding direct and exchange terms, one obtains for Hssc and HD2:

⟨ll′(SL)∣Hssc∣ll′(SL)⟩ = (2 − 4
3S(S + 1)) (1 + (−1)SE) ⟨l ∥ C(L) ∥ l′⟩2

A(ab;ab)(5.119a)

⟨ll′(SL)∣HD2∣ll′(SL)⟩ = −(1 + (−1)SE) ⟨l ∥ C(L) ∥ l′⟩2
A(ab;ab) (5.119b)

The matrix elements are only non-zero for S = 0, so that effectively Hssc = −2HD2,
a result that is generally valid. Thus, one may express the combined action of the
spin-spin-contact term and the two-body Darwin term for both a = b and a ≠ b as:

⟨ll′(SL)∣Hssc +HD2∣ll′(SL)⟩ = (1 + (−1)SE) ⟨l ∥ C(L) ∥ l′⟩2
A(ab;ab) (5.120)

To obtain the average energy contribution from equation (5.120), we use the

relation: ∑L [L] ⟨l ∥ C(L) ∥ l′⟩2 = (2l + 1)(2l′ + 1) (orthonormality of 3j-symbols) to
derive the simple expression:

Eav(ssc +D2) = ∑
a

(N
2
) 2l + 1

4l + 1
A(aa;aa) +∑

a<b

1
2NN

′ ⋅A(ab;ab) (5.121)

whereN(N ′) are the occupation numbers of the shell a(b). [Hartmann and Clementi, 1964]
treated only closed shells; they did not include intershell cases and their expression
(11) does not contain HD2.

5.9 Orbit-orbit interaction

The orbit-orbit interaction is usually neglected, but is interesting in its own right by
its resemblance to the relativistic Breit interaction: it requires similar techniques to
translate these expressions to tensor operators.

Hoo = −α
2

2
∑
i<j

(
pi ⋅ pj
rij

+
(rij ⋅ pi)(rij ⋅ pj)

rij
)

= −α
2

2
∑
i<j

(− 4√
3
(p(1)i p

(1)
j )

(0)
r−1
ij +

√
5{(r(1)ij r

(1)
ij )

(2)
r−3
ij (p(1)i p

(1)
j )

(2)
}
(0)

)(5.122)
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Here, equation (3.16) is used in the second line.

(r(1)ij r
(1)
ij )

(2)
⋅ r−3
ij = ∑

k

(−1)k rk<
rk+1
>

⋅ [k]
1
2 ⋅

⎡⎢⎢⎢⎢⎣
( 8k(k + 1)

15(2k − 1)(2k + 3)
)

1
2

(C(k)< C
(k)
> )

(2)

−(k(k − 1)(2k − 3)
5(2k − 1)

)
1
2

(C(k−2)
< C

(k)
> )

(2)
+ ((k + 1)(k + 2)(2k + 5)

5(2k + 3)
)

1
2

(C(k)< C
(k+2)
> )

(2)⎤⎥⎥⎥⎥⎦
(5.123)

The first three of the four separate terms of the intricate orbit-orbit interaction
cancel for direct matrix elements, leaving the following relatively simple expression
valid for both ll′ and l2:

⟨ll′(SL)∣Hoo,DIR∣ll′(SL)⟩ = ∑
k>0

−2k

k + 1
(−1)L+l+l′ {l

′ l L
l l′ k

}

× [(2l + k + 1)(2l − k + 1)(2l′ + k + 1)(2l′ − k + 1)]
1
2

×⟨l ∥ C(k−1) ∥ l⟩ ⟨l′ ∥ C(k−1) ∥ l′⟩ ⋅ 1
2 ⋅ (N

k−1(ab;ab) +Nk−1(ba; ba)) . (5.124)

There is therefore no contribution to the average energy except when a = b; in
the latter case one can find the expression for equivalent electrons by replacing

(−1)L{l l L
l l k

} by −N(N − 1)/(4l + 2)(4l + 1):

Eav(oo) = ∑
a

(N
2
) 1

(2l + 1)(4l + 1)
2k

k + 1
(2l + k + 1)(2l − k + 1)

× ⟨l ∥ C(k−1) ∥ l⟩2 ⋅Nk−1(aa;aa) (5.125)

The exchange, however, involves all four terms; again, use can be made of the
properties of the radial integrals to establish some cancellation between them.
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The final result can be written:

⟨ll′(SL)∣Hoo,EXCH∣ll′(SL)⟩

= (−1)S∑
k>0

[((k + 1)(k + 2){l l′ L
l l′ k + 1

} ⟨l ∥ C(k+1) ∥ l′⟩2

−k(k − 1){l l′ L
l l′ k − 1

} ⟨l ∥ C(k−1) ∥ l′⟩2)

× (2T k(ab; ba) + (k − 1)(k + 2)
2k + 1

Nk−1(ab; ba))

+ 2 (l(l + 1) − l′(l′ + 1)) ({l l′ L
l l′ k + 1

} ⟨l ∥ C(k+1) ∥ l′⟩2

−{l l′ L
l l′ k − 1

} ⟨l ∥ C(k−1) ∥ l′⟩2)

× (Uk(ab; ba) + (k − 1)(k + 2)
2k + 1

Nk−1(ab; ba))

+ (l(l + 1) − l′(l′ + 1))2 (k − 1

k + 1
{l l′ L
l l′ k + 1

} ⟨l ∥ C(k+1) ∥ l′⟩2

−k + 2

k
{l l′ L
l l′ k − 1

} ⟨l ∥ C(k−1) ∥ l′⟩2) N
k−1(ab; ba)
2k + 1

− 2

k(k + 1)
(l + l′ + k + 1)(l + l′ − k + 1) (k2 − (l − l′)2)

×{l l′ L
l l′ k

} ⟨l ∥ C(k−1) ∥ l′⟩2
Nk−1(ab; ba)] . (5.126)

Note that much of the interaction would vanish if the radial integrals were
independent of k.
The contribution to the average energy can be found straightforwardly by replacing

all factors (−1)S {l l′ L
l l′ k

} with −2NN ′/(4l+ 2)(4l′ + 2), yielding the expression of

[Dankwort, 1977], which is therefore not repeated.

5.10 Quasispin and conjugation

Originally, the quasispin formalism was introduced in 1958 to study supercon-
ductivity. Next, the idea of a quasispin operator Q was fruitfully adapted and
elaborated for use in nuclear and atomic physics [Flowers and Szpikowski, 1964a,
Flowers and Szpikowski, 1964b, Judd, 1967]:

Q+ = 1
2 ⋅ [

1
2 , l]

1
2 (a†a†)(00)

(5.127a)

Q− = −1
2 ⋅ [

1
2 , l]

1
2 (aa)(00)

(5.127b)

Q0 = −1
4 ⋅ [

1
2 , l]

1
2 [(a†a)(00) + (aa†)(00)] (5.127c)
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With ξ = (nlmsml), ξ∗ = (nl −ms −ml), x = (s + l −ms −ml) and the relations:

(a†a†)(00) = (−1)x[1
2 , l]

−1
2 ∑

ξ

a†
ξa

†
ξ∗ (5.128a)

(aa)(00) = (−1)x[1
2 , l]

−1
2 ∑

ξ

aξaξ∗ (5.128b)

(a†a)(00) = −[1
2 , l]

−1
2 ∑

ξ

a†
ξaξ (5.128c)

(aa†)(00) = +[1
2 , l]

−1
2 ∑

ξ

aξa
†
ξ (5.128d)

from which:

Q+ = (−1)x ⋅ 1
2 ∑

ξ

a†
ξa

†
ξ∗ (5.129a)

Q− = (−1)x+1 ⋅ 1
2 ∑

ξ

aξaξ∗ (5.129b)

Q0 = 1
4 ∑

ξ

(a†
ξaξ∗ − aξa

†
ξ) (5.129c)

it follows from table (5.1) that the quasispin operators obey commutation relations
identical to those for S+, S− and S0:

[Q+,Q−] = 2Q0 (5.130a)

[Q0,Q−] = Q+ (5.130b)

[Q−,Q0] = Q− (5.130c)

The operation of the (likewise anti-linear) time reversal operator T , implicitly de-
fined by T ∣ξ⟩ = (−1)s+l−ms−ml ∣ξ∗⟩ → TLT −1 = −L and TST −1 = −S now has the
analogy:

C Q+ C
−1 = −Q− (5.131a)

C Q0 C
−1 = −Q0 (5.131b)

C Q− C
−1 = −Q+ (5.131c)

Eigenvalues MQ of Q0 are given by:

MQ = −1
2(2l + 1 −N) (5.132)

with the result that the conjugation N → 4l + 2 −N implies MQ → −MQ, compare:

C ∣ψ QMQ⟩ = (−1)Q−MQ ∣ψ Q −MQ⟩ to:

T ∣ψ SLMSML⟩ = (−1)S+L−MS−ML ∣ψ SL −MS −ML⟩

It follows [Judd, 1967] that time-reversal is to spin what conjugation is to quasispin.

For S L = 00, states of the same seniority are connected by the operator Q+ in-
troduced in the above. Such a string of states begins in nlν and ends in nl4l+2−ν .
Therefore, the maximum MQ = Q is given by: Q = 1

2(2l+1−ν). A quasispin multiplet
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extends across the l shell from this maximum MQ, of 1
2(2l + 1− ν) to a minimum of

−1
2(2l + 1 − ν). At each step two electrons are added or subtracted.

As put forward by [Lawson and Macfarlane, 1965, Judd, 1967]:
quasispin is merely another way of regarding seniority: the specification (QMQ)
carries the same information as (νN).
There is, however, a very useful extension: operators can be classified according to
their quasispin rank K. The quasispin rank of an operator is useful in determining
the behavior of matrix elements under conjugation, that is, the interchange of elec-
tron states with hole states. We can also regard conjugation as a kind of reflection
in the half-filled shell, since it corresponds to MQ → −MQ.
Conjugation of two-particle operators follows:

⟨lN ψ ∣G∣ lN ψ′⟩ = ⟨l4l+2−N ψ ∣G∣ l4l+2−N ψ′⟩ − (2l + 1 −N)(4l + 1) ⟨G⟩l2 (5.133)

Here, the last factor on the RHS denotes the average energy of the operator G in

the l2 configuration; [Judd, 1967] adds the quasispin phase factor (−1)
1
2 (ν

′−ν) to the
first term on the RHS to deal with particles rather than holes in the second half of
a shell.
Though less straightforward, this concept may be extended to mixed shell
configurations as well. If the two l electrons of l2l′ are replaced by two l holes, the
configuration l4ll′ is obtained.
All two- and three-particle operators with even quasispin ranks Kl possess matrix
elements in l4ll′ that are unchanged from the corresponding ones in l2l′ if the states
of l2 appearing in the bra and ket are both 1S or if neither of them is 1S. If one 1S
term appears, the matrix element changes sign. If Kl is odd, however, the opposite
is true: namely, the matrix elements reverse their signs if the terms of l2 appearing
in the bra and ket are both 1S or neither 1S; while if one 1S term appears, the sign
of the matrix element is preserved. By group-theoretical inspection, the quasispin
ranks Kp and Kd can be assigned to all the two- and three-particle operators.
However, there are several operators that correspond to mixtures of both even and
odd quasispin ranks. Because of this, their matrix elements do not possess the simple
property of either preserving or reversing their signs under all kinds of conjugation.

5.11 Triple tensors

[Lawson and Macfarlane, 1965] found that the operators a†
ξ and ãξ commute with

Q as a rank 1
2 tensor with mq = 1

2 and −1
2 , respectively. This allows one to form a

triple tensor a(qsl) for q = s = 1
2 with [q, s, l] components, in which both a† and a are

subsumed. Also, with λ = (mqmsml), µ = (m′
qm

′
sm

′
l) and x = q+s+l+mq+ms+ml, all

anti-commutation relations may now be given in one single equation ([Judd, 1967],
equation (39)):

a
(qsl)
λ a

(qsl)
µ + a(qsl)µ a

(qsl)
λ = (−1)x+1 δ(mq,−m′

q)δ(ms,−m′
s)δ(ml,−m′

l) (5.134)
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with the properties:

C a
(qsl)
uvw C−1 = (−1)q−u a(qsl)−uvw

T a
(qsl)
uvw T −1 = (−1)s+l−v−w a(qsl)u−v−w

CT a
(qsl)
uvw T −1C−1= (−1)q+s+l−u−v−w a(qsl)−u−v−w (5.135)

The coupling of two triple tensors a(qsl) gives the compound tensor ([Judd, 1967]):

X(Kκk) = (a(qsl)a(qsl))(Kκk) ↔

X
(Kκk)
ρπq = ∑

ξ,η

(qmqξ qmqη ∣Kρ)(smsξ smsη ∣κπ)(lmlξ lmlη ∣kq) a(qsl)mqmsml,ξ
a
(qsl)
mqmsml,η

(5.136)

Naturally:

C X
(Kκk)
ρπq C−1 = (−1)K−ρ X

(Kκk)
−ρπq (5.137)

Interesting special cases are:

X(100) = −2[l]−
1
2 Q

X(010) = −2[l]−
1
2 S =

√
2 (a†a)(10)

X(001) = −3
1
2 (l(l + 1)(2l + 1))−

1
2 L =

√
2 (a†a)(01) (5.138)

The above equalities may readily be found from equation (5.136) and the CG-

coefficients from table (5.2). In particular, X
(100)
ρ00 = −2[l]−

1
2 Qρ as:

X
(100)
100 = −

√
2 (a†a†)(00) and X

(100)
−100 =

√
2 (aa)(00) while:

X
(100)
000 = ∑(1

2 ±
1
2 ,

1
2 ∓

1
2 ∣10) (a±a∓)(00) = 1

2

√
2 [(a†a)(00) + (aa†)(00)] = −2[l]−

1
2 Q0.

Table 5.2: Relevant CG-coefficients

CG-coefficient Value

(l m l −m∣00) (1)l−m[l]−
1
2

(1
2−

1
2

1
2

1
2 ∣00) −(2)−

1
2

(1
2

1
2

1
2−

1
2 ∣00) (2)−

1
2

(1
2−

1
2

1
2

1
2 ∣10) (2)−

1
2

(1
2

1
2

1
2−

1
2 ∣10) (2)−

1
2

(1
2

1
2

1
2

1
2 ∣11) 1

(1
2−

1
2

1
2−

1
2 ∣1 −1) 1

Application of equation (5.136) to X
(Kκk)
0πq for the two cases K = 0,1 gives:

K = 0→ 2−
1
2 [(a†a)(κk)πq − (aa†)(κk)πq ] K = 1→ 2−

1
2 [(a†a)(κk)πq + (aa†)(κk)πq ] , therefore:
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X
(Kκk)
0πq = 2−

1
2 [(a†a)(κk)πq − (−1)K ⋅ (aa†)(κk)πq ]

Subsequent use of equation (5.8a) then yields finally:

X
(Kκk)
0πq = 2−

1
2 ⋅ {1 − (−1)K+κ+k} (a†a)(κk)πq − (−1)K[l]

1
2 ⋅ δ(κ,0) ⋅ δ(k,0) (5.139)

Non-trivial operators exist only for odd K + κ + k, as for even K + κ + k, the above
simplifies to a constant [Judd, 1967]:

X(Kκk) = −[l]
1
2 ⋅ δ(K,0) ⋅ δ(κ,0) ⋅ δ(k,0) (5.140)

Manipulation with CC−1 and C−1C leads to [Judd, 1967]:

⟨ψ QMQ∣X(Kκk)0πq ∣ψ′ Q′MQ⟩ = (−1)x ⋅ ⟨ψ Q −MQ∣X(Kκk)0πq ∣ψ′ Q′ −MQ⟩ (5.141)

with x = Q −MQ +K +Q′ −MQ.
[Judd, 1967] also introduced a complementarity operator R satisfying R†R = 1 that
interchanges spin and quasispin spaces:

R a
(qsl)
mqmsmlR

−1 = a(sql)msmqml and R X
(Kκk)
ρπq R−1 =X(κKk)πρq (5.142)

The Wigner-Eckart theorem (3.39) in quasispin space may be put to use to find the
explicit N−dependence of matrix elements contained in MQ = −1

2(2l + 1 −N):

⟨ψ QMQ∣X(Kκk)0πq ∣ψ′ Q′MQ⟩ = (−1)Q−MQ ⋅ ( Q K Q′

−MQ 0 MQ
) ⋅ ⟨ψ QSL∣∣∣X(Kκk)∣∣∣ψ′Q′S′L′⟩

⋅(−1)S−Ms ⋅ (−1)L−ML ⋅ ( S κ S′

−MS π MS
) ⋅ ( L k L′

−ML q ML
) (5.143)

5.12 Coefficients of fractional parentage

To uncouple an electron from a shell of equivalent electrons while preserving the
required Pauli restrictions, additional factors called coefficients of fractional parent-
age are needed e.g. in the CG coefficients (4.9). Assuming ψ = lN(SL) and
ψ = lN−1(S L), coefficients of fractional parentage are (implicitly) defined by:

∣lN(SL)⟩ = ∑
ψ

∣lN−1(S L), l (SL)⟩ ⋅ (ψ ∣}ψ) (5.144a)

⟨lN(SL)∣ = ∑
ψ

(ψ {∣ψ) ⋅ ⟨lN−1(S L), l (SL)∣ (5.144b)

Combining the two above equations yields the cfp completeness condition when
summed over parents:

∑
ψ

(ψ {∣ψ) (ψ ∣}ψ) = 1 (5.145)

Or, more explicitly:

∑
ψ

(νSL {∣ψ) (ψ ∣}ν′SL) = δ(ν, ν′) (5.146)
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Creation and annihilation operators are closely related to coefficients of fractional
parentage:

⟨ψ ∥ a† ∥ ψ⟩ = (−1)N ⋅
√
N ⋅ [S,L]

1
2 ⋅ (ψ {∣ψ) (5.147a)

From equations (5.23) it follows:

⟨ψ ∥ a† ∥ ψ⟩ = (−1)(S+L)−(S+L)+(
1
2+l) ⋅ ⟨ψ ∥ a ∥ ψ⟩

combining the two above equations gives:

⟨ψ ∥ a ∥ ψ⟩ = (−1)N+S+L−(
1
2+S)−(l+L) ⋅

√
N ⋅ [S,L]

1
2 ⋅ (ψ ∣}ψ) (5.147b)

One way to appreciate (5.145) algebraically, is to start from the matrix element of
the number operator using equation (5.4):

⟨ψ∣(a†a)(00)0∣ψ′⟩ = −N ⋅ δ(ψ,ψ′) ⋅ [1
2 , l]

−1
2 = [S,L]−

1
2 ⟨ψ ∥ (a†a)(00) ∥ ψ′⟩

(5.148)

With equation (5.31) one arrives at:

⟨ψ ∥ (a†a)(00) ∥ ψ′⟩ = −N ⋅ δ(ψ,ψ′) ⋅ [S,L]
1
2 ⋅ [1

2 , l]
−1

2 ∑
S L

(ψ{∣ψ)(ψ∣}ψ′) (5.149)

Inserting the reduced matrix element into the number operator now gives the
required cfp sum rule.

Coefficients of fractional parentage all vanish except for ν = ν ± 1 ([Racah, 1943],
equation (58a)).
With ν = ν±1, one derives the below conjugation relation between cfp’s [Racah, 1943,
Judd, 1967], with z = S + L + S + L − (1

2 + l) +
1
2(ν + ν + 1). Using holes rather than

particles for the second half of a shell, Racah omits the last term in z, i.e. the
quasispin phase.

(lN ψ {∣lN−1ψ) = (−1)z ((4l + 3 −N)[S,L]
N [S,L]

)

1
2

(l4l+2−N ψ ∣} l4l+3−N ψ) (5.150)

It follows immediately:

(l4l+1 2l {∣ l4l SL) = [S,L]
1
2 ⋅ ((2l + 1)(4l + 1))−

1
2 (5.151)
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Combining equations (5.145) and (5.150), a second sum rule for the summation2

over daughters can be derived:

∑
ψ

[S,L] (ψ ∣}ψ) (ψ {∣ψ′) = δ(ψ,ψ′) ⋅ [S,L] ⋅ (4l + 3 −N)
N

(5.152)

The same result may be found by considering ⟨ψ ∥ (aa†)(00) ∥ ψ′⟩ twice:

⟨ψ ∥ (aa†)(00) ∥ ψ′⟩ = N ⋅ [S,L, 1
2 , l]

−1
2 ⋅ δ(ψ,ψ′) ⋅∑

ψ

[S,L](ψ∣}ψ)(ψ{∣ψ′) (5.153)

As: C (aa†)κk C−1 = −(a†a)κk, it also follows after using equation (5.31):

⟨ψ lN−1 ∥ (aa†)(00) ∥ ψ′ lN−1⟩ = − ⟨ψ l4l+3−N ∥ (a†a)(00) ∥ ψ′ l4l+3−N⟩

= (4l + 3 −N) ⋅ [S,L]
1
2 ⋅ [1

2 , l]
−1

2 ⋅ δ(ψ,ψ′) (5.154)

Equating the two above equations now yields the cfp ’sum-over-daughters’ rule again.
A third alternative derivation starts from equation (5.8c):

⟨ψ ∥ (aa†)(00) ∥ ψ′⟩ − ⟨ψ ∥ (a†a)(00) ∥ ψ′⟩ = [1
2 , l]

1
2 ⋅ ⟨ψ ∥ 1 ∥ ψ′⟩ = δ(ψ,ψ′) ⋅ [1

2 , l]
1
2 ⋅ [S,L]

1
2

(5.155)

Setting x = ∑ψ[S,L](ψ∣}ψ)(ψ{∣ψ′) and using equation (5.153) plus:

⟨ψ ∥ (a†a)(00) ∥ ψ′⟩ = −(N − 1) ⋅ [S,L]
1
2 ⋅ [1

2 , l]
−1

2 ⋅ δ(ψ,ψ′) (5.156)

it follows:

x = δ(ψ,ψ′)
([1

2 , l]
1
2 − (N − 1)[1

2 , l]
−1

2) [S,L]
1
2

N[S,L]−
1
2 ⋅ [1

2 , l]
−1

2

= δ(ψ,ψ′) ⋅ [S,L] ⋅ (4l + 3 −N)
N

(5.157)

The below derivation of Redmond’s [Redmond, 1954] cfp recursion formula is due
to [Judd, 1967].

As a first step, the operators of equation (5.8a) are set between the states
⟨ψ∣ and ∣ψ′⟩ . This gives:

⟨ψ ∥ (aa†)κk ∥ ψ′⟩ = (−1)κ+k ⟨ψ ∥ (a†a)κk ∥ ψ′⟩ + δ(κ,0)δ(k,0)δ(ψ,ψ′) [S,L, 1
2 , l]

1
2

(5.158)

2Here it should be remembered that with equivalent electrons, S and L may not be summed
over independently as not all SL combinations are allowed by the Pauli principle.
A simple example to illustrate this point:

∑
S,L

[S,L] = (4l + 2

N
) →∑

d2
[S,L] = 45 but ∑

S

[S] ⋅∑
L

[L] = 100

For l2, the restriction that S + L is even can be implemented by multiplying with the factor
1
2
[1 + (−1)S+L]. This then yields the correct result:

∑
d2

[S,L] = 1
2∑
S

[S] ⋅∑
L

[L] + 1
2∑
S

(−1)S[S] ⋅∑
L

(−1)L[L] = 50 − 5 = 45
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Next, equations (3.48) and (5.147) are used to calculate both reduced matrix ele-
ments:

⟨ψ ∥ (aa†)κk ∥ ψ′⟩ = N ⋅ [κ, k]
1
2

⋅∑
ψ

(−1)x ⋅ [S,L] ⋅ {
1
2

1
2 κ

S′ S S
} ⋅ { l l k

L′ L L
} ⋅ (ψ ∣}ψ) (ψ {∣ψ′) (5.159a)

with x = κ + k + S′ +L′ + 1
2 + l + S +L.

Similarly, application of equation (5.31) gives:

⟨ψ ∥ (a†a)κk ∥ ψ′⟩ = (N − 1) ⋅ [κ, k]
1
2 ⋅ [S,L,S′L′]

1
2

⋅∑
ψ′′

(−1)y ⋅ {
1
2

1
2 κ

S′ S S′′
} ⋅ { l l k

L′ L L′′
} ⋅ (ψ {∣ψ′′) (ψ′′ ∣}ψ′) (5.159b)

with y = S +L + κ + k + S′′ +L′′ − (1
2 + l).

Next, both sides of equation (5.158) are multiplied with:

∑κ,k[κ, k]
1
2 (−1)−x ⋅ {

1
2

1
2 κ

S′ S S
} { l l k

L′ L L
} and the summations are carried out by

application of equations (2.11) and (2.12). This yields:

N∑
ψ

(ψ ∣}ψ) (ψ {∣ψ′) = δ(ψ,ψ′) + (N − 1) ⋅ [S,L,S′, L′]
1
2

⋅∑
ψ′′

(−1)S+L+S′+L′ ⋅ {S
′ 1

2 S

S 1
2 S′′

} ⋅ {L
′ l L

L l L′′
} ⋅ (ψ {∣ψ′′) (ψ′′ ∣}ψ′) (5.160)

The LHS may be written as N ′ (ψ∣}ψ) = N ′ (ψ∣}ν′SL),
where the normalization factor N ′ is determined by:

N ′2 = N2∑
ν

(νSL{∣ψ′)2[Judd, 1967] (5.161a)

or alternatively [Hassitt, 1955] by:

N ′2 = N
⎡⎢⎢⎢⎣
1 + (N − 1)∑

ψ′′
(−1)2S′ ⋅ [S′, L′] ⋅ {S

′ 1
2 S

S′ 1
2 S′′

} ⋅ {L
′ l L

L′ l L′′
} ⋅ (ψ′ {∣ψ′′)2

⎤⎥⎥⎥⎦
(5.161b)

The final result is the known Redmond cfp recursion formula [Redmond, 1954]:

(ψ ∣}ψ) = 1/N ′ [δ(ψ,ψ′) + (N − 1) ⋅ [S,L,S′, L′]
1
2

⋅∑
ψ′′

(−1)S+L+S′+L′ ⋅ {S
′ 1

2 S

S 1
2 S′′

} ⋅ {L
′ l L

L l L′′
} ⋅ (ψ {∣ψ′′) (ψ′′ ∣}ψ′)

⎤⎥⎥⎥⎦
(5.162)

Each choice of godparent ψ′ now involves a different value of N ′.

The (N,ν)−dependence of cfp’s is found by taking them as (proportional to the)
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reduced matrix elements of the triple tensor a(qsl) after application of equation
(5.147a), the Wigner-Eckart theorem and equation (C.5).
For ν = ν − 1:

(lNψ{∣lN−1ψ) = (−1)N ⋅N−
1
2 ⋅ [S,L]−

1
2 ⋅ ⟨ψ ∥ a

(qsl)
1/2 ∥ ψ⟩

= (−1)N ⋅N−
1
2 ⋅ [S,L]−

1
2 ⋅ (−1)2l+1−1

2 (N+ν) ⋅ (
1
2(2l + 1 − ν) 1

2
1
2(2l + 2 − ν)

1
2(2l + 1 −N) 1

2 −1
2(2l + 2 −N)) ⟨ψ∣∣∣a(qsl)∣∣∣ψ⟩

= (−1)4l+2−ν ⋅ [S,L]−
1
2 ⋅ [ (4l + 4 −N − ν)

2N(2l + 3 − ν)(2l + 2 − ν)
]

1
2

⟨ψ∣∣∣a(qsl)∣∣∣ψ⟩ (5.163a)

whereas for ν = ν + 1:

(lNψ{∣lN−1ψ) = (−1)N ⋅N−
1
2 ⋅ [S,L]−

1
2 ⋅ ⟨ψ ∥ a

(qsl)
1/2 ∥ ψ⟩

= (−1)N ⋅N−
1
2 ⋅ [S,L]−

1
2 ⋅ (−1)2l+1−1

2 (N+ν) ⋅ (
1
2(2l + 1 − ν) 1

2
1
2(2l − ν)

1
2(2l + 1 −N) 1

2 −1
2(2l + 2 −N)) ⟨ψ∣∣∣a(qsl)∣∣∣ψ⟩

= (−1)2l+1−ν ⋅ [S,L]−
1
2 ⋅ [ (N − ν)

2N(2l + 2 − ν)(2l + 1 − ν)
]

1
2

⟨ψ∣∣∣a(qsl)∣∣∣ψ⟩ (5.163b)

Here, the completely (fully) reduced matrix elements ⟨ψ∣∣∣a(qsl)∣∣∣ψ⟩ = ⟨l SLν∣∣∣a(qsl)∣∣∣l SLν⟩
or RCFPs are independent of the occupation number N .
They have been tabulated for the p−, d− and f−shell [Gaigalas et al., 1998].
Equation (58b) from [Racah, 1943] is retrieved by using (5.163a) twice with N = ν
in the denominator:

(lNψ{∣lN−1ψ)
(lνψ{∣lν−1ψ)

= [(4l + 4 −N − ν)ν)
2N(2l + 2 − ν)

]
1
2

(5.164)

The example from [Judd, 1967] for ν = ν + 1, found with [Racah, 1943] equation
(58c), employs (5.163b) twice with N = ν + 2 in the denominator:

(lNψ{∣lN−1ψ)
(lν+2ψ{∣lν+1ψ)

= [(N − ν)(ν + 2)
2N

]
1
2

(5.165)

Continuing using second quantization, one may also define coefficients of fractional
grandparentage in terms of creation and annihilation operators:

⟨ψ ∥ (a†a†)S L ∥ ψ′⟩ =
√
N(N − 1) ⋅ [S,L]

1
2 ⋅ (ψ {∣ψ′, l2(S L)) (5.166a)

⟨ψ′ ∥ (aa)S L ∥ ψ⟩ = (−1)(S+L)+1−(S′+L′) ⋅
√
N(N − 1) ⋅ [S,L]

1
2 ⋅ (ψ′, l2(S L) ∣}ψ)

(5.166b)
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The so-called coefficients of (fractional) grandparentage introduced in equations
(5.166) are found from:

(lN(SL) {∣lN−2(S1L1), l2(S2L2)) = ∑
S L

(−1)S1+1+S ⋅ (−1)L1+L ⋅ [S,L,S2, L2]
1
2

⋅{S1
1
2 S

1
2 S S2

} ⋅ {L1 l L
l L L2

} ⋅ (lN(SL) {∣lN−1(S L)) ⋅ (lN−1(S L) {∣lN−2(S1L1))

(5.167)

With S2L2 = 00 =1S, one obtains [Racah, 1943]:

(lN(SLν) {∣lN−2(SLν), l2(1S)) = [(N − ν)(4l + 4 −N − ν)
(4l + 2)(N − 1)N

]
1
2

(5.168)

The idea may be extended to non-equivalent electrons:

(lN−1(S2L2ν2), l′(S1L1)∣}lN(SLν), l′(S′L′)) = (−1)S+L+1+l+l′+S1+L1

⋅[S,L,S1, L1]
1
2 ⋅ (lN−1(S2L2ν2)∣}lN(SLν)) ⋅ {S S′ 1

2

S1 S2
1
2

} ⋅ {L L′ l′

L1 L2 l
} (5.169)



Chapter 6

Matrix element calculation

6.1 Algebraical scheme

1. Find the statistical weighting factor:

∣W ∣ = (1 − 1
2δabδcd) ⋅

√
∏λ qλ! ∏λ′ qλ′ !

∏λ̄ qλ̄!
& permutation phase (6.1)

As an example1:

⟨p6d8p′ ∣C ∣ p5d10⟩ →W =
√

6! 8! 1! 5! 10!

5! 8!
= +6

√
15

⟨s p4 ∣C ∣ s2 p2 d⟩ →W = +2
√

6

⟨l′4l′+2 lN−2 l′′∣C ∣ l′4l′+1 lN⟩ →W = (−1)N ⋅
√

(4l′ + 2)N(N − 1) (6.2)

2. Recouple bra and ket, in SL-coupling for spin and orbital part independently,
to couple both operator- and spectator-electrons separately.

3. If the total operator rank t ≠ 0, uncouple S and L from J .

4. Decouple the part that is not relevant to the operator.

5. Sum over intermediary quantum numbers and write down direct and exchange
contributions separately.

6. The final result is expressed as the product of an angular matrix and the
corresponding Slater integrals.

As mentioned with equation (3.58a) and (5.77), the Coulomb interaction may be
written as:

1

r12

= ∑
k

rk<
rk+1
>

C
(k)
1 ⋅C

(k)
2 = ∑

k

(−1)k[k]
1
2
rk<
rk+1
>

(C(k)1 C
(k)
2 )

(0)

0
(6.3)

1see also subsection A.9

84
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where equation (3.15) is used in the last step. The Slater integral is defined as:

Rk(ab, cd) = ∫
∞

0
∫

∞

0
Pa(r1)Pb(r2)

rk<
rk+1
>

Pc(r1)Pd(r2) dr1dr2

= ∫
∞

0
Pa(r)Pc(r)

1

r
Yk(bd, r) dr (6.4)

Some related symmetries:

Rk(ab, cd) = Rk(ba, dc) = Rk(cd, ab) = Rk(dc, ba)
Rk(ab, ab) = F k(a, b) = Rk(ba, ba)
Rk(ab, ba) = Gk(a, b) = Rk(aa, bb) = Rk(ba, ab) = Gk(b, a) (6.5)

To avoid large denominators, [Condon and Shortley, 1935] redefined the F k− and
Gk− Slater integrals in terms of reduced radial integrals Fk and Gk such that
Fk = F k/Dk and Gk = F k/Dk. Here, D0(ll) = 1.
These so-called Slater denominators Dk(ll′) are listed below:

D1(sp) = 3 D2(pp) = 25 D2(dd) = 49 D2(ff) = 225

D2(sd) = 5 D1(pd) = 15 D4(dd) = 441 D4(ff) = 1089

D3(sf) = 7 D2(pd) = 35 D1(df) = 35 D6(ff) = 184041/25

D3(pd) = 245 D2(df) = 105

D2(pf) = 175 D3(df) = 315

D4(pf) = 189 D4(df) = 693

D5(df) = 7623/5 (6.6)

The electrostatic inter-electronic repulsion in dn configurations may also be described
by the Racah parameters A,B and C defined as:

⎛
⎜
⎝

A
B
C

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 −49
0 1 −5
0 0 35

⎞
⎟
⎠

⎛
⎜
⎝

F0

F2

F4

⎞
⎟
⎠

(6.7)

⎛
⎜
⎝

F0

F2

F4

⎞
⎟
⎠
=
⎛
⎜
⎝

F 0

F 2/49
F 4/441

⎞
⎟
⎠
→

⎛
⎜
⎝

F 0

F 2

F 4

⎞
⎟
⎠
=
⎛
⎜
⎝

A + 7C/5
49B + 7C

63C/5

⎞
⎟
⎠

(6.8)

Similarly for fn configurations:

⎛
⎜⎜⎜
⎝

E0

9E1

9E2

3E3

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 −10 −33 286
0 70 231 2002
0 1 −3 7
0 5 6 −91

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

F0

F2

F4

F6

⎞
⎟⎟⎟
⎠

(6.9)
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Table 6.1: Reduced matrix elements of the C(k) tensor

⟨l ∥ C(k) ∥ l′⟩ Value ⟨l ∥ C(k) ∥ l′⟩ Value

⟨s ∥ C(0) ∥ s⟩ 1 ⟨s ∥ C(1) ∥ p⟩ −1

⟨p ∥ C(0) ∥ p⟩
√

3 ⟨s ∥ C(2) ∥ d⟩ 1

⟨p ∥ C(2) ∥ p⟩ −
√

6
5 ⟨s ∥ C(3) ∥ f⟩ −1

⟨d ∥ C(0) ∥ d⟩
√

5 ⟨p ∥ C(1) ∥ d⟩ −
√

2

⟨d ∥ C(2) ∥ d⟩ −
√

10
7 ⟨p ∥ C(3) ∥ d⟩

√
9
7

⟨d ∥ C(4) ∥ d⟩
√

10
7 ⟨p ∥ C(2) ∥ f⟩

√
9
5

⟨f ∥ C(0) ∥ f⟩
√

7 ⟨p ∥ C(4) ∥ f⟩ −
√

4
3

⟨f ∥ C(2) ∥ f⟩ −2
√

7
15 ⟨d ∥ C(1) ∥ f⟩ −

√
3

⟨f ∥ C(4) ∥ f⟩
√

14
11 ⟨d ∥ C(3) ∥ f⟩

√
4
3

⟨f ∥ C(6) ∥ f⟩ −10
√

7
429 ⟨d ∥ C(5) ∥ f⟩ −

√
50
33

6.2 Nielson & Koster term order

The below term order given by [Nielson and Koster, 1963] is used:

Table 6.2: Terms in the pN shell

p2 3
2P

1
0S

1
2D

p3 4
3S

2
1P

2
3D

Table 6.3: Terms in the dN shell

d2 3
2P

3
2F

1
0S

1
2D

1
2G

d3 4
3P

4
3F

2
3P

2
1,3D2

2
3F

2
3G

2
3H

d4 5
3D

3
2,4P2

3
4D

3
2,4F2

3
4G

3
4H

1
0,4S2

1
2,4D2

1
4F

1
2,4G2

1
4I

d5 6
5S

4
3P

4
5D

4
3F

4
5G

2
5S

2
3P

2
1,3,5D3

2
3,5F2

2
3,5G2

2
3H

2
5I

Next, the total angular momenta for spin St and orbit Lt are ordered from low
to high. Primary for St, with Lt increasing for every value of St. This leads to, e.g.:

ds ∶ 1D,3D

dp ∶ 1P,1D,1F,3P,3D,3F

pf ∶ 1D,1F,1G,3D,3F,3G

d2s ∶ (3P )2P, (3P )4P, (3F )2F, (3F )4F, (1S)2S, (1D)2D, (1G)2G

p2d ∶ (3P )2PDF, (3P )4PDF, (1S)2D, (1D)2SPDFG (12 terms in total)

p3d ∶ (4S)3D, (4S)5D, (2P )1PDF, (2P )3PDF, (2D)1SPDFG, (2D)3SPDFG (18 terms)



6.3. COULOMB MATRIX ELEMENTS 87

6.3 Coulomb matrix elements

6.3.1 lalb↔ lcld

⟨lalb(SL) ∣C ∣ lcld(SL)⟩ =W (∑
k

(−1)k ⟨la ∥ C(k) ∥ lc⟩ ⟨lb ∥ C(k) ∥ ld⟩

⋅Rk(ab,cd) ⋅ (−1)lc+ld+L ⋅ {k lb ld
L lc la

}

+E∑
k′

⟨la ∥ C(k
′) ∥ ld⟩ ⟨lc ∥ C(k

′) ∥ lb⟩

⋅Rk′(ab,dc) ⋅ (−1)S ⋅ {k
′ lb lc
L ld la

} ) (6.10)

W = (1 − 1
2δabδcd)((1 + δab)(1 + δcd))

1
2 = 1 except when a = b and c ≠ d or vice versa,

in which case W =
√

2.
E = (1−δab)(1−δcd) excludes exchange if bra and/or ket contains equivalent electrons.
The direct angular factor after Rk(ab,cd) is graphically given as:

la lc

lb ld

+ −k

L

kla lc

ldlb

= − + = (−1)la+lb+L{la lb L
ld lc k

}L

(6.11)

The exchange angular factor after Rk′(ab,dc) is given by:

la ld

lb lc

+ +k′

L

lcL ld

k′lb

= + = {L lb la
k′ ld lc

}la

−

(6.12)

The exchange produces, in addition to the recoupling, an extra minus sign as
permutation phase.
Here, this Pauli exchange minus is included in the spin symbol (−1)1+S:

+ +
sa

sb sc

sd

S (6.13)
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Some important examples; in the case ⟨ll′(SL) ∣C ∣ ll′(SL)⟩, vanishing reduced
matrix elements may optionally be set to 1 to introduce effective, illegal-k operators.

⟨ll′(SL) ∣C ∣ ll′(SL)⟩ = ∑
k

⟨l ∥ C(k) ∥ l⟩ ⟨l′ ∥ C(k) ∥ l′⟩ ⋅Fk(ll′) ⋅ (−1)l+l′+L ⋅ {k l′ l′

L l l
}

+∑
k′

⟨l ∥ C(k′) ∥ l′⟩2 ⋅Gk′(ll′) ⋅ (−1)S ⋅ {k
′ l′ l
L l′ l

}

(6.14a)

⟨l2(SL) ∣C ∣ l′2(SL)⟩ = ∑
k

(−1)k ⟨l ∥ C(k) ∥ l′⟩2 ⋅Rk(l2, l′2) ⋅ (−1)L ⋅ {k l l′

L l′ l
}(6.14b)

⟨s2(SL) ∣C ∣ l2(SL)⟩ = δ(S,0)δ(L,0) ⋅ (−1)l ⋅ [l]−
1
2 ⋅Rl(s2, l2) (6.14c)

⟨l2(SL) ∣C ∣ l′l′′(SL)⟩ =
√

2∑
k

(−1)k ⟨l ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k) ∥ l′′⟩

⋅Rk(l2, l′l′′) ⋅ (−1)L ⋅ {k l l′′

L l′ l
} (6.14d)

⟨l2(SL) ∣C ∣ ss′(SL)⟩ =
√

2 ⋅ δ(S,0)δ(L,0) ⋅ (−1)l ⋅ [l]−
1
2 ⋅Rl(l2, ss′) (6.14e)

6.3.2 lN ↔ lN−1l′

⟨lN(SL) ∣C ∣ lN−1(S′1L′1) l′(S′L′)⟩ = (N − 1)
√
N δ(SS′)δ(LL′)

∑
k

(−1)k ⟨l ∥ C(k) ∥ l⟩ ⟨l ∥ C(k) ∥ l′⟩ ⋅Rk(ll, ll′) ⋅ ∑
S1L1

δ(S1, S
′
1) ⋅ [L1, L

′
1]

1
2

⋅ (lN SL{∣lN−1S1L1) ⋅ ∑
S2L2

(lN−1 S1L1{∣lN−2S2L2) (lN−1 S′1L
′
1{∣lN−2S2L2)

⋅(−1)L+L1+L′1+L2 ⋅ { l k l
L′1 L2 L1

} ⋅ { l k l′

L′1 L L1
} (6.15)

For the Brillouin excitation nl → n′l, there is a contribution of the potential as well:

⟨lN(SL) ∣U ∣ lN−1(S′1L′1) l′(S′L′)⟩ = δ(l, l′) ⋅ δ(ψ1, ψ
′
1) ⋅

√
N ⋅ (lN SL{∣lN−1S1L1) ⋅ ⟨nl∣U ∣n′l′⟩

= δ(l, l′) ⋅ δ(ψ1, ψ
′
1) ⋅ (N − 1)

√
N ⋅ (lN SL{∣lN−1S1L1) ⋅ [R0(ll, ll′) − ∑

k>0

⟨l ∥ C(k) ∥ l⟩2

(2l + 1)(4l + 1)
Rk(ll, ll′)]

(6.16)

See equation (15.4b) further on for the potential matrix element. As to be expected,
this cancels the R0(ll, ll′) term exactly and adds corrections to the remaining terms.
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6.3.3 lN l′↔ lN l′′

⟨lN(S1L1) l′(SL) ∣C ∣ lN(S′1L′1) l′′(S′L′)⟩ = N ⋅ δ(SS′) ⋅ δ(LL′) ⋅ δ(S1, S
′
1)

∑
k

⟨l ∥ C(k) ∥ l⟩ ⟨l′ ∥ C(k) ∥ l′′⟩ ⋅Rk(ll′, ll′′) ⋅ (−1)l+l′+L1+L′1+L ⋅ [L1, L
′
1]

1
2 ⋅ {L1 k L′1

l′′ L l′
}

⋅ ∑
S2L2

(−1)L2{L1 k L′1
l L2 l

} ⋅ (lN S1L1{∣lN−1S2L2) (lN S′1L′1{∣lN−1S2L2)

+N ⋅ δ(SS′) ⋅ δ(LL′) ⋅∑
k′

⟨l ∥ C(k′) ∥ l′′⟩ ⟨l′ ∥ C(k′) ∥ l⟩ ⋅Rk′(ll′, l′′l) ⋅ (−1)l′′+l+S1+S′1

⋅[S1, S
′
1, L1, L

′
1]

1
2 ∑
S2L2

{
1
2 S2 S′1
1
2 S S1

}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L2 l L′1
l k′ l′′

L1 l′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (lN S1L1{∣lN−1S2L2) (lN S′1L′1{∣lN−1S2L2)

(6.17)

This is graphically represented below. For the direct Coulomb interaction:

+ −

+ −

k

l

l′′

L1 L′1

L2

L

l

l′

+ −

+ −

1
2

1
2

S1 S′1

S2

S (6.18)

and for the exchange:

+ −

+ −

k

l′′

l

L1 L′1

L2

L

l

l′

+ −

+ −

1
2

1
2

S1 S′1

S2

S (6.19)

For l′ = l′′, one rather calculates C −U with the additional potential contribution:

⟨lN(S1L1) l′(SL) ∣U ∣ lN(S′1L′1) l′′(SL)⟩ = δ(l′, l′′) ⋅ δ(ψ1, ψ
′
1) ⋅ ⟨n′l′∣U ∣n′′l′′⟩

= δ(l′, l′′) ⋅ δ(ψ1, ψ
′
1) ⋅N ⋅ [R0(ll′, ll′′) − 1

2 ∑
k′

[l, l′]−1 ⟨l ∥ C(k′) ∥ l′⟩2
Rk′(ll′, l′′l)] (6.20)

This exactly cancels the R0(ll′, ll′′) term and corrects the exchange contributions.
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6.4 Magnetic matrix elements

For energy operators with k ≠ 0, it is customary to use reduced instead of full matrix
elements, with the J−dependence decoupled by means of equation 3.43.
An important case is the spin-orbit interaction with k = 1:

⟨ΨSLJ ∣ ζ ∣ΨS′L′J⟩ = −
1√
3
⋅ (−1)L+S′+J{S L J

L′ S′ 1
} ⟨ΨSL ∥ ζ ∥ ΨS′L′⟩ (6.21)

Examples of such reduced matrix elements (appearing e.g. in EL-SO, see section
(15.5)) are:

⟨l ∥ ζ ∥ l⟩ = −3 (l(l + 1)(2l + 1)/2)
1
2 ⋅ ζl

→ ⟨l ∣ ζ ∣ l⟩ =
√

3 ⋅ (l(l + 1)(2l + 1)/2)
1
2 ⋅ (−1)

1
2+l+j ⋅ {

1
2 l j
l 1

2 1
} ⋅ ζl (6.22)

⟨l2(SL) ∥ ζl ∥ l2(S′L′)⟩ = 6 ⋅ [S,L,S′, L′]
1
2

⋅{S S′ 1
1
2

1
2

1
2

} {L L′ 1
l l l

} (l(l + 1)(2l + 1)/2)
1
2 ⋅ ζl (6.23)

⟨ll′(SL) ∥ ζl ∥ ll′(S′L′)⟩ = 3 ⋅ (−1)S′+L′+l+l′ ⋅ [S,L,S′, L′]
1
2

⋅{S S′ 1
1
2

1
2

1
2

} {L L′ 1
l l l′

} (l(l + 1)(2l + 1)/2)
1
2 ⋅ ζl (6.24)

⟨ll′(SL) ∥ ζl′ ∥ ll′(S′L′)⟩ = 3 ⋅ (−1)S+L+l+l′ ⋅ [S,L,S′, L′]
1
2

{S S′ 1
1
2

1
2

1
2

} {L L′ 1
l′ l′ l

} (l′(l′ + 1)(2l′ + 1)/2)
1
2 ⋅ ζl′ (6.25)

⟨ll′(SL) ∥ ζab ∥ l2(S′L′)⟩ = δ(l, l′) ⋅ 3
√

2 ⋅ (−1)S+L ⋅ [S,L,S′, L′]
1
2

{S S′ 1
1
2

1
2

1
2

} {L L′ 1
l l l

} (l(l + 1)(2l + 1)/2)
1
2 ⋅ ζab (6.26)

For higher values N of lN , the matrix elements can either be calculated directly or
with chain formulae starting from its parent configuration.
An example of a direct calculation using equations (5.31) and (5.89):

⟨lNSL ∥ ζl ∥ lNS′L′⟩ = 3N ⋅ (l(l + 1)(2l + 1)/2)
1
2 ⋅ ζl ⋅ [S,L,S′, L′]

1
2

⋅∑
S L

(−1)S+L−(
1
2+l)+S+L ⋅ {

1
2

1
2 1

S S′ S
} ⋅ { l l 1

L L′ L
} ⋅ (lNSL {∣lN−1S L) (lNS′L′ {∣lN−1S L)

(6.27)
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An example in a mixed configuration:

⟨lN(S1L1) l′(SL) ∥ ζl ∥ lN(S′1L′1) l′(S′L′)⟩ = −3N ⋅ (l(l + 1)(2l + 1)/2)
1
2 ⋅ ζl

⋅(−1)l′+l ⋅ [S,S′, S1, S
′
1, L,L

′, L1, L
′
1]

1
2 ⋅ {L1 1 L′1

L′ l′ L
} ⋅ {S1 1 S′1

S′ 1
2 S

}

⋅∑
S L

(−1)S+L+L′−S′ ⋅ {
1
2

1
2 1

S1 S′1 S
} ⋅ { l l 1

L1 L′1 L
} ⋅ (lN S1L1{∣lN−1S L) (lN S′1L′1{∣lN−1S L)

(6.28)

The latter may graphically be represented as:

1
2

1
2

1
2

− +
J

+ −

+ −

− −

+ −
L L′

+

−

S S′

S1 S′1

S2

l′

L2
L1 L′1

l l

1

(6.29)



Chapter 7

Transition probabilities(1)

Einstein related the spontaneous emission (A2→1), absorption (B1→2) and stimulated
emission (B21) coefficients as follows (SI):

B21 =
g1

g2

B12 (7.1a)

A21 =
h̵ω3

π2c3
B21 (7.1b)

The combined transition probability ∑f Aif of an upper level ∣i⟩ to all lower levels
∣f⟩ is closely related to the lifetime τi of level ∣i⟩:

τi =
⎛
⎝∑f

Aif
⎞
⎠

−1

=
⎛
⎝ ∑
Ef<Ei

Aif
⎞
⎠

−1

(7.2)

With the degeneracy factor g = 2j + 1 and k = ω/c, Fermi’s golden rule gives for
electric dipole transitions:

g2 ⋅A21 =
e2

4πε0

⋅ 4

3
⋅ k

3

h̵
⋅ ∣⟨ψ2 ∣ r⃗ ∣ ψ1⟩∣2 (SI) = 4

3
⋅ (2πσ)3 ⋅ ∣⟨ψ2 ∣ r⃗ ∣ ψ1⟩∣2 (au) (7.3)

Here, g2 ⋅A21 = g1 ⋅A12 and the rate of energy loss −dW /dt = A21 ⋅ h̵ω.

It is customary here to use atomic units where e = h̵ =me = 1/4πε0 ≡ 1 and k = 2πσ,
so one arrives at the well-known form of the Einstein coefficient for spontaneous
electric dipole emission:

g2 ⋅A21(γJ, γ′J ′) =
32π3σ3

3
⋅ ∣⟨γJ ∥ T (1) ∥ γ′J ′⟩∣2 = 32π3σ3

3
⋅ S21(γJ, γ′J ′) (7.4)

The pertinent one-electron integral is:

⟨nl ∥ rC(1) ∥ n′l′⟩ = ⟨l ∥ C(1) ∥ l′⟩ ∫
∞

0
Pnl r Pn′l′ dr (7.5)

The physical line strengths are calculated in intermediate coupling by transforming
the SL value with the eigenvectors of the actual atomic states:

Sif = ∣ ∑
SLνS′L′ν′

(i∣SLν J) S
1
2 (SLν J,S′L′ν′ J ′) (S′L′ν′ J ′∣f) ∣

2

(7.6)

92
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7.1 Electric dipole transitions(1)

For a transition from an ’upper’ state 2 to a ’lower’ state 1 with g2 = 2J2 + 1 and
g1 = 2J1 + 1, one finds1 for the transition probability, with AE1 in s−1 and
σ in cm−1:

g2AE1 = 2.0261269 × 10−6 ⋅ σ3 ⋅ ∣⟨γJ ∥ T (1) ∥ γ′J ′⟩∣2 (7.7)

The oscillator strength, on the other hand, may be seen as the quantum efficiency
of an atomic absorption (or emission) w.r.t. the absorption (or emission) rate Γ of
3 classical single electron oscillators at the same frequency ω21.

The radial electric field component E⊥ of an electron decreases as r−2; the tangential component
E∥ vanishes at constant speed. With an electron acceleration r̈, the finite speed of light causes a
retardation effect and continuity of the electric field then yields a tangential component as well:

E∥

E⊥
= r̈ t sin θ

c
= r̈ r sin θ

c2
→ E⃗∥ =

e ⃗̈r sin θ

4πε0c2r
with f = 1

4πε0
and E⊥ = f

e

r2
(7.8)

The Poynting vector S = µ−10 (E ×B) then becomes S = ε0cE2
∥
er = (e2r̈2 sin2 θ)/(16π2ε0r

2c3) er.
The corresponding radiated power through a spherical shell at distance r yields Larmor’s formula:

P = ∫ S ⋅ dσ = ∫
π

0
S ⋅ 2πr2 sin θdθ = e2r̈2

6πε0c3
= e

2ω4 r2

6πε0c3
using ∫

π

0
sin3 θ dθ = 4

3
(7.9)

The damped, oscillating electron is now described classically by r̈ + Γṙ + ω2r = 0. Small radiation
losses (Γ ≪ ω) imply harmonic motion r̈ ≈ −ω2r. Solving for Frad from P = −Fradṙ after averaging
over one cycle, r̈ + ω2r = −Γṙ = Frad/m→ P = Γmṙ2 and ṙ = ωr, finally yields:

Γ = e2 ω2

6π ε0mc3
(7.10)

With the above expression for Γ, the actual definition of oscillator strength in SI
becomes from: −dW /dt = A21 ⋅ h̵ω = Γ ⋅ (−3f21 ⋅ h̵ω) and g1 ⋅ f12 = −g2 ⋅ f21 (absorption
oscillator strengths assumed positive):

g1 ⋅ f12 =
g2 ⋅A21

3 Γ
= 2πε0mc3

e2 ω2
⋅ g2 ⋅A21 (or in au:) g1 ⋅ f12 =

λ2

8π2α
⋅ g2 ⋅A21 (7.11)

It thus follows:

g1 ⋅ f12 =
2

3
⋅ mc
h̵

⋅ k ⋅ S = 4πmc

3h̵
⋅ σ ⋅ S (7.12)

Similar to equation (7.7), the oscillator strength is in practice calculated with2:

g1 ⋅ fE1 = 3.037556835 × 10−6 ⋅ σ ⋅ ∣⟨γJ ∥ T (1) ∥ γ′J ′⟩∣2 (7.13)

With the immediate consequence:

g1 ⋅ f12 =
1.4991938

σ2
⋅ g2 ⋅A21 (7.14)

1The constant corresponds to the SI value of fe2/h̵ ⋅ 4/3 ⋅ (2π)3 ⋅ 106 ⋅ a20 with f = (4πε0)−1.
The factor 106 translates m−3 into cm−3, and a20 converts the linestrength Sif from SI to au.

2Here, the constant corresponds to the SI value of (4πmc/3h̵) ⋅ 102 ⋅ a20.
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As the oscillator strength fij indicates the fraction of oscillator energy emitted
into each channel j → i, the f -sum rule follows ∑j fij = 1 if i is the lowest level. If i
is an excited level, the f -sum (or Thomas-Reiche-Kuhn) rule reads:

∑
j,k

(fij + fik) = 1 (7.15)

By definition, summing the oscillator strength over all possible (bound and contin-
uum) transitions will yield the number N of active electrons:

⨋
j
fij = N (7.16)

7.1.1 Some electric dipole line strengths

Calculation of S
1
2 (SLJ,S′L′J ′) = ⟨γJ ∥ T (1) ∥ γ′J ′⟩ with T (1) = rC(1) is required

to apply equations (7.6) and (7.7). As T (1) = −
√

2/3 ⋅ ⟨l ∥ C(1) ∥ l′⟩ (a†b)(01)1 ⋅ r,
equation (3.82) -or (5.25)- is used to find the J−dependence:

⟨γSLJ ∥ T (1) ∥ γ′S′L′J ′⟩ = δ(S,S′) ⋅
√

2/3 ⋅ (−1)J+L′+S ⋅ [J, J ′]
1
2 ⋅ [S]−

1
2 ⋅ {J 1 J ′

L′ S L
}

⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅ ∫
∞

0
Pnl r Pn′l′dr ⋅ ⟨γSL ∥ (a†b)(01) ∥ γ′S′L′⟩ (7.17)

To calculate ⟨γSL ∥ (a†b)(01) ∥ γ′S′L′⟩, bra and ket are decoupled into a spectator
factor S1L1 and an active part ⟨a ∥ (a†b)(01) ∥ b⟩ = −

√
3 to apply equation (3.55a)

or (3.55b). Some relevant examples:

⟨1
2 lj ∥ T

(1) ∥ 1
2 l
′j′⟩ = (−1)j+l+

1
2 [j, j′]

1
2 ⟨l ∥ C(1) ∥ l′⟩{j 1 j′

l′ 1
2 l

} ∫
∞

0
Pnl r Pn′l′dr

= (−1)j′−
1
2 ⋅ [j, j′]

1
2 ⋅ ( j j′ 1

−1
2

1
2 0

) ∫
∞

0
Pnl r Pn′l′dr (7.18)

where identity (C.52) from [Brink and Satchler, 1968], Appendix II is used in the
last line. Equations (3.55b), (5.20) and (7.17) are used to find:

⟨lN(S1L1)l′(SLJ) ∥ T (1) ∥ lN(S1L1)l′′(S′L′J ′)⟩ = δ(S,S′) ⋅ (−1)J+L′+S ⋅ [J, J ′, L,L′]
1
2

⋅ ⟨l′ ∥ C(1) ∥ l′′⟩ ⋅ ∫
∞

0
Pn′l′ r Pn′′l′′dr ⋅ {

J 1 J ′

L′ S L
} ⋅ (−1)L1+l′′+L ⋅ {L 1 L′

l′′ L1 l′
}

(7.19)

⟨lN(SLJ) ∥ T (1) ∥ lN−1(S1L1)l′(S′L′J ′)⟩ = δ(S,S′) ⋅
√
N ⋅ (−1)J+L′+S ⋅ [J, J ′, L,L′]

1
2

(lN SL{∣lN−1 S1L1) ⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅ ∫
∞

0
Pnl r Pn′l′dr ⋅ {

J 1 J ′

L′ S L
} ⋅ (−1)L1+l′+L ⋅ {L 1 L′

l′ L1 l
}

(7.20)

Obviously, equations (7.19) and (7.20) both reduce to equation (7.18) for N = 0 and
N = 1, respectively.
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7.1.2 Hyperfine transitions and sum rule

If hyperfine structure is involved, equation (3.51a) is used to uncouple the nuclear
quantum numbers and subsequently proceed as in the above:

⟨γJIF ∥ T (1) ∥ γ′J ′IF ′⟩ = (−1)J+I+F ′+1[F,F ′]
1
2{F 1 F ′

J ′ I J
} ⟨γJ ∥ T (1) ∥ γ′J ′⟩(7.21)

Obviously for I = 0, equation (7.21) reduces to ⟨γJ ∥ T (1) ∥ γ′J ′⟩ again.
Summed over the total angular momenta F and F ′, the line strength becomes:

∑
F,F ′

S(JIF, J ′IF ′) = ∑
F,F ′

∣⟨γJIF ∥ T (1) ∥ γ′J ′IF ′⟩∣2

= ∑
F,F ′

[F,F ′] ⋅ {F 1 F ′

J ′ I J
}

2

⋅ ∣⟨γJ ∥ T (1) ∥ γ′J ′⟩∣2

= [I] ⋅ ∣⟨γJ ∥ T (1) ∥ γ′J ′⟩∣2 (7.22)

It follows that hyperfine structure merely distributes the original line strength with
weighting factors:

[F,F ′]
[I]

⋅ {F 1 F ′

J ′ I J
}

2

7.1.3 Cross sections

In the following, it is assumed that the line shape function is peaked sharply enough:
L(ω) ≈ δ(ω − ω21) to warrant the replacement ω → ω21. The photoionization cross
section (PICS) in Mb of an atom in a state i by a photon of energy h̵ω is proportional
to the line strength S as given by the formula:

σ = h̵ω21 ⋅
Bω

12

c
= h̵ω

g1 ⋅ c
⋅ π

2c3

h̵ω3
⋅ g2 ⋅A21 =

1

4
⋅ (g2

g1

) ⋅ λ2
21 ⋅A21

= h̵ω

g1 ⋅ c
⋅ π

2c3

h̵ω3
⋅ 4

3
⋅ ω

3

h̵c3
⋅ S = 4π2αω

3g1

⋅ S(au) (7.23)

To convert the last expression from au to the SI unit Mb, one multiplies by a2
0:

σPI =
4π2 ⋅ α ⋅ a2

0 ⋅ ω
3g1

⋅ S (7.24)

Given in terms of the differential oscillator strength:

σPI(E) = πhe
2

mc
⋅ df

dE
(SI) = 4π2 ⋅ α ⋅ a2

0 ⋅
df

dE
(7.25)

Remember that hcR∞ =Ry=13.6 eV= 1
2 in au.

The electron density ne equals:

ne = ρ ⋅
Z

mat

= ρ ⋅ Z

M ⋅ u
(7.26)
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with M the molecular (atomic) mass. Therefore, the number of absorbing electrons
in a volume of area SA and depth dx becomes: N = ne ⋅ SA ⋅ dx. The absorbed
intensity is by definition:

Iabs = −dI = N ⋅ σ
SA

I = (ne ⋅ σ ⋅ dx) I →
dI

dx
= −ne ⋅ σ ⋅ I = −µI → I = I0 ⋅ exp (−µ ⋅ x).

(7.27)

The relation between the absorption coefficient µ and the cross section σ is called
the optical theorem: µ = ne ⋅ σ; the quantity (µ ⋅ x) is the optical depth or optical
thickness. It follows directly:

σ = 1

ne ⋅ x
⋅ ln(I0

I
) (7.28)

The above can be compared with an expression, in Mb, for the experimental atomic
cross section:

σ = 0.1035 ⋅ ( T

p ⋅ x
) ⋅ ln(I0

I
) (7.29)

with T the temperature in K, p the pressure in Torr and x the absorption path
length in cm, and in SI: kT /p = 1/ne.
The absorption coefficient is directly related to the half-width by:

d1
2
= ln 2

µ
= ln 2

ne ⋅ σ
(7.30)

In LTE, the relation between the specific electron density nie of the initial state ∣i⟩
and the total electron density ne of the specimen reads:

nie
ne

= gi ⋅ exp (−Ei/kT )
∑j gj ⋅ exp (−Ej/kT )

(7.31)

where the sum in the partition function in the denominator runs over all relevant
atomic states.
Elastic scattering of radiation by a free electron is described the Thomson cross
section, derived from the related classical radius of the electron re = α ⋅ λ̄e:

fe2

re
=mc2 → re =

fe2

mc2
= α2a0 = 2.818 ⋅ 10−15 m→ σT = 8π

3
r2
e = 6.6525 ⋅ 10−29 m2

(7.32)

with re and σT the classical electron radius and the Thomson cross section.

7.2 Length and velocity

For quite general operators U , the below commutator relation with the Hamiltonian
H holds:

⟨f ∣U ∣ i⟩ = (εi − εf)−1 ⟨f ∣ [U,H] ∣ i⟩ with ω = εf − εi. (7.33)
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For the dipole transition operator, it follows:

⟨f ∣ r⃗ ∣ i⟩ = ⟨f ∣ ∇ ∣ i⟩
εi − εf

(7.34)

In SI, as −ih̵∇Φ = p⃗ Φ, this relation reads:

⟨ψf ∣ ∑
j

r⃗j ∣ψi⟩ =
ih̵

m(εi − εf)
⟨ψf ∣ ∑

j

p⃗j ∣ψi⟩ =
h̵2

m∆ε
⟨ψf ∣ ∑

j

∇j ∣ψi⟩

7.2.1 Commutationa

The traditional single electron Hamiltonian is written in atomic units as:

H = −1
2 {r−1 ∂

2

∂r2
r − L

2

r2
} − Z

r
+ V (r)

where r⃗ = rC(1) and L represents the one-electron angular momentum operator.
The commutator now becomes:

[r⃗,H] = −1
2 [rC(1) {r−1 ∂

2

∂r2
r − L

2

r2
} − {r−1 ∂

2

∂r2
r − L

2

r2
} rC(1)]

The usual substitution Rnl = Pnl/r is made. After summation over the degenerate
magnetic sublevels and using the WE theorem, the following reduced matrix element
appears for the first term:

⟨nl ∥ C(1) ∂
2

∂r2
r −C(1)L

2

r2
∥ n′l′⟩ = ⟨l ∥ C(1) ∥ l′⟩ ⟨r−1Pnl ∣

∂2

∂r2
r − l

′(l′ + 1)
r

∣ r−1Pn′l′⟩

= ⟨l ∥ C(1) ∥ l′⟩∫
∞

0
Pnl [

∂2

∂r2
r − l

′(l′ + 1)
r

]Pn′l′ dr

Here, before factorizing the angular part ⟨l ∥ C(1) ∥ l′⟩, L2 first operates to the right.
In the second term, L2 first operates to the left:

⟨nl ∥ −r−1 ∂
2

∂r2
r2C(1) + L

2

r
C(1) ∥ n′l′⟩ = ⟨l ∥ C(1) ∥ l′⟩∫

∞

0
Pnl [−

∂2

∂r2
r − 2

∂

∂r
+ l(l + 1)

r
]Pn′l′ dr

Collecting terms:

⟨nl ∥ rC(1) ∥ n′l′⟩ = ⟨nl ∥ [rC(1),H] ∥ n′l′⟩
εn′ − εn

= ⟨l ∥ C(1) ∥ l′⟩
εn′ − εn

⟨r−1Pnl ∣
d

dr
− l(l + 1) − l′(l′ + 1)

2r
∣ r−1Pn′l′⟩

= ⟨l ∥ C(1) ∥ l′⟩
εn′ − εn ∫

∞

0
Pnl [

d

dr
− l(l + 1) − l′(l′ + 1)

2r
]Pn′l′ dr (7.35)

In terms of the pertinent integrals, the correspondence thereby becomes finally:

⟨nl ∥ rC(1) ∥ n′l′⟩ = ⟨l ∥ C(1) ∥ l′⟩ ∫
∞

0
Pnl r Pn′l′ dr

= ⟨l ∥ C(1) ∥ l′⟩
εn′ − εn ∫

∞

0
Pnl [

d

dr
− l(l + 1) − l′(l′ + 1)

2r
]Pn′l′ dr (7.36)

Note that: (l − l′)(l + l′ + 1) = l(l + 1) − l′(l′ + 1).
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7.2.2 Gradient formulab

Another route towards the same result is directly calculating the reduced matrix
element ⟨ψf ∥ ∇ ∥ ψi⟩ in spherical coordinates:

∇ = [sin θ cosφ
∂

∂r
− sinφ

r sin θ

∂

∂φ
+ cos θ cosφ

r

∂

∂θ
] i

+ [sin θ sinφ
∂

∂r
+ cosφ

r sin θ

∂

∂φ
+ cos θ sinφ

r

∂

∂θ
] j

+ [cos θ
∂

∂r
− sin θ

r

∂

∂θ
]k (7.37)

The x− and y− components are linear combinations of the spherical components ±1.
Fortunately, the preferred z− component (or the equivalent spherical component 0)
is simplest. Application of the Wigner-Eckart theorem yields:

⟨γj ∥ T (k) ∥ γ′j′⟩ =
⟨γj 0 ∣T (k)0 ∣ γ′j′ 0⟩

(−1)j (j k j′

0 0 0
)

and therefore for the case at hand:

⟨nl ∥ ∇(1) ∥ n′l′⟩ =
⟨nl 0 ∣∇(1)0 ∣ n′l′ 0⟩

(−1)l ( l 1 l′

0 0 0
)

(7.38)

Only two possibilities for l are allowed by the 3j-symbol: l = l′ ± 1, the largest of the
two called l>. The 3j-symbol may be reduced to:

( l 1 l′

0 0 0
) = (−1)l>

√
l> [l, l′]−

1
2 (7.39)

Remains the calculation of:

⟨nl 0 ∣∇(1)0 ∣ n′l′ 0⟩ = ⟨Rnl(r)Y l
0 ∣[cos θ

∂

∂r
− sin θ

r

∂

∂θ
]∣Rn′l′(r)Y l′

0 ⟩

Therefore, the following two basic properties of spherical harmonics are required:

cos θ Y l
0(θ, φ) = l + 1√

(2l + 1)(2l + 3)
Y l+1

0 + l√
(2l − 1)(2l + 1)

Y l−1
0

sin θ
∂

∂θ
Y l

0(θ, φ) = l(l + 1)√
(2l + 1)(2l + 3)

Y l+1
0 − l(l + 1)√

(2l − 1)(2l + 1)
Y l−1

0

As a result of the orthogonality, either the first or the second term of the above will
drop out. After closure with the bra, the ∂/∂r and the −1/r terms yield:

⎧⎪⎪⎨⎪⎪⎩

d

dr
⋅ l>

[l, l′]
1
2

⎫⎪⎪⎬⎪⎪⎭
and

⎧⎪⎪⎨⎪⎪⎩
−1

r
⋅ (−1)l>−l′+1 ⋅ l

′(l′ + 1)

[l, l′]
1
2

⎫⎪⎪⎬⎪⎪⎭
respectively.
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This can be seen from inspection of the possibilities l = l′±1 separately. In conclusion:

⟨nl 0 ∣∇(1)0 ∣ n′l′ 0⟩ = ∫
∞

0
Rnl(r)

⎧⎪⎪⎨⎪⎪⎩

d

dr
⋅ l>

[l, l′]
1
2

+ 1

r
⋅ (−1)l>−l′ ⋅ l

′(l′ + 1)

[l, l′]
1
2

⎫⎪⎪⎬⎪⎪⎭
Rn′l′(r) r2dr

(7.41)

Only the radial integration is left. As can be seen from equations (7.38) and (7.39),

the RHS has to be multiplied with the additional factor (−1)l+l>(l>)−
1
2 [l, l′]

1
2 :

(−1)l+l>(l>)
1
2 ∫

∞

0
Rnl(r){

d

dr
+ 1

r
⋅ (−1)l>−l′ ⋅ l

′(l′ + 1)
l>

}Rn′l′(r) r2dr

Remember that (−1)l+l> ⋅ (l>)
1
2 = ⟨l ∥ C(1) ∥ l′⟩.

Substitution Pnl/r = Rnl removes the factor r2 from the integrand, and due to the
action of d/dr gives an additional contribution of ∫

∞
0 Pnl(r) (−1/r)Pn′l′(r) dr, so:

∫
∞

0
r2Rnl

d

dr
Rn′l′ dr = ∫

∞

0
Pnl (

d

dr
− 1

r
)Pn′l′ dr (7.42)

Finally:

⟨nl ∥ ∇(1) ∥ n′l′⟩ = ⟨l ∥ C(1) ∥ l′⟩∫
∞

0
Pnl(r) [

d

dr
− 1

r
{1 − (−1)l>−l ⋅ l′(l′ + 1)

l>
}]Pn′l′(r)dr

= ⟨l ∥ C(1) ∥ l′⟩∫
∞

0
Pnl(r) [

d

dr
− l(l + 1) − l′(l′ + 1)

2r
]Pn′l′(r)dr (7.43)

The last step may be verified by explicit use of l = l′ ± 1; division by ∆E directly
returns equation (7.36).

7.2.3 Gradient formulac

A more direct route employs the spherical tensor expression, derived from the
expression for the linear momentum p⃗, equation (3.20):

∇(1) = C(1) ∂
∂r

−
√

2

r
(C(1) l(1))(1) (7.44)

Thereby:

⟨nl ∥ ∇(1) ∥ n′l′⟩ = ⟨l ∥ C(1) ∥ l′⟩ ⋅ ∫
∞

0
r2Rnl

d

dr
Rn′l′ dr

−
√

2 ⟨l ∥ (C(1) l(1))(1) ∥ l′⟩ ⋅ ∫
∞

0
r2Rnl

1

r
Rn′l′ dr (7.45)

From equations (3.47) and (C.11), one deduces the below identity, directly related
to equation (5.63):

⟨l ∥ (C(k) l(1))(k) ∥ l′⟩ = l(l + 1) − k(k + 1) − l′(l′ + 1)
2
√
k(k + 1)

⋅ ⟨l ∥ C(k) ∥ l′⟩ (7.46)
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Using this for k = 1 plus equation (7.42), one arrives at:

⟨nl ∥ ∇(1) ∥ n′l′⟩ = ⟨l ∥ C(1) ∥ l′⟩ ⋅ [∫
∞

0
Pnl (

d

dr
− 1

r
)Pn′l′ dr

− ∫
∞

0
(Pnl

l(l + 1) − 2 − l′(l′ + 1)
2r

Pn′l′)dr]

= ⟨l ∥ C(1) ∥ l′⟩ ⋅ ∫
∞

0
Pnl [ d

dr
− l(l + 1) − l′(l′ + 1)

2r
] Pn′l′ dr (7.47)

Obviously, equations (7.36), (7.43) and (7.47) are all identical.

7.2.4 Example hydrogen

The relation between the length and velocity operator, for a transition from an
upper state b to a lower state a with ω = Eb −Ea, thereby becomes:

L(a, b) = −V (a, b)
ω

→ ωL(a, b) = ωL(b, a) = V (b, a) = −V (a, b) (7.48)

A simple demonstration is found with the hydrogenic 2p → 1s transition matrix
element: ⟨2p ∥ rC(1) ∥ 1s⟩. In atomic units, one has εn = −1/(2n2) and:

P (1s) = 2r ⋅ exp (−r) (7.49a)

P (2p) = 1

2
√

6
⋅ r2 ⋅ exp (−1

2r) (7.49b)

P (3d) = 4

81
√

30
⋅ r3 ⋅ exp (−1

3r) (7.49c)

In the length formulation, this yields, with ⟨p ∥ C(1) ∥ s⟩ = 1:

⟨2p ∥ rC(1) ∥ 1s⟩ = ∫
∞

0

√
6 ⋅ r4 ⋅ exp (−3r/2)

6
dr = 128

√
6

243

The velocity formulation, on the other hand, gives:

⟨2p ∥ rC(1) ∥ 1s⟩ = 1

ε1s − ε2p
∫

∞

0
P (2p) [ d

dr
− 1(1 + 1) − 0(0 + 1)

2r
]P (1s) dr

= 1

ε1s − ε2p
∫

∞

0
P (2p) [ d

dr
− 1

r
]P (1s) dr = −8

3
⋅ −16

√
6

81
= 128

√
6

243

Both two terms of the integral yield identical contributions −8
√

6/81, while the
energy coefficient gives −8/3. So, as expected, length and velocity formulations
yield identical results in the hydrogenic case.
N.B.: from the Leibniz theorem, one deduces:

P
(n)
1s = 2 ⋅Zn+1

2 ⋅ exp (−Zr) ⋅ (−1)n ⋅ (Zr − n)

In fact, the use of the operator r⃗ instead of ∇ is an example of ’distributed’ operators.
Although mathematically identical for exact wavefunctions, a different (broader)
range of integration is used, which may be more accurate in the case of approximate
wavefunctions. Relativistically, this corresponds to different gauge choices.
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7.3 Sum rules

∑
J ′
S(SLJ ;S′L′J ′) = ∑

J ′
δ(SS′) ⋅ [J, J ′] ⋅ ∣{L J S

J ′ L′ 1
}∣

2

⋅ S(SL;S′L′)

= δ(SS′) ⋅ [J] ⋅ [L]−1 ⋅ S(SL;S′L′) (7.50)

As ∑J [J] = [S,L], it follows:

∑
JJ ′
S(SLJ ;S′L′J ′) = δ(SS′) ⋅ [S] ⋅ S(SL;S′L′) (7.51)

∑
JJ ′

S(SLJ ;S′L′J ′)
Jup

= δ(SS′) ⋅
min ([S], [Lup])

[Lup]
⋅ S(SL;S′L′) (7.52)

where Jup refers to the upper level: E(Jup) = E(J) > E(J ′).

∑
JJ ′
Aki(jj′) = δ(SS′) ⋅min ([S], [Lup]) ⋅A(SL;S′L′) (7.53)

The Thomas-Reiche-Kuhn sum rule, sum of the oscillator strengths (positive for
absorption) equals the number of active electrons in the system:

⨋
j
f ij = N (7.54)

In the absence of external fields, the initial states (γJMJ) are degenerate with
respect to the (2J + 1) magnetic substates. A similar argument holds for the final
states (γ′J ′M ′

J). Therefore, the average oscillator strength is used:

f(γ′J ′, γJ) = 1

(2J + 1) ∑
MJ ,MJ′

f(γ′J ′MJ ′ , γJMJ) (7.55)

From the asymmetry between the initial and the final state, it follows that:

(2J + 1)f(γ′J ′, γJ) = (2J ′ + 1)f(γJ, γ′J ′)

7.4 Selection rules

Not every pair of states 1 and 2 is allowed to make a transition to one another
through electric dipole radiation!
Therefore, it has to be investigated when ∣<Ψ2 ∣ r⃗ ∣ Ψ1>∣2 ≠ 0. First:
Parity conservation: as every reflection is the result of the product of a point re-
flection and a rotation, one may limit the study to a point reflection at the origin
r⃗ → −r⃗. In spherical coordinates, this implies: (r, θ, φ) → (r, π − θ, φ + π)

Because Ψ(r⃗) = R(r)Y m`
` (θ, φ) and ∶ Y m`

` (π − θ, φ + π) = (−1)` Y m`
` (θ, φ)

H carries no permanent dipole moment, the expectation value vanishes:

<Ψ ∣ r⃗ ∣ Ψ>=<(−1)`Ψ ∣ −r⃗ ∣ (−1)`Ψ>= − <Ψ ∣ r⃗ ∣ Ψ>= 0!
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Here, (−1)` is the so-called ’parity’ of the state; for configurations with more than
one electron, parity is given by: (−1)∑ `. With the same line of thought, one obtains:

<Ψ2 ∣ r⃗ ∣ Ψ1>= (−1)`2+`1 <Ψ2 ∣ −r⃗ ∣ Ψ1>

it follows that (−1)`2+`1 = −1, so `2 + `1 should necessarily be odd!

From the vectorial character of r⃗, it turns out that for dipole radiation: ∆` = ±1 ,
as for z = r cos θ one may use:

cos θ Y m`
` = ⋯Y m`

`+1 +⋯Y
m`
`−1

→< Ψ2 ∣ z ∣ Ψ1 >= ⋯ < Y m2
`

`2
∣ Y m1

`

`1+1 > +⋯ < Y m2
`

`2
∣ Y m1

`

`1−1 >

so either `2 = `1 + 1, or `2 = `1 − 1. Same for x and y.

If one wants to observe selection rules for m2 ↔ m1, the spatial degeneracy in
m, i.e. the isotropy, has to be lifted, e.g. by a homogeneous B-field. Only then axes
(like the ’z-axis’) get a meaning because atoms will orient themselves in such a field
with a well-defined external direction. The φ−dependence of Ψ(r⃗) suffices for the
selection:

Ψ(r⃗) = R(r)Y m`
` (θ, φ) = R(r)Θ(θ)Φ(φ) with Φ(φ) = eim`φ (7.56)

If the electric vector E⃗ of the radiation field (both for incoming photons: absorption,
stimulated emission, as for outgoing photons: spontaneous emission) lies in one
particular well-defined (say z-)direction, this is called linear polarization.
If E⃗laser field // B⃗, then:

→ z = r cos θ → I ∼ ∣∫
2π

0
ei(m

2
`−m1

`)φdφ∣
2

≠ 0, only if m2
` −m1

` = 0.

So: ∆m = 0. This is called π−polarization.

Now assume the E⃗ to lie in the x− or the y−direction (calculating < Ψ2 ∣ E⃗ ⋅ r⃗ ∣ Ψ1 >,
one selects the x− or the y−component of the dipole-operator.)

⎧⎪⎪⎨⎪⎪⎩

x = r sin θ cosφ

y = r sin θ sinφ
→ x ± iy = r sin θe±iφ. Now we are concerned with < Ψ2 ∣ x ± iy ∣ Ψ1 >∶

I ∼ ∣r sin θ∫
2π

0
e−im

2
`φ ⋅ e±iφ ⋅ eim1

`φdφ∣
2

∼ ∣⋯∫
2π

0
e(m

1
`−m2

`±1)iφdφ∣
2

→

∆m ± 1. This is called circular or σ−polarization. The electric vector describes

a helix (screw-like movement) about k⃗: σ+ is called right-handed or clockwise, as
seen in the negative z−direction, i.e. the light is observed against the propagation
direction, and σ− is called left-handed (or counter-clockwise) accordingly. This is
the ’optical convention’: the rotation is considered positive if it produces a clockwise
rotation when the observer looks into the light source.
N.B.: m is the quantum number associated with the spatial quantization of an
angular momentum. Every angular momentum j (where j corresponds to an integral
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or (spin!) half-integral quantum number) has a magnitude
√
j(j + 1)h̵ and (2j + 1)

spatial orientations mj where mj runs from −j,−j + 1,⋯0,1,⋯j.
With spatial degeneracy, there are (2j + 1) mj−states that all contribute equally:

∑
m1

∣< Ψ2 m2 ∣ er⃗ ∣ Ψ1 m1 >∣2 is independent from m2

and implies that g2A2→1 = g1A1→2: the initial state 2 is weighed with (2j2 + 1) = g2.

7.5 Line broadening

The light emitted by an atom is, as a result of natural or radiation damping, not
strictly monochromatic any more. The word ’damping’ derives from the analogy
with the classical damped harmonic oscillator, with a damping factor Γ = 2γ.
The average lifetime in an excited state i is given by:

∆t = τi =
1

∑ωj<ωi Aij
(7.57)

The excited state i in this equation may in principle decay to several, lower lying
energy states j. This phenomenon is called branching, and thereby the ratio be-
tween the corresponding values Aij the ’branching ratio’.
According to the Heisenberg uncertainty principle ∆E ⋅∆t ≥ h̵ is the order of mag-
nitude of the corresponding spread in energy:

∆E = h

2π∆t
(7.58)

consequently:

∆ω = 1

∆t
∶= Γ = 1

τ
(7.59)

Therefore, one may associate the damping factor with the natural linewidth. When
in an excited state, the atom has a finite lifetime τ and will decay exponentially from
this state. An important approximation is the so-called Rotating Wave Approxima-
tion (RWA) assuming ∣ω − ω0∣ ≪ ω, as a result of which the fastest oscillations with
frequency ω+ω0 may be neglected: (ω+ω0)−1 ≪ (ω−ω0)−1. The emission spectrum
will then exhibit a symmetrical, so-called Lorentzian profile:

L(ω) = γ
π

1

(ω0 − ω)2 + γ2
(7.60)

Where:

∫
∞

−∞
L(ω)dω = 1 (7.61)

Here, Γ = 2γ is known as the Lorentzian width or the damping factor, i.e. the
halfwidth of the line profile. The natural line width is an intrinsic property of
the atom and can not be reduced experimentally. This in contrast with linewidth
broadening mechanisms like Doppler broadening (low temperature) or collisional
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broadening (low pressure). The limit for a stable or stationary state: τ = ∞ → γ ≈ 0
yields the well known Dirac delta function:

lim
γ→0

γ/π
(ω − ω0)2 + γ2

= δ(ω − ω0)

In a number of cases, the shape of the absorption profile becomes relevant. This
is particularly true when narrowband light sources are used, e.g. with modulation
techniques. The reason is that the signal from such techniques not only is affected
by the strength of the absorption feature but also strongly depends on its shape.
The Lorentzian profile, which applies to the case when the sample is either predomi-
nantly broadened by the natural lifetime (i.e. spontaneous emission) or by collisions,
and the Gaussian profile, which dominates when the transition is mainly Doppler
broadened, are two well-known profiles. In the intermediate case, the transitions
have a Voigt profile, which is a convolution of the two.

7.6 Transformation to bi-orthonormality

Two separately optimized configuration spaces of opposite parity are represented
by two sets {ψi} and {φj} of mutually non-orthogonal orbitals: orbital relaxation
yields more reliable results. Each calculation generates its own orthonormal orbital
basis and as a result, the Gram overlap matrix ⟨ψi ∣φj⟩ = Sij or ⟨ψ ∣φ⟩ = S of
the spectator orbitals differs from a unit matrix 3. This fact, however, violates
the implicit assumption made in the above Racah algebra derivation of transition
probabilities. The problem can be solved by transforming the wave functions to a
new bi-orthonormal radial basis that does meet the requirement of orthonormality
⟨ψ ∣φ⟩ = 1 [Moshinsky and Seligman, 1971, Olsen et al., 1995]:

⟨ψi ∣φj⟩ = δij with: ψ = ψ Cψ and: φ = φCφ (7.62a)

or equivalently in terms of second quantization:

aψ
† = aψ

† Cψ and: aφ
† = aφ

† Cφ (7.62b)

Apparently: C†
ψ SCφ = 1 or equivalently:

Cφ ⋅C†
ψ = S

−1 (7.62c)

Evidently, if {ψi} and {φj} would coincide as the same orthonormal basis, S = 1
and Cψ and Cφ are pure rotations with det(C)=1.
The overlap matrix S is block-diagonal due to the sorting in l−value, though the
blocks are not necessarily square as the bra state ⟨Ψ1∣ = ∑i ci ⟨ψi ∣ = ∑i′ ci′ ⟨ψi′ ∣ and

the ket state ∣Ψ2⟩ = ∑j cj ∣φj ⟩ = ∑j′ cj′ ∣φj′ ⟩ may be composed of different correlation
orbitals.
The creation and annihilation operators associated with the non-orthogonal basis
{ψ,φ} do not obey the usual anti-commutation rules given in table 5.1, as:

a†
man + ana†

m = Snm ≠ δnm (7.63)

3Using common spin-angular functions, only radial overlap integrals for the same orbital
l-symmetry have to be considered while common closed shells may be discarded.
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A new annihilation operator counteracting the above may now be invoked, defined
by â = S−1a; this yields directly:

a†
mân + âna†

m = δnm (this corresponds to: S → 1) (7.64)

Retaining the original creation operators for the ket states and using the new
annihilation operators for the bra states, a so-called bi-orthonormal basis is defined:

⟨n∣m⟩ = ⟨0 ∣âna†
m∣0⟩ = δnm (7.65)

[Moshinsky and Seligman, 1971] showed that single-particle operators F and two-
particle operators G again satisfy equations 5.1, with all annihilation operators an
now replaced by ân. Actually, this is true only if the sets of operators a†

m and ân
span the same space, i.e. the bra and ket states ⟨Ψ1∣ and ∣Ψ2⟩ satisfy the ’closure
under de-excitation’ property for all Brillouin excitations Pnl → Pn′l with n′ < n.
Next, the action of the excitation operator a†

mân on the ket (and similarly for the
bra) is calculated from:

a†
mân ∣φν⟩ = ∑

µ

Aµνmn ∣φµ⟩ (7.66)

Equation 5.4 in its off-diagonal form reads:

∑
m,n

a†
mân = −δ(l, l′) [1

2 , l]
1
2 (a†b)(00) (7.67)

The coefficients Aµνmn are therefore identical to the spin-angular coefficients prefacing
⟨a∣U ∣b⟩ [or ⟨a∣HBN ∣b⟩ = I(a, b)] in the off-diagonal potential [or bare nuclear] matrix
elements ⟨φµ ∣UAB ∣φν⟩ [or ⟨φµ ∣HBN ∣φν⟩], as e.g. by equations 3.44 and 5.53:

UAB = −δ(l, l′) [1
2 , l]

1
2 (a†b)(00)0 ⟨a∣U ∣b⟩ (7.68)

An upper-triangular orbital transformation matrix can be understood as a finite
sequence of single-orbital transformations, each of which expresses a new orbital as
the sum over lower-numbered orbitals only. With this construction, both transfor-
mation matrices Cψ and Cφ will be upper-triangular. As all matrices S and C are
well behaved, standard linear algebra LU factorization gives: S = l ⋅u; with U = u−1

and L = l−1 one obtains S−1 = U ⋅L. From equation 7.62c it follows directly that:

Cφ ⋅C†
ψ = U ⋅L = S−1 (7.69)

As a result, a standard upper-lower decomposition of the inverse overlap matrix S−1

suffices to find the required transformation matrices. Equation 7.62c also enables
an orbital-by-orbital recursive calculation starting from Cφ = 1. The process is
generalized and worked out in detail by [Malmqvist, 1986, Olsen et al., 1995] as a
finite sequence of single orbital transformations.
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7.7 Electric multipole radiation(1)

The electron charge distribution expanded in multipoles, interacts with the
electromagnetic field giving rise to electric multipole transitions.
The electric multipole field has the well-defined parity (−1)k, so that l+ l′+k is even.
Using equation (5.58), the corresponding single electron operator is simply:

T (k) = ∑
i

rki ⋅C
(k)
i = −

√
2

2k + 1
⋅ ⟨nl ∥ rkC(k) ∥ n′l′⟩ ⋅ (a†b)(0k)k (7.70)

The velocity counterpart of the transition integral L
(k)
NR = ∫

∞
0 Pnl rk Pn′l′dr is best

derived from the relativistic theory; it is given in equation (23.41):

V
(k)
NR = ω−1 ⋅ [k∫

∞

0
P1P

′
2 ⋅ rk−1dr − 1

2 [l(l + 1) − l′(l′ + 1) − k(k − 1)]∫
∞

0
P1P2 ⋅ rk−2dr]

(7.71)

The complete interaction operator is cek ⋅ T (k), where the j−independent EM field

factor is given by cek = ik ⋅ (2πσ)k/(2k − 1)!! ⋅
√

(k + 1)/k in the long wavelength
approximation. The value of cek is derived from a more complete theory of electric
and magnetic multipole radiation, worked out later in the relativistic framework in
chapter 23.
By Fermi’s golden rule, the electric multipole transition probability in atomic units
now becomes:

g2 ⋅A21 = 4πσ

2k + 1
⋅ ∣cek ⋅ ⟨j1 ∥ T (k) ∥ j2⟩∣

2

= ( 2(k + 1) ⋅ (2π)2k+1

k(2k + 1)(2k − 1)!!(2k − 1)!!
) ⋅ σ2k+1 ⋅ ∣⟨j1 ∥ T (k) ∥ j2⟩∣

2
(7.72)

In actual calculations, A21 is given in s−1 and σ in cm−1. This conversion requires
an additional factor fe2/h̵ ⋅ a2k

0 ⋅ 104k+2 on the RHS; in all cases, equation 7.14 may
be used to convert g2 ⋅A21 to the oscillator strength g1 ⋅ f12.
As the transition probability is proportional to the square of the transition
amplitude: g2AEk ∝ ∣⟨γJ ∥ T (k) ∥ γ′J ′⟩∣2 , it remains to calculate the matrix

elements ⟨γSLJ ∥ T (k) ∥ γ′S′L′J ′⟩ ∝ ⟨γSLJ ∥ (a†b)(0k)k ∥ γ′S′L′J ′⟩:

⟨γSLJ ∥ T (k) ∥ γ′S′L′J ′⟩ = −
√

2 ⋅ δ(S,S′) ⋅ (−1)J+L′+S+k ⋅ [J, J ′]
1
2 ⋅ [S, k]−

1
2

⋅{J k J ′

L′ S L
} ⋅ ⟨l ∥ C(k) ∥ l′⟩ ⋅ ∫

∞

0
Pnl r

k Pn′l′dr ⋅ ⟨γSL ∥ (a†b)(0k) ∥ γ′S′L′⟩ (7.73)
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⟨lN1 (S1L1) lM2 (S2L2)S12L12 l
K
3 (S3L3)SLJ ∥ T (k) ∥ lN1 (S′1L′1) lM2 (S′2L′2)S′12L

′
12 l

K
3 (S′3L′3)S′L′J ′⟩

= N ⋅ δ(S,S′) ⋅ δ(S1, S
′
1) ⋅ δ(S12, S

′
12) ⋅ δ(n2, n

′
2) ⋅ δ(n3, n

′
3) ⋅ (−1)S+J ⋅ [J, J ′, L,L′]

1
2

⋅ (−1)L2+l1+L12+L′12+L3 ⋅ [L1, L
′
1, L12, L

′
12]

1
2 ⋅ {J k J ′

L′ S L
} ⋅ { L k L′

L′12 L3 L12
} ⋅ {L12 k L′12

L′1 L2 L1
}

⋅ ∑
S1L1

(lN1 S1L1{∣lN−1
1 S1L1) ⋅ (lN1 S′1L′1{∣lN−1

1 S1L1) (−1)L1 ⋅ {L1 k L′1
l1 L1 l1

} ⋅ ⟨n1l1 ∥ rkC(k) ∥ n1l1⟩

+ M ⋅ δ(S,S′) ⋅ δ(S2, S
′
2) ⋅ δ(S12, S

′
12) ⋅ δ(n1, n

′
1) ⋅ δ(n3, n

′
3) ⋅ (−1)S+J ⋅ [J, J ′, L,L′]

1
2

⋅ (−1)L1+L2+L′2+l2+L3 ⋅ [L2, L
′
2, L12, L

′
12]

1
2 ⋅ {J k J ′

L′ S L
} ⋅ { L k L′

L′12 L3 L12
} ⋅ {L12 k L′12

L′2 L1 L2
}

⋅ ∑
S2L2

(lM2 S2L2{∣lM−1
2 S2L2) ⋅ (lM2 S′2L′2{∣lM−1

2 S2L2) (−1)L2 ⋅ {L2 k L′2
l2 L2 l2

} ⋅ ⟨n2l2 ∥ rkC(k) ∥ n2l2⟩

+ K ⋅ δ(S,S′) ⋅ δ(n1, n
′
1) ⋅ δ(n2, n

′
2) ⋅ δ(S12, S

′
12) ⋅ δ(L12, L

′
12) ⋅ (−1)S+J ⋅ [J, J ′, L,L′]

1
2

⋅ (−1)L+L′+L3+L′3+l3+L12 ⋅ [L3, L
′
3]

1
2 ⋅ {J k J ′

L′ S L
} ⋅ {L k L′

L′3 L12 L3
}

⋅ ∑
S3L3

(lK3 S3L3{∣lK−1
3 S3L3) ⋅ (lK3 S′3L′3{∣lK−1

3 S3L3) (−1)L3 ⋅ {L3 k L′3
l3 L3 l3

} ⋅ ⟨n3l3 ∥ rkC(k) ∥ n3l3⟩

(7.74)

⟨lN1 (S1L1) lM−1
2 (S2L2)S12L12 l

K(S3L3)SLJ ∥ T (k) ∥ lN−1
1 (S′1L′1) lM2 (S′2L′2)S′12L

′
12 l

K(S3L3)S′L′J ′⟩

= (−1)M−1 ⋅
√
N ⋅M ⋅ δ(S,S′) ⋅ [J, J ′, L,L′]

1
2 ⋅ (−1)S+J ⋅ {J k J ′

L′ S L
} ⋅ ⟨n1l1 ∥ rkC(k) ∥ n2l2⟩

⋅[L12, L
′
12]

1
2 ⋅ [S1, L1, S

′
2, L

′
2]

1
2 ⋅ δ(S12, S

′
12) ⋅ (−1)l2+L3+L′12+L1+L′1 ⋅ { L k L′

L′12 L3 L12
} ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1 l1 L′1
L2 l2 L′2
L12 k L′12

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⋅(−1)S′1+S′2+S12 ⋅ {S1 S12 S2

S′2
1
2 S′1

} ⋅ (lN1 (S1L1){∣lN−1
1 (S′1L′1)) ⋅ (lM2 (S′2L′2){∣lM−1

2 (S2L2)) (7.75a)

⟨lK(S3L3) lN1 (S1L1)S12L12 l
M−1
2 (S2L2)SLJ ∥ T (k) ∥ lK(S3L3) lN−1

1 (S′1L′1)S′12L
′
12 l

M
2 (S′2L′2)S′L′J ′⟩

= (−1)M−1 ⋅
√
N ⋅M ⋅ δ(S,S′) ⋅ [J, J ′, L,L′]

1
2 ⋅ {J k J ′

L′ S L
} ⋅ ⟨n1l1 ∥ rkC(k) ∥ n2l2⟩

⋅ [S12, L12, S
′
12, L

′
12]

1
2 ⋅ [S1, L1, S

′
2, L

′
2]

1
2 ⋅ (−1)L′1+L3+L′12+L ⋅ {L1 L′1 l1

L′12 L12 L3
} ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L12 l1 L′12

L2 l2 L′2
L k L′

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⋅ (−1)S12+S3+
1
2+S

′
1+J−S′2−S′12 ⋅ {S1 S′1

1
2

S′12 S12 S3
} ⋅ {S S′2 S′12

1
2 S12 S2

}

⋅ (lN1 (S1L1){∣lN−1
1 (S′1L′1)) ⋅ (lM2 (S′2L′2){∣lM−1

2 (S2L2)) (7.75b)
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⟨lN1 (S1L1) lK(S3L3)S12L12 l
M−1
2 (S2L2)SLJ ∥ T (k) ∥ lN−1

1 (S′1L′1) lK(S3L3)S′12L
′
12 l

M
2 (S′2L′2)S′L′J ′⟩

= (−1)K ⋅ (−1)S1−S12−S′1+S′12 ⋅ (−1)L1−L12−L′1+L′12

⋅ ⟨lK(S3L3) lN1 (S1L1)S12L12 l
M−1
2 (S2L2)SLJ ∥ T (k) ∥ lK(S3L3) lN−1

1 (S′1L′1)S′12L
′
12 l

M
2 (S′2L′2)S′L′J ′⟩

(7.75c)

Again in the SL-coupling scheme, the action of T (0k)k is graphically represented by:

+ − ⋅ δ(S,S′)

+ − ⋅W ⋅ [J, J ′, L,L′]
1
2 ⋅ (−1)S+L+J ⋅ {J k J ′

L′ S L
} ⋅ ⟨nl ∥ rkC(k) ∥ n′l′⟩

S

−

−

L L′

k

l l′
(7.76)

7.8 Electric quadrupole radiation(1)

Here, the complete transition probability, again with g2 = [J2] = 2J2+1 for the upper
state, becomes4:

g2AE2 = 1.1199500 × 10−22 ⋅ σ5 ⋅ ∣⟨γJ ∥ T (2) ∥ γ′J ′⟩∣2 (7.77)

For P1 ≠ P2, the velocity formulation (23.50) of the integral L
(2)
NR = ∫

∞
0 P1 r2P2 dr is:

V
(2)
NR = 2

ω
⋅ ∫

∞

0
P1 (

d

dr
+ a)P2 dr with a = 1

2(l
′ = l), a = l + 2(l′ = l + 2) and a = 1 − l(l′ = l − 2)

(7.78)

These velocity formulations were derived in an alternative way using the hypervirial
theorem by [Godefroid, 1978].

For E2 radiation, the square root of the line strength is e.g. given by:

S
1
2
E2 = ⟨lN SLν J ∥ T (2) ∥ lN S′L′ν′ J ′⟩ = N ⋅ δ(S,S′) ⋅ (−1)S+L′+J+l+L ⋅ [J, J ′, L,L′]

1
2

⋅{J 2 J ′

L′ S L
} ⟨l ∥ C(2) ∥ l⟩∫

∞

0
Pnl r

2Pnl dr ∑
S Lν

(−1)L ⋅ {L 2 L′

l L l
}

⋅ (lN−1(S Lν)∣}lN(SLν)) ⋅ (lN−1(S Lν)∣}lN(S′L′ν′)) (7.79)

Evidently, this is just a a special case of equation (7.74) for k = 2 and M = 0.

4The constant corresponds to the SI value of fe2/h̵ ⋅ 1/15 ⋅ (2π)5 ⋅ 1010 ⋅ a40. The factor 1010

translates m−5 into cm−5, and a40 converts the linestrength Sif from SI to au.
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7.9 Magnetic multipole radiation(1)

Here, the EM field factor is given by cmk = α/2 ⋅ ik+1 ⋅ (2πσ)k/(2k − 1)!! ⋅
√
k + 1)/k

with the complete interaction operator equal to cmk ⋅M (k).
By Fermi’s golden rule, the magnetic multipole transition probability is in a.u.:

g2 ⋅A21 = 4πσ

2k + 1
⋅ ∣cmk ⋅ ⟨j1 ∥M (k) ∥ j2⟩∣

2

= (α
2
)

2

⋅ ( 2(k + 1) ⋅ (2π)2k+1

k(2k + 1)(2k − 1)!!(2k − 1)!!
) ⋅ σ2k+1 ⋅ ∣⟨j1 ∥M (k) ∥ j2⟩∣

2
(7.80)

The reader is again referred to chapter 23 for a more complete theory of multipole
radiation. Here also, A21 is customarily given in s−1 and σ in cm−1, requiring an
additional prefactor fe2/h̵ ⋅ a2k

0 ⋅ 104k+2 on the RHS; as with electric multipole radia-
tion, equation 7.14 is used to convert to oscillator strength.
Neglecting QED corrections5, the generalized magnetic moment operator for all
multipolarities 2k [De-Shalit and Talmi, 1963] is given in the long wavelength limit
using equation (3.25) by:

M (k) = 2

k + 1
⋅ ∑
i

∇ (rki C
(k)
i ) ⋅ [li + (k + 1) si]

= 2

k + 1
⋅ [k(2k − 1)]

1
2 ∑

i

rk−1
i [(C(k−1)

i li)
(k)

+ (k + 1) (C(k−1)
i si)

(k)
] (7.81)

Naturally, this reduces for k = 1 to the atomic magnetic moment M (1) given in
equation (3.71). The magnetic multipole field has the well-defined parity (−1)k+1,
so l + l′ + k is odd.
The two RHS operators may subsequently be converted to second quantized form
with equations (5.62) and (5.61):

∑
i

(C(k−1)
i li)

(k)
= [2l′(l′ + 1)(2l′ + 1)]

1
2 ⋅ { l l′ k

1 k − 1 l′
} ⋅ ⟨l ∥ C(k−1) ∥ l′⟩ ⋅ (a†b)(0k)k

(7.82a)

∑
i

(C(k−1)
i si)

(k)
= −[2(2k − 1)]−

1
2 ⋅ ⟨l ∥ C(k−1) ∥ l′⟩ ⋅ (a†b)(1k−1)k

(7.82b)

Equation (5.25) is then used to factor out the J−dependence:

⟨ψSLJ ∥ (a†b)(0k)k ∥ ψ′ S′L′J ′⟩ = δ(S,S′) ⋅ (−1)J+L′+S+k ⋅ [J, J ′]
1
2 ⋅ [S]−

1
2

⋅{J
′ J k
L L′ S

} ⋅ ⟨ψSL ∥ (a†b)(0k) ∥ ψ′ S′L′⟩ (7.83a)

⟨ψSLJ ∥ (a†b)(1k−1)k ∥ ψ′S′L′J ′⟩ = [J, J ′, k]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ 1
L L′ k − 1
J J ′ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ ⟨ψSL ∥ (a†b)(1k−1) ∥ ψ′ S′L′⟩ (7.83b)

Thus, for ∆S ≠ 0 transitions, only the second term effectively remains.

5A first complement would be multiplication of the spin term by gs/2 in eq. (7.81).
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7.10 Magnetic dipole radiation(1)

As with E1 radiation, the square roots of the line strengths for M1 and E2 radiation
are first calculated in the SLJ coupling scheme and subsequently transformed to
the actual states using equation (7.6).
With g2 = 2J2 + 1 referring to the upper state, the complete M1 transition
probability becomes6:

g2AM1 = 2.6973500 × 10−11 ⋅ σ3 ⋅ ∣⟨γJ ∥M (1) ∥ γ′J ′⟩∣2 (7.84)

The diagonal reduced matrix elements of the magnetic dipole operator
M (1) = L(1) + gsS(1) have already been given in equations (3.73) and (3.74) in con-
nection with the Zeeman effect. Assuming gs ≈ 2 for M1 radiation, the general
expression becomes:

S
1
2
M1(SLJ,S′L′J ′) = ⟨SLJ ∥M (1) ∥ S′L′J ′⟩ = δ(SS′) ⋅ δ(LL′) ⋅ (−1)S+L+1 ⋅ [J, J ′]

1
2 ⋅

[(−1)J{J 1 J ′

L S L
}

√
L(L + 1)(2L + 1) + 2(−1)J ′{J 1 J ′

S L S
}

√
S(S + 1)(2S + 1)]

(7.85)

Simplifying the 6j-symbols, the square root of the line strength in SLJ coupling is
thus given by:

S
1
2
M1(SLν J,SLν J) =

1

2
[ 2J + 1

J(J + 1)
]

1
2

[S(S + 1) −L(L + 1) + 3J(J + 1)] (7.86a)

and similarly:

S
1
2
M1(SLν J − 1, SLν J) = −S

1
2
M1(SLν J,SLν J − 1)

= 1

2
{[J2 − (L − S)2][(S +L + 1)2 − J2]

J
}

1
2

(7.86b)

All other matrix elements are zero, which implies the selection rules:
∆ν = ∆S = ∆L = 0 and ∆J = 0,±1 with J = 0→ J = 0 strictly forbidden.

7.11 Application: 21 cm hydrogen line

Interstellar clouds of density ρ ≈ 103 m−3 mainly consist of neutral atomic hydrogen
at T ≈ 100 K. The two possible hyperfine energy levels in the 1s groundstate are:
(F = 1, ↑↑) with electron and proton spins parallel, and (F = 0, ↑↓) with the spins
anti-parallel. Each of these levels has 2F + 1 magnetic sublevels: F = 1→
mF= -1, 0, 1 and for F = 0 only mF=0. As the Boltzmann factor exp (−∆E/kT ) ≈ 1
at E = 9.42 × 10−25J , all these magnetic sublevels are equally populated. Therefore,
75% of the atoms are in the F = 1 level and 25% in the F = 0 level.

6The constant corresponds to the SI value of fe2/h̵ ⋅ 4/3 ⋅ (2π)3 ⋅ 106 ⋅ a20 ⋅ (α/2)2
= (8π3e2h̵)/(3m2

e) ⋅ 10−7 ⋅ 106 where f = c2 ⋅ 10−7 and the factor 106 translates m−3 into cm−3.
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The lifetime of the upper level F = 1 of a completely isolated atom is determined by
the magnetic dipole 1→ 0 transition probability:

g AM1 = 2.6973 × 10−11 × σ3 × SM1 → 3AM1 = 2.6973 × 10−11 × 0.047383 × 3

Yielding: AM1 = 2.87 × 10−15 s−1 → τ = A−1
M1 = 3.5 × 1014 s ≈ 11 × 106 year.

1s

F = 1

↑↑

F = 0

↑↓

a/4

3a/4
λ = 21cm

Because on average there is one collision with another H-atom each century with a
transition efficiency of 25%, a particular H-atom actually radiates one 21 cm photon
every 400 year. Due to the vast dimensions of interstellar clouds, this radiation is
readily observable.

The contact interaction between the proton spin I and the electron spin s can be
described as the potential energy of the proton magnetic moment in the magnetic
field of the electron:

HD
hfs = − µI ⋅Bs = ans I ⋅ s. (7.87)

Due to symmetry, one could also have chosen the equivalent converse expression:

HD
hfs = −µs ⋅BI = ans s ⋅ I. (7.88)

From F 2 = (I + s)2
one derives:

⟨I ⋅ s⟩ = 1
2 [F (F + 1) − I(I + 1) − s(s + 1)] = 1

2
[F (F + 1) − 3

2
] (7.89)

It follows that:

∆E = E(F=1) −E(F=0) = ans ⋅ (1
4 − (−3

4)) = ans (7.90)

Non-relativistically, the magnetic field of the s-electron at the nucleus is given in SI
by:

B⃗(0) = 8π

3
⋅ µ0

4π
⋅ ∣Ψ(0)∣2 ⋅ µs k⃗ (7.91)

µ⃗s = µs k⃗ = −gs ⋅ µB ⋅ s⃗ and, according to equation (3.35):

µ⃗I = gI ⋅ µB ⋅ (
me

mp

) ⋅ I⃗ (7.92)
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Therefore, in au the magnetic s-electron field at nucleus is written as:

B⃗(0) = −α2 ⋅ 8π

3
⋅ ∣Ψ(0)∣2 ⋅ 1

2gs ⋅ s⃗ = −α
2 ⋅ 1

2gs ⋅
2

3
⋅ ⟨δ(r)

r2
⟩ s⃗ (7.93)

The second step results from: δ(r⃗) = δ(r) = 1

4π

δ(r)
r2

with: ⟨δ(r)⟩ = ∣Ψ(0)∣2

Once again:

HD
hfs = −µ⃗I ⋅ B⃗(0) (7.94)

For non-relativistic hydrogenic systems, one has ∣Ψ(0)∣2 = Z3/(πn3a3
0), finally

yielding:

ans =
8π

3
⋅ µ0

4π
⋅ µ2

B ⋅ (
me

mp

) ⋅ gI ⋅ gs ⋅
Z3

πn3a3
0

(7.95)

In au, this becomes:

ans =
8π

3
⋅ α2 ⋅ (me

mp

) ⋅ 1
2gI ⋅

1
2gs ⋅

Z3

πn3
= 2

3α
2 ⋅ (me

mp

) ⋅ gI ⋅ gs ⋅ (
Z

n
)

3

(7.96)

Substituting known constants, the final result becomes: a1s = 9.432 × 10−25 J, to be
compared with the experimental result 9.412 × 10−25 J → λ = hc/a1s = 21 cm.

7.12 Magnetic quadrupole radiation(1)

Just like E1 radiation, M2 radiation involves a parity change. Here, the complete
transition probability, again with g2 = [J2] = 2J2 + 1 for the upper state, becomes7:

g2AM2 = 1.4909714 × 10−27 ⋅ σ5 ⋅ ∣⟨γJ ∥M (2) ∥ γ′J ′⟩∣2 (7.97)

where M (2) is given by:

M (2) = 2/3 ⋅
√

6 ⋅ ∑
i

ri [(C(1)i li)
(2)

+ 3 (C(1)i si)
(2)

]

= 2/3 ⋅ ∫
∞

0
Pnl rPn′l′ dr ⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅ [2

√
3 [l′(l′ + 1)(2l′ + 1)]

1
2 ⋅ { l l′ 2

1 1 l′
} (a†b)(02)2

−3 (a†b)(11)2]

(7.98)

⟨lN(SLJ) ∥ (a†b)(02)2 ∥ lN−1(S1L1) l′ (S′L′J ′)⟩ = −
√

5
2 ⋅

√
N ⋅ δ(S,S′) ⋅ (lN SL{∣lN−1 S1L1)

⋅(−1)J+L′+S ⋅ [J, J ′]
1
2 ⋅ {J

′ J 2
L L′ S

} ⋅ (−1)L1+l′+L ⋅ [L,L′]
1
2 ⋅ {L 2 L′

l′ L1 l
} (7.99a)

7The constant corresponds to the SI value of fe2/h̵ ⋅ 1/15 ⋅ (2π)5 ⋅ 1010 ⋅ a40 ⋅ (α/2)2.
The M1(M2) constants are equal to the E1(E2) constants × (α/2)2.
The M2(E2) constants are equal to the M1(E1) constants × (1/20 ⋅ 104 ⋅ (2π)2 ⋅ a20).
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⟨lN(SLJ) ∥ (a†b)(11)2 ∥ lN−1(S1L1) l′ (S′L′J ′)⟩ = −3
√
N ⋅ (lN SL{∣lN−1 S1L1) ⋅ [J, J ′,2]

1
2

⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ 1
L L′ 1
J J ′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [S,L,S′, L′]

1
2 ⋅ (−1)S1+

1
2+S+1 ⋅ (−1)L1+l′+L+1 ⋅ {S 1 S′

1
2 S1

1
2

} ⋅ {L 1 L′

l′ L1 l
}

(7.99b)

⟨lN(S1L1)l′ (SLJ) ∥ (a†b)(02)2 ∥ lN(S1L1) l′′ (S′L′J ′)⟩ = −
√

5
2 ⋅ δ(S,S

′)

⋅(−1)J+L′+S ⋅ [J, J ′]
1
2 ⋅ {J

′ J 2
L L′ S

} ⋅ (−1)L1+l′′+L ⋅ [L,L′]
1
2 ⋅ {L 2 L′

l′′ L1 l′
} (7.99c)

⟨lN(S1L1)l′ (SLJ) ∥ (a†b)(11)2 ∥ lN(S1L1) l′′ (S′L′J ′)⟩ = −3 ⋅ [J, J ′,2]
1
2

⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ 1
L L′ 1
J J ′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ [S,L,S′, L′]

1
2 ⋅ (−1)S1+

1
2+S+1 ⋅ (−1)L1+l′′+L+1 ⋅ {S 1 S′

1
2 S1

1
2

} ⋅ {L 1 L′

l′′ L1 l′
}

(7.99d)



Chapter 8

Light-matter interactions

Most elementary concepts can be understood from the interaction of a two-level
atom with monochromatic light. We call the ground state ∣g⟩, the excited state ∣e⟩,
and their energy difference h̵ω0. This atom interacts with a (strong) monochromatic
laser with frequency ω and wavevector kL = ω/c. We define the detuning as δ = ω−ω0.
Although the atom is taken at rest, a moving atom can in many cases be described
by including a Doppler shift in the detuning: δ → δ − kLv.

8.1 Frequencies vs. angular frequencies

Equations usually look better when angular frequencies are used. In the following, all
varieties of ω, δ and γ denote angular frequencies, i.e. the corresponding oscillation
is something like cosωt or e−iωt and the corresponding period is 2π/ω, etc. Confusion
can be avoided, e.g., as follows: ω/2π = 1 MHz, or ω = 2π × 1 MHz.

For linewidths the situation is as follows: if an excited state has a 1/e-decay time
of τ , then Γ = 1/τ is an angular frequency. The full width at half height (FWHM)
of the corresponding Lorentzian line is then Γ in rad/s, or Γ/2π in normal frequency
units (Hertz, cycles per second). The usually quoted ’natural linewidth’ is thus equal
to (2πτ)−1. For example, for Rb the natural linewidth is 6 MHz, Γ = 2π × 6 MHz
and τ = 26.5 ns.

However, the rate at which an atom can scatter photons is Γ/2 = 1/2τ , in pho-
tons/s. So for the scattering rate we do not divide Γ by 2π, but for the linewidth
(in Hz) we do (!).

8.1.1 Rabi frequency

In calculations we usually need the Rabi frequency. However, in the lab we usually
measure the intensity of a laser beam. Here’s a shortcut to calculate the Rabi
frequency Ω1 if the intensity I is given:

2(Ω1

Γ
)

2

= I

I0

, (8.1)

where I0 is the saturation intensity:

I0 =
πhc

3λ3
Γ. (8.2)
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Here the internal structure (angular momentum) of an atomic level has been ignored,
i.e. it is assumed that the Clebsch-Gordan coefficient is 1. Beware for alternative
definitions in the literature. In particular an extra factor 2 in the saturation intensity
is frequently used.

For resonant excitation (δ = 0), in the absence of spontaneous emission, the Rabi
frequency is the frequency at which the population oscillates between the ground
and excited state. So, starting in ∣g⟩ at t = 0, the population is entirely transferred
to ∣e⟩ at t = π/Ω1 and back to ∣g⟩ at t = 2π/Ω1 (full cycle).

It is useful to define the saturation coefficient s:

s = Ω2
1/2

δ2 + Γ2/4
= I/I0

1 + 4δ2/Γ2
. (8.3)

Again, beware alternative definitions, such as I/I0.

8.2 Two-level atom plus monochromatic laser

8.2.1 Light shift

The term ‘light shift’ is jargon for what is sometimes called ‘dynamic Stark shift’
or ’AC Stark shift’. It is also synonymous with ‘dipole potential’, with its spatial
derivative the ‘dipole force’. Not all optical forces are dipole forces. The term ‘dipole
force’ is frequently used to distinguish it from radiation pressure, which is also called
(spontaneous) scattering force. A simple derivation for the light shift is obtained in
the dressed-level picture.

Dressed states are combined states of the atom and the radiation field. The
uncoupled dressed states are ∣g,N + 1⟩ and ∣e,N⟩, where N is the number of laser
photons. These two uncoupled dressed states are nearly degenerate, their energy
difference is h̵δ:

E(∣g,N + 1⟩) −E(∣e,N⟩) = (N + 1)h̵ω − (Nh̵ω + h̵ω0) = h̵δ.

The coupling strength of the atom-light interaction is described by the Rabi
frequency Ω1. In the presence of coupling, the eigenstates are linear superpositions
of ∣g,N + 1⟩ and ∣e,N⟩. The energy of the coupled dressed states are the eigenvalues
of

h̵( ω Ω1/2
Ω1/2 ω0

) . (8.4)

Note that the common energy of N photons, Nh̵ω has been left out. The eigenvalues
of this matrix are

E1,2 =
h̵ω + h̵ω0

2
± h̵Ω

2
= h̵ω + h̵ω0

2
± h̵

2

√
δ2 +Ω2

1.

The splitting Ω =
√
δ2 +Ω2

1 is sometimes called the generalized Rabi frequency.
The eigenstates are

∣1(N)⟩ = sin θ ∣g,N + 1⟩ + cos θ ∣e,N⟩ (8.5)

∣2(N)⟩ = cos θ ∣g,N + 1⟩ − sin θ ∣e,N⟩ (8.6)
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where the angle θ is defined by

tan 2θ = −Ω1

δ
. (8.7)

For detunings large compared to the Rabi frequency, ∣δ∣ ≫ Ω1, we have ∣θ∣ ≪ 1,
so ∣ sin θ∣ ≪ 1 and the dressed states approach the uncoupled states. In this case the
effect of the interaction is mostly a level shift: the light shift. For the ground state
the light shift (expressed as a frequency) is

∆Eg
h̵

= E1

h̵
− ω ≈ Ω2

1

4δ
≈ δ s

2
. (8.8)

In the last approximation it has been assumed that ∣δ∣ ≫ Γ (which is usually the
case).

8.2.2 Photon scattering rate

The photon scattering rate is determined by the population of the excited state.
This is found by solving for the steady-state solution of the optical Bloch equations.
This steady-state population is given by:

σstee =
1

2
( s

1 + s
) . (8.9)

Note that this population never exceeds 1
2 . For the photon scattering rate γsc we

simply multiply by the decay rate of the excited state Γ:

γsc =
Γ

2
( s

1 + s
) . (8.10)

Scattering force

An atom excited by a single laser beam receives one photon momentum h̵kL per
scattered photon, so the force is

F = h̵kL ⋅ γsc = h̵kL ⋅
Γ

2
( s

1 + s
) . (8.11)

The maximum scattering force, for large saturation, s≫ 1, is thus given by

Fmax = h̵kL ⋅
Γ

2
. (8.12)

For rubidium, Fmax/m ≈ 105 m s−2 ≈ 104 g.

8.2.3 Far off-resonance limit, low saturation

Of considerable experimental interest is the situation where the laser is intense,
I ≫ I0, and far detuned, ∣δ∣ ≫ Γ. Due to the large detuning the saturation parameter
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can be very small, s≪ 1, even for very high intensity. In this situation the following
simplifications are useful. Saturation parameter:

s ≈ I/I0

4(δ/Γ)2
. (8.13)

The lightshift is proportional to I/δ:

∆Eg
h̵

= I/I0

2δ/Γ
Γ

4
≈ s

2
δ. (8.14)

The photon scattering rate is proportional to I/δ2:

γsc =
Γ

2

s

s + 1
≈ I/I0

4δ2/Γ2

Γ

2
= s

2
Γ. (8.15)

Note that the ratio of light shift to scattering rate is δ/Γ.

8.3 Parameters for 87Rb

resonance wavelength λ1 795 nm (D1)
λ2 780 nm (D2)

lifetime τ 27 ns (p3/2; D2)
linewidth Γ/2π 6.0 MHz (p3/2; D2) ≡ (2πτ)−1

saturation intensity I0 1.6 mW/cm2 (D2)
polarizability α/4πε0 48 Å3

Van der Waals coefficient C6 4700 a.u.
Doppler temperature TD 140 µK ≡ h̵Γ/2kB
Doppler capture Γ/kL 4.6 m/s

typ. velocity @ TD vD 16 cm/s ≡
√

2kBTD/m
recoil velocity vR 5.8 mm/s ≡ h̵kL/m
recoil temperature TR 362 nK ≡ h̵2k2

L/mkB = 2ER/kB
recoil frequency ωR 2π × 3.8 kHz ≡ h̵k2

L/2m = ER/h̵
gravity mg/kB 1 mK/cm

mg/h 21 MHz/cm
mg/µB 15 G/cm

De-Broglie wavelength Λ 16 nm @ TD ≡ h/
√

2πmkBT
311 nm @ TR

s-wave scattering length a2,2 109 a0

8.4 Quantum beats, isotope-selective ionization.

Quantum beats of magnetic and hyperfine structure substates can be used to selec-
tively photoionize isotopes. E.g. in Cd-like systems, an initially unpolarized ground
state ∣i⟩ = 1S0 is excited to a final state ∣f⟩ = 3D2 with two laser pulses. The first
pulse coherently excites ∣ i⟩ to the meta-stable, intermediate states ∣e⟩ , ∣e′⟩ = 3P1.
After a delay τ allowing the intermediate state coherence to evolve, a second laser
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pulse populates the final state ∣ f⟩ (Fig. la). There are several paths leading from
∣ i⟩ to ∣ f⟩. In analogy to Young’s classical double slit experiment, the final state
population of particular isotopes is either enhanced or suppressed depending on the
phase differences between the paths. Subsequently, isotope selective photoionization
may be performed. The phase factor between the paths is determined by the angle
between the polarization vectors of the laser beams and by the quantity ωee′τ .
Generally, isotopes with an even number of nucleons have no nuclear spin and
thereby no hyperfine structure. The two laser beams are linearly polarized with
the direction of the electrical field component perpendicular to the magnetic field.
In summary, a modulation in the two-step excitation probability depends upon:

• the angle between the polarization vectors of the two laser beams

• the Zeeman splitting of the magnetic sub-levels

• the h.f.s. splitting

Starting point is the quantum beat expression:

P (t) ∝∑⟨Feme ∣e(1)1 ⋅T(1)∣Fimi⟩ ⟨Fimi ∣(e(1)1 ⋅T(1))
†
∣Fe′me′⟩

⟨Fe′me′ ∣e(1)2 ⋅T(1)∣Ff mf⟩ ⟨Ff mf ∣(e(1)2 ⋅T(1))
†
∣Feme⟩ exp [−(iωee′ + Γe)t]

(8.16)

Here, subsequent use of equations (3.16), (3.39) and (3.51a) now yields e.g.:

⟨(JeI)Feme∣e(1) ⋅T(1)∣(JiI)Fimi⟩ = ∑
q1

(−1)q1 e(1)−q1 (−1)Fe−me( Fe 1 Fi
−me q1 mi

)

(−1)Je+I+Fi+1 [Fe, Fi]
1
2 {Fe 1 Fi

Ji I Je
} ⟨Je ∥ T (1) ∥ Ji⟩ (8.17)

With all the magnetic quantum numbers mi,me,me′ and mf summed over, using
equation (3.6) for the Hermitian conjugates, this yields the final expression:

P (t) ∝ (−1)Ji−Jf ∣⟨Ji ∥ T(1) ∥ Je⟩∣
2 ∣⟨Je ∥ T(1) ∥ Jf⟩∣

2

⋅ ∑
k

{Je Je k
1 1 Ji

}{Je Je k
1 1 Jf

} ⋅ ∑
q

(−1)q (E(k)q (1))
′
E
(k)
−q (2)

⋅ ∑
Fe,Fe′

[Fe, Fe′] {
Je Je k
Fe Fe′ I

}
2

⋅ exp [−(iωee′ + Γe)t] (8.18)

Linear polarized light is used, but at right angles to the B⃗−field: → σ± yields a
coherent superposition of 3P1, (m = −1,1), where the phase factors are interrelated
by synchronous creation. The energy difference is caused by the Zeeman effect.
The phase difference between Ψ(m = −1) and Ψ(m = 1) is determined by the mag-
nitude of the B⃗−field, and is reflected in the transition to the excited Cd (Z=48)
state 4d105s5d(m = 0): sometimes a maximal, sometimes a minimal population.
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Intermezzo:
Gauge transformations can be used to bring potentials into various convenient forms.
One particularly important form, referred to as the transverse or Coulomb gauge, is
defined by the condition:

∇ ⋅A±(r, ω) = 0 (8.19)

It follows from the Lorentz condition that, in the transverse gauge, the scalar
potential vanishes:

φ±(r, ω) = 0 (8.20)

In the transverse gauge, the electric and magnetic fields are given by:

E±(r, ω) = ± iωA±(r, ω)
B±(r, ω) = ∇ ×A±(r, ω) (8.21)

For plane-wave solutions to the source-free Maxwell equations propagating in the
direction k, the transverse-gauge vector potential is:

A±(r, ω) = e exp (±ik ⋅ r) (8.22)

With each laser, a polarization tensor, actually the tensor product (equation
(3.7)) of the corresponding spherical unit vectors, is associated:

E
(k)
Q = (e(1)e(1))(k)

Q
= ∑
qq′

(1q 1q′∣kQ) e(1)q e
(1)
q′ = ∑

qq′
(−1)Q [k]

1
2 (1 1 k

q q′ −Q) ⋅ e(1)q e
(1)
q′

(8.23)

where the e
(1)
q (see equations (3.10) refer to the spherical components of the polar-

ization tensor, i.e. the unit vector directed along the electric field component of the
laser light. From the 3j-symbol it follows that only the tensor ranks k = 0,1,2 (so-
called scalar, vector and alignment terms) are allowed, yielding a total number of 9
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components. Here, one deals with a linear polarization in the XY −plane described
by the spherical unit vectors:

e
(1)
1 = 1√

2
and e

(1)
−1 = − 1√

2

This is equivalent to the statement that linearly polarized light consists of an equal
amount of left and right hand circularly polarized light. As the sum in equation
(8.23) is now restricted to the corresponding ’circular’ components q = 1,−1,
it can be shown by straightforward calculation that there are only four non-zero
components of E

(k)
q left:

E
(0)
0 = − 1√

3
, E

(2)
0 = − 1√

6
, and E

(2)
−2 = E(2)2 = 1

2
.

As is to be expected, the vector (k = 1) part of the polarization tensor does not
appear at all. In order to define the polarization of the first laser beam in the
same coordinate system as the second, one has to rotate the associated polarization
tensor:

(E(k)q )
′
= ∑

q′
Dk
q′q ⋅E

(k)
q

where the prime denotes the action of the rotation matrix Dk
q′q. In the present situ-

ation, we have only a rotation over an angle Φ, the angle between the polarizations
of the two laser beams) of the XY −plane:

(E(k)q )
′
= ∑

q′
Dk
q′q(0,0,Φ) ⋅E(k)q = ∑

q′
δ(q, q′) exp (−iqΦ) ⋅E(k)q .

With these results, one obtains:

∑
q

(−1)q (E(k)q (1))
′
E
(k)
−q (2) = 1

3 (k = 0)

= cos2 Φ − 1
3 (k = 2) (8.24)

If B = 0, the easiest description of the experiment is with the linear polarizations in
the z-direction (π light), which yields the common result:

∑
q

(−1)q (E(k)q (1))
′
E
(k)
−q (2) = [k] (1 1 k

0 0 0
)

2

Pk(cos Φ) (8.25)

Recall that: P0(cos Φ) = 1 and P2(cos Φ) =3
2cos2 Φ− 1

2 . As is to be expected, equations
(8.24) and (8.25) give identical results in the limit B → 0.
Abbreviating the k-dependent terms by:

Xk = (−1)Ji−Jf {Je Je k
1 1 Ji

}{Je Je k
1 1 Jf

} [Fe, Fe′] {
Je Je k
Fe Fe′ I

}
2

the basic quantum beat equation finally becomes:

P (t) ∝ ∑
Fe,Fe′

(1
3X0 + (cos2 Φ − 1

3)X2) ⋅ ∣⟨Ji ∥ T(1) ∥ Je⟩∣
2 ∣⟨Je ∥ T(1) ∥ Jf⟩∣

2
exp [−(iωee′ + Γe)t]

(8.26)
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where the first term may be simplified to: X0 = δ(Fe, Fe′) [I]/(3 [Je]). It is readily
seen that complete extinction of the signal is only possible if −2 ≤X0/X2 ≤ 1. Due to
the nuclear spin dependence, if the photoionization yield is reduced to zero for I = 0,
there still remains an appreciable signal for I ≠ 0 (I = 1/2 for Cd). The method
discussed in this section thus proves very effective in discriminating between odd and
even isotopes. If only one odd isotope is present, it can be separated completely if
the angular momentum of the ground state Ji is zero or one. The two-step excitation
probability is modulated with the hfs-splitting frequency, which is isotope dependent
and zero for I = 0. The hyperfine splitting is generally large when unpaired s-
electrons are present. The bandwidth and the duration of a pulse are connected by
the equation ∆ω ⋅∆t ≈ 2π → τ = 2π/ωee′ , obtained by the Fourier transformation of
a square pulse shape.



Chapter 9

Parity violation

Up until 1957, physicists thought that the four fundamental forces were invariant
under mirror inversion. The parity operator P maps r → −r, i.e. it transforms
φ→ φ + π and θ → π − θ in spherical coordinates. Parity transformation is therefore
described by:

P Ylm(θ, φ) = Ylm(π − θ, φ + π) = (−1)l ⋅ Ylm(θ, φ) (9.1)

Spherical spinors are thereby eigenfunctions of P with eigenvalues (−1)l.

However, [Lee and Yang, 1956] were awarded the Nobel price in 1957 for their the-
oretical work from 1956, in which they demonstrated that ’parity’ is not conserved
in weak interactions. [Wu et al., 1957] indisputably verified this in her famous
’Wu Co-60’ experiment, thereby starting a parity crisis. She aligned the nuclear
spins of the 60Co nuclei in a magnetic field (alignment of axial vectors) and sub-
sequently observed the emitted electrons after decay: 60

27Co →60
28Ni + e− + ν̄e. The

electrons turn out to possess a preferential direction, a polar vector! As a result,
this experiment defines a specific chirality and is therefore not mirror-symmetric!
Pauli sighed learning the news: ’I don’t believe in a left-handed God!’.

In parity non-conserving effects, a neutral vector boson Z0 is exchanged between
the atomic nucleus and the s1

2
and p1

2
electrons, causing the atomic state as a whole

not to have a well-defined parity. It is therefore possible to test the electroweak
interaction in atomic physics experiments. The exchange particles, the so-called
’weak’ bosons W ± (plus Z0), thus change the ’mirror-identity’ or ’handedness’ of
the participating particles. The W ± gauge bosons mediate the weak interaction in β
decay. With the theoretical unification of the weak and electromagnetic interactions,
an important prediction was the existence of a new gauge boson, called Z0, mediat-
ing weak neutral current interactions. The Z0 boson carries no electric charge, so it
couples to the fundamental particles such as electrons and quarks like a heavy pho-
ton. In 1971, the Weinberg-Salam model (1961-1967) uniting the electromagnetic
and the weak interaction turned out to be renormalizable (Gerard ’t Hooft), and
thus mathematically manageable. In 1979, Glashow, Salam and Weinberg received
the Nobel price for their theory, that unifies the weak and the electromagnetic inter-
action. In their theory, the slightly heavier neutral vector (gauge) boson Z0 makes
its appearance, mediating a new kind of weak interaction. As a neutral particle,
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Z0 interacts like a heavy photon; as a pseudovector particle, it exhibits chiral, par-
ity violating behavior. The electroweak interaction between electrons and nucleons
destroys The electroweak interaction between electrons and nucleons thereby de-
stroys the mirror symmetry of an atom. The size of the effect depends on the weak
interaction constants as well as on the atomic structure.

Z0 ∼ 1.6256 × 10−25 kg ∼ 91.1867 GeV
W ± ∼ 80.4 GeV

with: cos θW = MW

MZ

= 0.882

The range, represented by the Compton wavelength, is mass-determined:

h̵

MZ0c
∼ 2 × 10−18 m

and therefore so short that a chiral electron-nucleon interaction may only take place
inside the nucleus. The Fermi coupling constant GF is, next to WS angle θW the
second free parameter in the WS-theory:

GF = (me c
2) × ( h̵

me c
)

3

× 3 × 10−12 ∼ 1.4 × 10−62 J m3

∼ 89.6 eV fm3

∼ 2.22 × 10−14 in a.u.: Ry ⋅ a3
0

9.1 Helicity:

the intrinsic photon angular momentum

The photon, a zero mass, spin 1 particle ih exchanged by the ’long range’ electro-
magnetic interaction. This in contrast to the weak interaction where so-called vector
bosons W ±, Z0 are exchanged, likewise with spin 1 but, as a result of the short range,
with a mass ≠ 0 (∼ 1.5 × 10−25kg). Both interactions are coupled or ’unified’ via the
Weinberg-Salam model.
According to the Heisenberg relation: ∆m ⋅∆r ≥ h̵/c; the range is thus equal to the reduced Compton wavelength

h̵/mc.
The photon spin is not half-integral because:

• The classical limit of QED is found for n→∞, which is not reconcilable with
the Pauli principle.

• ’Many photons’ constitute a macroscopic ensemble that can be described by
the Maxwell equations for A⃗ that may be regarded as the Schrödinger equation
of the photon. However, a spin 1

2 can not be interpreted within the Maxwell
theory: there may be infinitely many photons with the same quantum prop-
erties ω and polarization.

The concept ’spin’ cannot be used unambiguously.
According to the common interpretation:
spin represents the angular momentum left when the particle is at rest, in contrast
to the orbital angular momentum.
However, a photon is never at rest! From an answer to Ehrenfest in 1926, it turns
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out that Einstein did not know what to do with that (what is the definition of a
rest frame?), and even proposed to possibly give up the concept of conservation of
angular momentum at all!
There are three spatial projections that ’go’ with a spin-1 particle: m = −1,0,1; un-
der rotation, they can make a transition from one to the other (spherical symmetry!)
However, a photon has a cylindrical symmetry by virtue of its inherent velocity, and
therefore cannot possess spin=0 (which reflects perfect spherical symmetry, as with
s−electrons).
In accordance with ’Maxwell’, the photon has only two projections h = −1,1 on the
propagation direction (z-axis) corresponding to the two possible circular polariza-
tions:

• h = −1→∆m = 1 ∶ σ−, left − handed

• h = 1→∆m = −1 ∶ σ+, right − handed

If m is associated with the lower energy state and m′ with the higher one, then
according to the Wigner-Eckart theorem:

< Φi ∣D(1)h ∣ Φf >= (−1)j−m( j 1 j′

−m h m′) < Φi ∥D(1) ∥ Φf >

so:

⎧⎪⎪⎨⎪⎪⎩

h = 1→∆m =m′ −m = −1

h = −1→∆m =m′ −m = 1

These are called the two helicity states of the photon (with reference to the word
helix as in DNA).
Linear polarization is a mixture of these h = 1 en h = −1 states. There are of course
two independent polarization directions in the (transverse) plane perpendicular to
the direction of light propagation. By contrast, the electron helicity he is defined as
the scalar product of the spin of the electron by its linear momentum: he = σe ⋅pe/pe.
Like the circular polarization of the photon, the helicity he is odd under space
reflection.

9.2 Parity Non-Conservative (PNC) interaction

The electron-quark interaction mediated by Z0 is proportional to the pseudoscalar
electron helicity he = σe ⋅ pe/pe, which is odd under space reflection. Frequently, a
scalar angular momentum ’helicity’ or ’handedness’ operator K = σ⃗ ⋅ p⃗ (for the spin
component along the direction of motion) is introduced in relativistic calculations.
Alternatively, one may introduce the electron helicity he, defined as the scalar prod-
uct of the spin of the electron and its velocity: he = σe ⋅ pe/pe. Like the circular
polarization of the photon, the helicity he is odd under space reflection; the PNC
interaction is thereby proportional to heQW GF , see equation (9.2). A reasonable
try is a Hamiltonian of the form:

VPNC = GF QW

2
√

2mec
(s⃗ ⋅ p⃗ δ(r⃗) + δ(r⃗) s⃗ ⋅ p⃗) = − GF

2
√

2
γ5QWρ(r) (9.2)
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where the ’weak charge’ QW represents the sensitivity (susceptibility) of the nucleus
to the weak interaction and γ5 is the Dirac matrix associated with pseudoscalars, see
further explanation in chapter 19. Chirality can be defined in terms of the two chiral
projection operators, PL and PR that project out the left-handed and right-handed
chiral components of a spinor ψ (and the reverse for anti-particles):

PL = 1
2(1 − γ5) → PLψ = ψL (9.3a)

PR = 1
2(1 + γ5) → PRψ = ψR (9.3b)

The quantity ρ(r) is a nuclear density function, which is approximately the neutron
density. The inner product of a pseudo- or axial vector (s⃗) and a polar vector (p⃗)
changes sign under reflection (parity inversion) and is thus the desired pseudoscalar.

quarks QW e.m. charge

up (1 − 8
3 sin2 θW ) 2

3e

down (−1 + 4
3 sin2 θW ) −1

3e

with: sin2 θW = 0.22290(30)

it follows directly that the weak charge of a nucleus consisting of Z protons and N
neutrons is given by:

QW = Z(1 − 4 sin2 θW ) −N

if sin2 θW were = 0.25, this would yield QW = −N .

e−

e−

q

q

γ

e−

e−

q

q
Z0

Figure 9.1: Feynman diagrams of the electromagnetic and weak electron-quark in-
teractions.

VPNC violates parity and may therefore mix s- and p-electrons. Thus, the uneven
hydrogenic matrix element ⟨2s1/2∣VPNC ∣2p1/2⟩ does not vanish. This gives the 2p-
electron a right-handed screw w.r.t. its spin axis: the left-handed situation does not
occur in nature. The interference of a magnetic dipole transition with a transition
of electric dipole character between the same states, allowed only through the parity
non-conserving weak interaction, would make even such an apparently symmetric
object as an atom optically active. The Z0 exchange consequently violates Laporte’s
rule [Laporte, 1924], i.e. radiative (E1) transitions may only take place between
states of opposite parity.
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The cesium atom still represents the best compromise between high Z and simple
atomic structure allowing for precise atomic structure calculations.
Irradiating linearly polarized light on 133Cs (Z=55: the magnitude of the observable
effect progresses roughly as Z3, with a theoretical value QW = −72), yields a right-
handed rotation of the polarization direction of 10−5 degree, corresponding to the
width of a needle observed from a distance of 7.5 km!

In one of the current experiments, one irradiates unpolarized Cs gas with a 5395
Å laser, alternately with left- and right circularly polarized light. Left and right
handed photons are absorbed and emitted slightly differently, i.e., the atoms (the
intensity of the transmitted light) show optical activity, so-called circular dichroism.
Parity is no longer conserved, and the left-right asymmetry ALR of the pertinent
cross sections for absorption is given by:

ALR = σD − σL
σD + σL

∝ ⟨6s1/2∣Ẽ1∣7s1/2⟩ ∝ ⟨6s1/2∣VPNC ∣ e.g. 6p1/2⟩

where:

⟨6s1/2∣Ẽ1∣7s1/2⟩ = ⨋
n

⟨6s1/2∣E1∣np1/2⟩ ⟨np1/2∣VPNC ∣7s1/2⟩
E7s1/2 −Enp1/2

+
⟨6s1/2∣VPNC ∣np1/2⟩ ⟨np1/2∣E1∣7s1/2⟩

E6s1/2 −Enp1/2
An order of magnitude estimate of ALR was first given by [Zel’dovich, 1959]:

ALR ∝ (α me

MZ

)
2

≈ 10−15 (9.4)

Fortunately, the [Bouchiat and Bouchiat, 1974] found the below Z3 law, thus in-
creasing the effect to observable magnitudes in heavy atoms.
Apart from some serious relativistic corrections, ⟨6s1/2∣VPNC ∣6p1/2⟩ can be calculated
with angular momentum algebra to yield:

⟨ns1/2∣VPNC ∣mp1/2⟩ =
3ih̵

16πmec

GF QW√
2

Rns(0)
d

dr
Rmp(0)

Remember that p⃗→ −ih̵∇ is both imaginary and differentiates.
Approximations for Rns(0) and dRmp(0)/dr for alkali atoms may be found using

quantum defects n∗ = n − δ(l) and an outer charge Z0 = Z − (N − 1).
[Bouchiat et al., 1984] gives:

∣ ψ(0) ∣2 = ( Hydrogen:
Z3

πn3a3
0

) = ZiZ2
0

πn∗3a3
0

Rns(0) = 2πψ(0) =
2Z

1/2
i Z0

n∗3/2s a
3/2
0

Similarly, one finds:

d

dr
Rmp(0) =

⎛
⎝

Hydrogen:
2

3

Z5/2

n3/2a
5/2
0

⎞
⎠
= 2

3

Z
3/2
i Z0

n∗3/2p a
5/2
0

So, for Z0=1:

⟨ns1/2∣VPNC ∣mp1/2⟩ =
ih̵

4πmec

GF QW√
2

Z2
i

n∗sn
∗
p

3/2a4
0
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Because QW ∼ Z, one concludes:

⟨ns1/2∣VPNC ∣mp1/2⟩ ∼ Z3

PNC is one of the more likely candidates to explain the observed homochirality in
nature, and may thus be linked to the origins of life.



Part II

Orthogonal operators
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Chapter 10

Hartree-Fock

The inter-electronic Hartree-Fock potential UHF is defined by the equation:

(HBN +UHF ) ∣a⟩ = εa ∣a⟩ (10.1)

with the bare nucleus part given by:

HBN = (−1

2

d2

dr2
+ l(l + 1)

2r2
− Z
r
)

The Restricted Hartee-Fock (RHF) equation, with the ’self-interaction’ terms Yk(aa, r) ∣a⟩
written explicitly, is given by:

(−1

2

d2

dr2
+ l(l + 1)

2r2
− Z
r
) ∣a⟩ + (qa − 1)

r
(Y0(aa, r) − ∑

k>0

⟨la ∥ C(k) ∥ la⟩
2

(2la + 1)(4la + 1)
Yk(aa, r)) ∣a⟩

+∑
b≠a

qb
r

(Y0(bb, r) −
1

2
∑
k

⟨la ∥ C(k) ∥ lb⟩
2

(2la + 1)(2lb + 1)
Yk(ab, r) ∣b⟩) +∑

b≠a
δ(la, lb)qbλab ∣b⟩ = εa ∣a⟩

(10.2)

The Hartree Yk(ab, r) = Yk(ba, r) function is defined as:

1

r
Yk(ab, r) = ∫

∞

0

rk<
rk+1
>

Pa(s)Pb(s) ds

= 1

rk+1 ∫
r

0
skPa(s)Pb(s) ds + rk ∫

∞

r

1

sk+1
Pa(s)Pb(s) ds

= ⟨a(s) ∣ s
k

rk+1
ε(r − s) + rk

sk+1
ε(s − r)∣ b(s)⟩ (10.3a)

The Yk(ab, r) integral may, according to equation (6.4), also be defined implicitly:

Rk(ab, cd) = ∫
∞

0
Pa(r)Pc(r)

1

r
Yk(bd, r) dr (10.3b)

All this implies the asymptotic behaviour:

lim
r→∞

Yk(ab, r) =
⟨a(s)∣sk∣b(s)⟩

rk
= δ(k,0)δ(a, b) (10.4)

Neglecting long-range exchange effects that are physically not meaningful, the asymp-
totic form of UHF becomes:

lim
r→∞

UHF (r) =
qa − 1

r
+∑
b≠a

qb
r
= N − 1

r
(10.5)
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10.1 Average energies in the potential

The interaction energy of a pair of equivalent electrons is given by:

C(aa) = ∑
k

⟨F k⟩(N) = (N
2
) ⟨l ∥ C(k) ∥ l⟩2

(2l + 1)(4l + 1)
((4l + 2) ⋅ δ(k,0) − 1)F k(ll) (10.6)

Similarly for the interaction energy of a pair of nonequivalent electrons:

C(ab) = N1N2 (F 0(ll′) −∑
k

⟨Gk⟩)

= N1N2 (F 0(ll′) − 1
2[l, l

′]−1 ⟨l ∥ C(k) ∥ l′⟩2
Gk(ll′)) (10.7)

For a Brillouin excitation a→ v with la = lv, generalized pair energies for equivalent
and non-equivalent electrons are given by:

C(va;aa) = R0(va;aa) − ∑
k>0

⟨la ∥ C(k) ∥ la⟩
2

(2la + 1)(4la + 1)
Rk(va;aa) (10.8a)

C(vb;ab) = R0(vb;ab) − 1

2
∑
k

⟨la ∥ C(k) ∥ lb⟩
2

(2la + 1)(2lb + 1)
Rk(vb; ba) (10.8b)

If one incorrectly replaces b by a in equation (10.8b), subscripted ’non-eq’, one
obtains only part of the correct result (10.8a), subscripted ’eq’:

C(va;aa)non-eq = δ(la, lv)
4la + 1

4la + 2
C(va;aa)eq (10.9)

Equation (10.9) in fact provides the key to the existence of non-diagonal Lagrange
multipliers (NDLM).

Defining I(a, b) = ⟨a∣HBN ∣b⟩, one uses expressions (10.8a) and (10.8b) to express
the matrix element of the HF potential:

⟨a∣HHF ∣v⟩ = δ(la, lv) (I(a, v) + ⟨a∣UHF ∣v⟩)

= δ(la, lv) (I(a, v) + (qa − 1)C(va;aa) +∑
b≠a

qb C(vb;ab)) (10.10)

10.2 Koopmans’ theorem

By definition, the single electron energy is given by:

εa = I(a, a) + ⟨a∣UHF ∣a⟩ (10.11)

Furthermore, it is straightforward to derive for the total energy of an occupied
configuration A:

EA = ∑
a

qa (I(a, a) + 1
2(qa − 1)C(aa;aa) +∑

b≠a

1
2 qbC(ab;ab))

= ∑
a

qa (I(a, a) + 1
2 ⟨a∣UHF ∣a⟩) (10.12)
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Assume configuration B originates from configuration A by substituting a virtual
electron v for an occupied electron o (o→ v). The energy EB is found from equation
(10.12) by the replacement qo → qo−1 and the addition of the qv = 1 terms. Note that
both in UN−1 and UN−2, one has to solve for the virtual orbitals only; the occupied
orbitals remain frozen in going from A to B.
For UN−1, one retrieves Koopmans’ theorem in its classic form:

EA −EB = εo − εv (10.13a)

However, a similar derivation for the UN−2 case o1o2 → v1v2 reveals a non-trivial
generalization of the energy denominator:

EA −EB = εo1 + εo2 − εv1 − εv2 +C(v1v2; v1v2) −C(o1o2; o1o2) (10.13b)

Equation (10.13b) is also valid if o1 = o2.

10.3 Brillouin’s theorem

For a single excitation from an occupied to a virtual shell o→ v, one obtains
multiplying equation (10.2) with ⟨v ∣ from the right:

⟨v∣HHF ∣o⟩ = δ(lo, lv)(I(v, o) + (qo − 1)C(oo; ov)eq + ∑
a≠o,v

qaC(ao;av)) = 0 (10.14a)

Subsequently, one calculates ∣v⟩ in UN−1, with the replacement qo → qo − 1. This
gives:

⟨o∣HHF ∣v⟩ = δ(lo, lv)(I(o, v) + (qo − 1)C(oo; ov)non-eq + ∑
a≠o,v

qaC(ao;av) + (qo − 1)λov) = 0

(10.14b)

Apparently, with the uses of equation (10.9), one has:

λov = δ(lo, lv)
C(oo; ov)eq

4l0 + 2
(qo > 1) (10.15)

Equation (10.14a), one of the forms of Brillouin’s theorem, can be used in perturba-
tion theory to eliminate effects from the interaction that are included in the Hartree-
Fock potential already. Given the approximation of a frozen core, one can simplify
Brillouin type interactions in Rydberg series interactions like lnl′ ↔ lnl′′ (l′ = l′′),
where the interaction integrals can be treated exactly as the single configuration
Slater integrals when removing average energy contributions. Closed shells effects
and R0(ll′; ll′′) are canceled and the exchange terms of equation (10.8b) are sub-
tracted from the corresponding coefficients of the exchange integrals Rk(ll′; l′′l).
Consequently, Brillouin type interactions may be rewritten in terms of outer shells
only [Froese Fischer, 1978, Froese Fischer, 1977].
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10.4 NDLM involving passive and virtual orbitals

Assuming orbital a to be a spectator of an excitation o → v (UN−1 case, but here
l0 ≠ lv is allowed as well), one obtains directly:

qaλav = δ(la, lv) [(
qa

4la + 2
− 1) C(aa;av) +C(oa; ov)] (10.16)

For the excitation 1s22p3d → 1s22p2s in beryllium, this leads to:

λ1s,2s = 1
2 C(3d1s; 3d2s)

In the B-spline approach to basis set calculations, equation (10.16) cannot be used
directly if the occupied orbital (3d in the example) is an orbital to be determined: a
double or triple occurrence of such orbitals makes the eigenvalue problem non-linear
(Landtman et al 1993). In that case, however, C(oa; ov) can simply be eliminated
from equation (10.14a).
The NDLM in the above example then becomes:

λ1s,2s = −1
2
(I(1s,2s) +C(1s2; 1s2s) +C(2p1s; 2p2s))

For NDLM between occupied orbitals, one of the two shells being a closed shell c,
one obtains:

λco = δ(lc, lo)
C(oo; oc)

4lo + 2
(10.17)

Again, if orbital o has to be determined in a B-spline approach, the triple
occurrence in the above equation prevents it from being used in this form. However,
the Brillouin condition ⟨c∣HHF ∣o⟩ = 0 can again be used to eliminate the problem.
For the Li 1s22s case, this yields:

λ1s,2s = 1
2 C(2s2; 2s1s) = −1

2
(I(1s,2s) +C(1s2; 1s2s))

10.5 Silverstone-Huzinaga potential

In a perturbation calculation, one first calculates the model space states e.g. with
a fully relaxed Hartree-Fock calculation, and subsequently the virtual states as
excitations from this model space, i.e. in the original potential with one or two
electrons removed. In this way, both the occupied and the virtual orbitals feel the
asymptotically correct potential. However, as the UN−1 and UN−2 potentials for
virtual states do not coincide with the full UHF , it is not immediately obvious that
all virtual states are orthogonal to all occupied states. For this reason, Silverstone
and Huzinaga independently developed an operator projection method to define a
new potential USH in which both occupied and virtual orbitals could be determined
simultaneously. Below, it is shown that a natural choice for the potential extension
will exactly yield the UN−1 and UN−2 potentials for the virtual orbitals. The above
requirement may be fulfilled if one subtracts from UHF a potential part Ω that only
operates on virtual states:

USH = UHF −Q† ΩQ (10.18)
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where

Q = 1 − P = 1 −∑
a≠v

∣a⟩ ⟨a∣ (10.19)

is the projection operator on the space of virtual states, i.e. Q ∣a⟩ = 0 and Q ∣v⟩ = ∣v⟩,
and the potential Ω is as yet undefined.
From the above definition of Q, it is a simple matter to work out that for all occupied
orbitals a:

⟨a∣USH ∣a⟩ = ⟨a∣UHF ∣a⟩ (10.20)

On the other hand, from the action of USH on the virtual orbitals:

USH ∣v⟩ = (UHF −Ω + P Ω) ∣v⟩

one finds directly:

⟨v∣USH ∣v⟩ = ⟨v∣UHF −Ω∣v⟩ (10.21)

10.5.1 Choice Ω in the single particle case

To achieve a correct asymptotical behaviour for the case o → c, one defines Ω ∣v⟩ in
accordance with UHF ∣v⟩, the only non-zero occupation being +1 for shell o:

Ω ∣v⟩ = 1

r
(Y0(oo, r) ∣v⟩ − 1

2
∑
k

⟨lv ∥ C(k) ∥ lo⟩
2

(2lv + 1)(2lo + 1)
Yk(vo, r) ∣o⟩) + δ(lv, lo)λvo ∣o⟩ (10.22)

This gives:

USH ∣v⟩ = UN−1 ∣v⟩ + P Ω ∣v⟩ (10.23)

the remaining difference between USH and UN−1 being:

P Ω ∣v⟩ = ∑
a≠v

∣a⟩ ⟨a∣Ω∣v⟩ = ∑
a≠o,v

δ(la, lv)C(ao; vo) ∣a⟩

+δ(lo, lv) (
4lo + 1

4lo + 2
C(oo; ov) + λvo) ∣o⟩ (10.24)

This residue takes the form of NDLM!
With the above specified potential, the quantities λvo and λva are given by:

λva = δ(la, lv) (
1

4la + 2
− 1

qa
) C(aa;av) (10.25)

which is valid whether the orbital a remains passive or equals the excited orbital o.
Combining equations (10.24) and (10.25) to give the total NDLM for the USH case,
they turn out to coincide exactly with the NDLM of the UN−1 potential.
Use of UN−1 (with correctly defined NDLM) is indeed equivalent to using a USH .
As a result, the orthogonality of virtual orbitals calculated with UN−1 is assured.
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10.5.2 Choice Ω in the two-particle case

One may generalize the above method to the two-particle case o1o2 → v2v2 to define
Ω ∣v1⟩ in analogy to UHF ∣v1⟩. Here, the non-zero occupation numbers are +1 for o1

and o2 and -1 for v2. Obviously, Ω ∣v2⟩ is defined in a similar way. The analogue of
equation (10.24) then becomes:

P Ω ∣v1⟩ = ∑
a≠o1,o2

δ(la, lv1) (C(ao1; v1o1) +C(ao2; v1o2) −C(av1; v1v2)) ∣a⟩

+ δ(lo1, lv1)(
4lo1 + 1

4lo1 + 2
C(o1o1; v1o1) +C(o1o2; v1o2)

−C(o1v2; v1v2) + λo1v1) ∣o1⟩

+ δ(lo2, lv1)(
4lo2 + 1

4lo2 + 2
C(o2o2; v1o2) +C(o2o1; v1o1)

−C(o2v2; v1v2) + λo2v1) ∣o2⟩ (10.26)

The NDLM appearing here are the same as in the one-particle case:

λv1a = δ(la, lv1) (
1

4la + 2
− 1

qa
) C(aa;av1) (10.27)

which is valid whether the orbital a refers to a spectator electron or to an excited
electron. A similar formula applies to the NDLM involving v2.
Again, the total NDLM for the USH potential exactly yield the NDLM UN−2 poten-
tial. Like UN−1, UN−2 turns out to be equivalent to the corresponding USH potential,
and the orthogonality of its virtual orbitals is guaranteed.
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B-splines

To solve the Schrödinger equation including valence and core-valence correlation for
atoms and ions, finite basis sets may be constructed from piecewise polynomials
known as B-splines. The radial Schrödinger equation may be written as

0 = LF ∶= [1

2

d2

dr2
+E − V (r)]F (r) (11.1)

L is seen as a quantummechanical operator. The solution of the differential equation
can be approximated by a finite linear superposition of a priori known basis func-
tions. This approach is associated with the names of Rayleigh, Ritz and Galerkin.
With the use of these basis functions, we can write the solution to the differential
equation as:

F̃ = ∑
ν

CνFν(r) (11.2)

in which F̃ is the approximation to the exact solution of the differential equation,
Cν are the unknowns to be determined by a calculation and Fν(r) are the basis
functions. In the Galerkin scheme, we require that the projections of LF̃ on the
basis functions Fµ are zero for each µ

0 = ⟨Fµ∣LF̃ ⟩ (11.3)

yielding the matrix equation:

0 = ∑
ν

Cν⟨Fµ∣LFν⟩ (11.4)

to be solved by straightforward by matrix diagonalization. This diagonalization
provides the eigenvectors that determine the solution with respect to the (a priori)
known basis functions. The desired solution of the radial Schrödinger equation
(equation (11.1)) is then constructed as a linear combination of these basis functions
with the eigenvector components as coefficients (equation (11.2)). This method can
also be used to construct the solutions to our RHF equation, which is after all just
another differential equation like the radial Schrödinger equation.
For a given angular momentum channel, it usually suffices to work with 40 basis
functions. Radial grid points can be chosen freely: to accurately describe continuum
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states, a set of points can be evenly placed at large distances from the atom, and
if the finite size of the nucleus is important, extra points can be placed at very
small distances. Integrals can be evaluated to machine accuracy with Gaussian
integration.
The atom or ion under consideration is confined in a spherical cavity of radius R,
next the interval [0,R] is divided in segments. In the non-relativistic case, this leads
to the boundary conditions that the wavefunction vanish at r = 0 and r = R.
Choosing R ≈ 40/Zion au, where Zion is the ionic charge, is accurate enough to
calculate low-lying excited states. For Rydberg states a larger radius is chosen, say
twice the average radius of the outmost state.
The endpoints of the segments are given by the knot sequence {ti}, i = 1,2, ..., n+ k.
The B-splines of order k,Bi,k(r), on this knot sequence are defined recursively by
the relations:

Bi,1(r) =
⎧⎪⎪⎨⎪⎪⎩

1, ti ≤ r < ti+1

0, otherwise
(11.5)

and

Bi,k(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r
ti+k−1 − ti+1

Bi+1,k−1(r) (11.6)

The knots tk, tk+1, ..., tn are distributed on an exponential scale between 0 and the
cavity radius R.
The spline basis is an expansion of Pl(r) in terms of B-splines of order k:

Pl(r) =
n−1

∑
i=2

piBi(r) ↔ ∣a⟩ = ∑
i

pi ∣Bi⟩ First and last splines are discarded. (11.7)

Application of the variational principle leads to an (n−2)×(n−2) eigenvalue equation:

H v = ε S v (11.8)

with v the vector of expansion coefficients vT = (p2, p3, ...., pn−1)T .
For single-electron atoms, the matrices H and S are given by:

Hij = ⟨Bi∣HBN ∣Bj⟩ = ⟨Bi ∣−
1

2

d2

dr2
+ l(l + 1)

2r2
− Z
r
∣Bj⟩ (11.9a)

Sij = ⟨Bi∣Bj⟩ = ∫
R

0
Bi(r)Bj(r)dr (11.9b)

The notation ⟨Bi∣O∣Bj⟩ implies the integration ∫
R

0 (BiOBj) dr.
The matrices H and S are sparse, diagonally dominant banded matrices; the
definition directly implies: ⟨Bi∣Bj⟩ = 0 for ∣i − j∣ ≥ k.
After solution, one obtains (n − 2) real eigenvalues ελ and (n − 2) eigenvectors vλ.
The eigenvectors satisfy the orthogonality relations:

∑
i,j

vλi Sij v
µ
j = δλµ (11.10)
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With H =HBN +U , one may derive equation (11.8):

H ∣∑
i

piBi⟩ = E ∣∑
i

piBi⟩ →∑
i

⟨Bj ∣H ∣piBi⟩ = ∑
i

Ei δij pi ⟨Bj ∣Bi⟩

In Hartree-Fock calculations, the matrix elements Hij are extended with the UHF
contribution. Below, equation (10.2) is used with qa = 1; note that the remaining
core remains frozen for applications in perturbation theory, and the sum runs over
occupied states b.

Hij = ⟨Bi∣HBN +UHF ∣Bj⟩ = ⟨Bi∣HBN ∣Bj⟩

+ ∑
b

qb ⟨Bi ∣
1

r
Y0(bb, r)∣Bj⟩ −

1

2
∑
k

⟨la ∥ C(k) ∥ lb⟩
2

(2la + 1)(2lb + 1)
⟨Bi∣Yk(bBj, r)∣b⟩ +∑

b

δ(la, lb)qbλab∣b >

(11.11)

11.1 Projection operators [Bentley, 1994]

The orthogonality-constrained one-body eigenvalue problem is formulated for com-
plete, finite-dimensional spaces in terms of projection operators that partition the
space into two orthogonal subspaces, one containing the constraints and one con-
taining the desired solutions. We derive a Hermitian operator, associated with the
Hamiltonian, having eigenvectors that are correspondingly partitioned, each subset
of the eigenvectors providing a basis for one of the subspaces. This Hermitian oper-
ator advantageously replaces a non-Hermitian operator that was proposed in recent
work of this group. The non-zero spectrum of the two operators is demonstrably
the same, and the occurrence of null eigenvalues is clarified through characterization
of the associated eigenvectors. The deviation from zero of these eigenvalues (apart
from numerical inaccuracies) is related directly to the normalization of the constraint
vectors. The formalism is extended to the case of non-orthonormal primitive basis
sets, and a numerical application is carried out using B-spline functions.

Analogous to the projection operator Q = 1 − P defined earlier in equation (10.19),
a Hermitian virtual space projector Q is found that satisfies both

Q∣v > = ∣v > and

QH ∣v > = ε∣v > (11.12)

whereas P ∣a >= ∣a > and P ∣v >= 0.

Any eigensolution of QH corresponding to ε ≠ 0 lies entirely in Q-space and is there-
fore orthogonal to ∣a >. In principle, QH may be non-Hermitian, but the Hermitian
operator QHQ (by definition with real eigenvalues and orthogonal eigenvectors)
shares the same spectrum:

QHQ∣v > = ε∣v >
QHQ∣a > = 0 ⋅ ∣a > (11.13)
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More general: expand an arbitrary model state ∣a >= ∑i ui∣φi > in an orthonormal
basis, with the coefficient vector uT = (u1, u2,⋯, uN)T . Then:

P = uuT Q = 1 − uuT (11.14)

the constrained eigenvalue problem for the vi then becomes:

(1 − uuT )H (1 − uuT ) v = ε v (11.15)

with the Hamiltonian matrix H defined as Hij =< φi∣H ∣φj >.
If there are M independent vectors of constraint, QHQ will have N −M eigenvectors
lying in Q-space and M zero eigenvalues corresponding to eigenvectors lying in P-
space spanned by M eigenvectors.

11.2 Extension to non-orthonormal basis sets

The matrix relation (11.15) must be modified upon representation of the states in
terms of a non-orthonormal basis, as for example the increasingly popular B-spline
functions (which are neither normalized, in the usual sense, nor orthogonal) or the
long-established Gaussian functions.
Let the states ∣a> and ∣v> be represented by ∣a>= ∑N

i=1 pi ∣Bi> and ∣v>= ∑N
i=1 qi ∣Bi>.

The coefficient vectors are pT = (p1, p2,⋯, pN)T and qT = (q1, q2,⋯, qN)T .
The non-diagonal overlap matrix S is by equation (11.9b) defined as Sij = ⟨Bi∣Bj⟩.
Now, normalization and orthogonality are expressed by:

< a∣a >= pT S p = 1 and (11.16a)

< a∣v >= pT S q = 0 (11.16b)

The eigenvalue equation (see equation (11.8)) becomes:

H q = ε S q (11.17)

In the non-orthonormal B-spline basis set, the matrices P and Q remain Hermitian
but do not remain projectors.
Introducing the constraint matrix C = ppT , one obtains for P :

P = ∑
m,n

pmpn ∣Bm><Bn∣ → Pij = ∑
m,n

pmpn SimSnj

P = SppTS = SCS → Q = S − SCS (11.18)

Upon defining, for notational convenience:

U = CS → P = SU and W = 1 −U → Q = SW (11.19)

From this, it is straightforward to show: WW =W UU = U UW =WU = 0.
So, though non-Hermitian, U and W are orthogonal projectors.

Up = ppTSp = p and Wq = q (11.20)
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demonstrates that states ∣a> lie in U−space and ∣v> in W−space.
As a result, solutions ∣v> will automatically be orthogonal to all ∣a>:

⟨a∣v⟩ = pTSq = pTSWq = pT (S − SCS)q = pTSq − pTSppTSq = pTSq − pTSq = 0.

The analogon of equation (11.13) thus becomes:

W T H W q = ε S q (11.21)

Written out more explicitly, the final expression to be compared with equation
(11.15) becomes:

(1 − SppT )H(1 − ppTS) q = ε S q (11.22)

As the contraint orbitals ∣a > and their coefficient vectors p are supposed to be
known in advance, it is straightforward to construct the required operator W .



Chapter 12

Least Squares Fitting

In the least squares fitting process (LSF), one seeks to obtain an optimal agreement
between measured data and corresponding quantities calculated from a theoretical
model (i.e. an assumed functional form of the data). The model is based on a
restricted number of parameters. These parameters are adjusted, or ’fitted’, so as
to minimize the LSF sum R2. If we denote the experimental values as Ei and the
associated model values Ti, then:

R2 = ∑
i

wi(Ei − Ti)2 = ∑
i

ε2
ii (12.1)

In the above, the index i (i = 1, ....,N) is assumed to run over the known experimen-
tal values Ei. The factor wi represents the weight assigned to the ith value. Taking
the derivative of R2 with respect to a particular parameter Pl (l = 1, ....,M where
M equals the number of parameters) and requiring it to be zero, one obtains:

∑
i

wi(Ei − Ti)
∂Ti
∂Pl

= 0 (∀l = 1, ...,M) (12.2)

If (12.2) is not satisfied by the actual parameters Pl, the latter will be improved
by increments ∆Pl following from the requirement that (12.2) is now satisfied by
P ∗ = Pk +∆Pl. This leads to the well known set of equations to be solved iteratively
in the LSF:

∑
m=1,..,M

Alm ⋅∆Pm = ∑
m=1,..,M

(∑
i

wi
∂Ti
∂Pl

∂Ti
∂Pm

)∆Pm

=∑
i

wi
∂Ti
∂Pl

(Ei − Ti) (∀l = 1, ...,M) (12.3)

In the present case, we want to assign to each energy level a weight proportional to
its number of degenerate magnetic sublevels (2J+1). In order to retain a meaningful
definition of the mean errors and compatibility with previous LSF ( wi(old)= 1 for
each level). the weighting factors have to be normalized in the sense:

∑
i

wi(new) = ∑
i

wi(old) (12.4a)

or

∑
i

wi(new) = N (12.4b)
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Equation (12.4) implies that:

wi(new) = (2Ji + 1)
(2J + 1)av

= (2Ji + 1)(∑
k

(2Jk + 1)
N

)
−1

. (12.5)

N denotes the number of known experimental levels.
Using (12.5), one can verify equation (12.4b), again provided that the indices i and
k in (12.4) and (12.5) only run over known experimental levels.

Racah’s average deviation σ between experimental and calculated levels is still
defined as:

σ = ( R2

N −M
)

1
2
= (∑i wi(Ei − Ti)2

N −M
)

1
2

= ( ∑i ε
2
ii

N −M
)

1
2

(12.6)

but of course now the wi(new) have to be inserted. The same is true for the mean
errors RMSl on the parameters Pl:

RMSl = σ (A−1
ll )

−1
2 (12.7a)

where A−1
ll is a diagonal matrix element of the inverted matrix Alm occurring on the

LHS of (12.3):

(∑
i

wi
∂Ti
∂Pl

∂Ti
∂Pm

) (12.7b)

On the whole process of the above weighted fitting, a general remark is in order. In
other fields, LSF are often used to ’smooth away’ irregularities in the experimental
data due to measuring errors. In the parametric theory of atoms, however, the ex-
perimental accuracy is mostly as least a factor of ten better than the theoretical one,
even after the parameters have been fitted. So in this case it is rather the deficient
model that causes the remaining differences between calculation and measurement.
Reduction of these differences can only be achieved by an improvement (i.e. an
extension) of the model, not by improving the experimental accuracy. Therefore,
the introduction of the weighting factor is not based on the experimental grounds
of reliability of measurements, but on the idea of making the model as consistent
as possible. It takes into account the number of physical levels that, although de-
generate, actually do exist for a particular J-value; the same applies to the inner
products of operators.
In the same spirit, it has been suggested by [Judd et al., 1989] to minimize the alter-
native expression ∑ij εij εji instead of the conventional ∑i ε

2
ii. However, this would

complicate the above introduction of a new weighting factor.

12.1 Orthogonality

Consider the solution to a system of non-homogeneous equations described by a
matrix equation Ax = b where x is a vector of parameters (to be determined) and
the vector b corresponds to the observed energy level values in our case while the
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matrix A contains the (diagonal) matrix elements of the operators associated with
the parameters. The number of parameters is assumed to be smaller or equal to the
number of energy levels. In our case due to errors of measurement the system most
likely will not have an exact solution. In linear algebra it is shown that in this case
the best solution in the least-squares sense is given by

x = (ATA)−1
ATb (12.8a)

where AT is the transpose of A. Thus a solution involves inverting the product
matrix ATA. In general this will make the value of each xi dependent on all others.
However, if the matrix A is orthogonal, so that each row (column) is orthonormal
to any other row (column) we have AT = A−1 and the equation simplifies to:

x = ATb (12.8b)

if we write the above in terms of components we have

xi = ∑
j

aijbj (12.8c)

In this equation the summation is over the experimental energy levels (the b vector)
multiplied by the matrix elements of the i’th operator (the aij). Thus the value of
the parameters xi associated with the i’th operator is determined independently of
any other parameter which is the situation we want. If the rows (columns) of the
matrix A are orthogonal to each other but not normalized to 1, the inverse of the
ATA matrix is still a diagonal matrix, but not the unit matrix, which only changes
the sizes of the parameters but not their dependence.
As the model matrix A may be rectangular and thus has no inverse, the system is
not exactly soluble.
One multiplies both sides of the expression Ax ≈ b from the left with the transposed
matrix AT , resulting in ATAx = ATb.
As the matrix ATA is known to be invertable, one may multiply both sides with
(ATA)−1, ending up with x = (ATA)−1ATb.

Steps:

1. Calculate AT from A.

2. Next, calculate (ATA)−1

3. The RHS of the equation x = (ATA)−1ATb is now completely known.
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Group theory, a bird’s-eye view

1931,1932 [Weyl, 1931, Wigner, 1931, van der Waerden, 1932] introduce groups
among other things in angular momentum theory. Groups account for symme-
tries in physical structure. [Noether, 1918]: to every symmetry, there belongs
a conserved quantity i.e. a ’constant of motion’.

1935 [Condon and Shortley, 1935]: one can do without!

1942 [Racah, 1942a, Racah, 1942b] introduces the tensor operator T
(k)
q with the

same transformation
properties as the angular momentum state ∣J,MJ > with J = k and MJ = q.
For scalars (like energy operators): k = 0, the operator cannot change the
J-value between bra and ket.
For vectors (like the electric dipole operator): k = 1,∆J = 1 at maximum.

Transformation under the generators Ax,Ay and Az of a continuous Lie group.
For example, an electron i is rotated by Az = `z = −i ∂∂φ :

→ the operator exp (i∆φAz) converts f(θ, φ) into f(θ, φ +∆φ).
Terminology: A⃗ generates the group R3 or SO(3).

A⃗ = ⃗̀ rotates each electron individually

A⃗ = L⃗ rotates all electrons as a whole: SOL(3)
A⃗ = S⃗ rotates total electron spin: SOS(3)

The Wigner-Eckart theorem can be applied: this separates the geometric
features of a problem (like ML, q,MS) from intrinsically physical aspects. This
simplification allows for the calculation of many matrix elements!

1949, 1951 [Racah, 1949] introduced in the fn configuration space a scheme of ba-
sis states belonging to unitary irreducible representations of a chain of semi-
simple continuous groups, each of which is a subgroup of the preceding group
in the chain. Racah established the chain from groups of unitary transforma-
tions in the space spanned by the 2l + 1 single-electron wave functions ψnlml .
As the largest group he chose the unitary group U(2l+1). It has as subgroups
the orthogonal group O(2l + 1) which leaves invariant the symmetric S state
∣l2L = 0⟩ of two electrons, and the group O(3) of three dimensional rotations.

143



144 CHAPTER 13. GROUP THEORY, A BIRD’S-EYE VIEW

For l ≥ 2, the corresponding group chain is U(2l+1) ⊃ O(2l+1) ⊃ O(3), or even
a longer chain. The reduction chain SO(7) ⊃ G2 ⊃ SO(3) is historically among
the first examples of the so-called internal labeling problem. The irreducible
representations of U(2l+1) are characterized by their permutational symmetry
and the corresponding quantum number is S. The irreducible representations
of O(2l + 1) are characterized by the seniority quantum number ν, and the
irreducible representations of O(3) are characterized by L. Thus group theory
leads one to the seniority scheme with basis states ∣lnνLMLSMS⟩, which for
the configurations dn overcomes the term multiplicity problem without ad-
ditional quantum numbers α. For fn, additional quantum numbers are still
required. Racah found that for l = 3, there is a unitary group G2 [one of
the five special groups in Cartan’s classification in his 1894 thesis], which is a
subgroup of O(7) and contains O(3). He adopted a scheme corresponding to
irreducible representations of the group chain U(7) ⊃ O(7) ⊃ G2 ⊃ O(3) with
basis states ∣fnαWULMLSMS⟩, where W is a three-component vector char-
acterizing the irreducible representations of O(7) similarly to the seniority, U
is a two-dimensional vector characterizing the irreducible representations of
G2, and α denotes additional quantum numbers when required. In the f shell,
there are four Slater parameters F 0, F 2, F 4 and F 6, and three generalized
Trees [Trees, 1963] parameters α, β and γ. The effects of distant configu-
rations involving single-electron excitations involve six additional parameters
T i, which are associated with three-electron scalar operators [Judd, 1966]. The
principal difference of this analysis from that of the d shell lies in the more
extensive use of the theory of groups. Instead of the F k, it is more conve-
nient to use the four linear combinations E0, E1, E2 and E3 introduced by
[Racah, 1949]. The associated operators e0, e1, e2 and e3 are each labeled by
an irreducible representation W of SO(7) and U of G2. The same is true of the
operators ti, associated with the T i. The use of groups simplifies the calcula-
tion of matrix elements and helps distinguish spectroscopic terms possessing
the same values of the quantum numbers S and L, the total spin and total
orbital angular momentum.
Group theory helps in other ways. One of the more remarkable developments
is the construction of orthogonal operators. Consider the two operators H1 and
H2 that belong to the two non-adjoint irreducible representations Γ1 and Γ2

of a group G. If the collection of states ∣ψn⟩ forms a basis for a representation
(not necessarily irreducible) of the group G, then the equation

∑
n,m

⟨ψn∣H1∣ψm⟩ ⟨ψm∣H2∣ψn⟩ = 0 (13.1)

follows from the fact that H1H2 does not contain the identity representation
Γ0 of G [Judd, 1984]. Any two operators of differing symmetries Γ1 and Γ2

(i.e., for which Γ1Γ2 does not contain the identity representation) are auto-
matically orthogonal. The fact that the operators of a set are all mutually
orthogonal in their parent configuration, and that among them is to be found
the total scalar Eav, guarantees orthogonality in all configurations with larger
N [Judd, 1984].
The construction of the orthogonal operators for configurations of equivalent
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electrons is greatly facilitated by the use of Lie groups such as U(4l + 2),
Sp(4l + 2) (the symplectic group in 4l + 2 dimensions), SO(2l + 1) and G2.
Operators that are characterized by different sets of irreducible representa-
tions are necessarily orthogonal provided that the collection of terms ψ (or ψ′)
over which the sums are made form a basis for a representation (not neces-
sarily irreducible) of the group being used [Judd, 1984]. However, it does not
always turn out that operators constructed with well defined group theoreti-
cal properties are the most appropriate. The operator e2, mentioned earlier,
corresponds to a single set of irreducible representations of the groups U(14),
Sp(14), SO(7) and G2: but e3 does not. We can resolve e3 into two parts, each
having a single set of group labels, by writing e3 = (e3 +Ω) −Ω, where Ω is re-
lated to Casimir’s operator for G2 [Racah, 1949], but the separate parts e3+Ω
and Ω incorporate not only the Coulomb interaction between the f electrons
but also effective operators of the Trees type. It would clearly be better to use
a different pair of orthogonal operators, one of which is e3. A detailed calcula-
tion reveals that the other has to be e3+5Ω [Judd and Crosswhite, 1984]. The
SO(7) and G2 labels remain good, but the symplectic representations become
mixed. This disadvantage is offset by having two operators (e3 and e3 + 5Ω)
whose strengths are represented by a large parameter (for e3) and a small one
(for the generalized Trees operator e3+5Ω). The corresponding parameters for
e3 +Ω and Ω would both be large and the effects of configuration interaction
would be masked by the larger first-order Coulomb interaction.
Racah also introduces non-invariance or non-symmetry groups:
the generators of these groups do not commute with the Hamiltonian, i.e. they
are not conserved quantities or constants of motion. Therefore, they do not
yield ’good’ quantum numbers to label states in nature.
A typical example is given by the two 2D states in d3: 2

1D corresponds to a
different SO(5) label then 2

3D; the ’real’ 2D’s are linear combinations of them.
Non-symmetry groups provide a convenient basis to construct energy matrices
from. In this respect, SO(3) is an exception as L is a physical label.

1965,1967 [Racah, 1949, Judd, 1967]: The 4l + 2 components of the creation op-
erator a† form a basis for the irreducible representation of the special unitary
group SU(4l + 2); this representation remains irreducible with respect to the
below chain of groups:

SU(4l + 2) ⊃ Sp(4l + 2) ⊃ SOS(3) × SO(2l + 1) ⊃ SOS(3) × SOL(3)

For the dN configuration, this results in the following:

SU(10) → Sp(10) → SOS(3) × [SO(5) → SOL(3)]

The symplectic group Sp(10) leaves bilinear, anti-symmetric forms (like Slater
determinants) invariant in the ten-dimensional space spanned by the two ms

and the five ml components of the d-electron.
The rotation group in five dimensions SO(5) leaves the angle between the
five-dimensional vectors of the orbital space of the d-electron invariant.

1982 [Judd et al., 1982] introduce the concept of orthogonality. For a more thor-
ough understanding of the orthogonalized Trees operator [Trees, 1963] T1,
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group theory comes into play. The groups of interest are O(5), the orthogonal
(rotation) group in the space of the five orbitals of the d electron, Sp(10),
the symplectic group spanning the 10 spin orbitals, and O(20), the orthogonal
group whose generators include operators that create and annihilate pairs of
electrons. The sequence

O(20) ⊃ OQ(3) × Sp(10) ⊃ OQ(3) ×O(5) ⊃ OQ(3) ×OL(3)

indicate a succession of groups and subgroups. The groups OQ(3) and OL(3)
have Q and L as their respective generators.

1967,1985 [Hansen and Judd, 1985]: introduce 5 two-electron magnetic operators,
the largest two of which have the same SO(5) label (11) as the well-known
spin-orbit operator. Operators labeled by different irreducible representations
(irreps) are automatically orthogonal.

1997 [Hansen et al., 1997]: a physical higher order symmetry is found! From the 16
possible three-electron magnetic operators, only the four operators labeled by
the SO(5) label (11) seem relevant for this interaction: a symmetry of nature!

Search for a model!

To restrict third order effects to the (11) symmetry already found in the spin-orbit
operator ζ, the remaining two interactions should be SO(5) scalars:

(00) ⊗ (00) ⊗ (11) = (11)

The principle example of a SO(5) scalar is the delta-function interaction:

∑
i<j

δ(r⃗i − r⃗j)

Surprisingly, this is not too bad an approximation for the Coulomb interaction itself!
Below projections of the third-order operators:

o2 ⊗ o2 ⊗ ζd and δ ⊗ δ ⊗ ζd

yield the following results:....

A restriction to the pure irreps ⟨00000⟩ and ⟨22000⟩ of Sp(10), yielding two op-
erators e1 and e2, does even better:

e1 ⊗ e1 ⊗ ζd and e2 ⊗ e2 ⊗ ζd



147

Table 13.2: Theoretical and experimental ratios p(yi)/p(y6) between the y(11) parame-

ters. The three theoretical cases A, B and C refer to third order calculations described in

[Hansen et al., 1997]; the number of decimals in the experimental ratios reflects the accuracy of

the fitted values.

p(y1) p(y3) p(y6) p(y7)
A -1.50 2.75 1 - 0.54
B 1.20 0.55 1 - 0.54
C 0.59 0.55 1 - 0.54
Cr IV 0.2 0.5 1 - 0.46
Ni IV 0.2 0.2 1 - 1.0
Fe V 0.4 0.5 1 - 0.1
Ni V 0.1 0.4 1 - 0.45

Table 13.1: ∆E values (in cm−1) for the 3d3 and 3d7 configurations of triply-ionized iron group

elements, with and without a three-particle magnetic contribution from the y(11) set. The senior-

ities of the two 2D terms are given as a subscripted prefix to the L value. In the least squares

fitting, the levels are weighted with their degeneracy 2J + 1.

Cr IV (3d3) Ni IV (3d7)
without with with without

J = 1/2 2P 1.51 1.08 1.27 2.47
4P -0.32 -0.83 -1.53 -2.77

J = 3/2 2
1D -0.23 0.00 0.06 0.49
2
3D 1.38 0.16 -0.12 1.21
2P -1.76 -0.66 -0.67 -1.67
4P -0.02 -0.05 0.12 -0.26
4F 1.42 0.10 0.12 -2.97

J = 5/2 2
1D 0.16 0.16 -0.01 -0.34
2F -0.68 -0.61 0.25 1.13
2
3D -0.21 -0.53 -0.03 -0.73
4P 0.14 0.69 0.54 1.07
4F 0.83 -0.11 -0.26 -2.04

J = 7/2 2F 0.51 0.20 -0.24 -0.85
2G -1.31 0.15 -0.04 1.82
4F 0.22 0.03 0.52 0.58

J = 9/2 2H -0.92 0.13 -0.08 2.23
2G 1.06 0.50 0.19 -1.55
4F -1.24 -0.23 -0.37 1.95

J = 11/2 2H 0.72 -0.27 0.02 -1.66



Chapter 14

Inner products and orthogonality

By definition, the inner product of two operators u and v is defined as:

u ∶ v = ∑
Ψ,Ψ′

⟨Ψ ∣ u ∣ Ψ′⟩ ⟨Ψ′ ∣ v ∣ Ψ⟩ (14.1a)

where the summation runs over all states Ψ,Ψ′ of the system. The inner product is
commutative by definition.
Taking magnetic degeneracy into account, this can be reduced to:

u ∶ v = ∑
ΨJ ,Ψ

′
J

[J] ⟨ΨJ ∣ u ∣ Ψ′
J⟩ ⟨Ψ′

J ∣ v ∣ ΨJ⟩ (14.1b)

or, in the case of electrostatic operators:

u ∶ v = ∑
ΨSL,Ψ

′
SL

[S,L] ⟨ΨSL ∣ u ∣ Ψ′
SL⟩ ⟨Ψ′

SL ∣ v ∣ ΨSL⟩ (14.1c)

Mutual orthogonality of two matrices u and v is defined as: Tr (uv†) = 0.
For a Hermitian matrix basis uµ, this reduces to:

Tr (uµ vν) = δµν (14.2)

If uµ is such an orthogonal matrix basis, so is T †uµT , where T is a unitary trans-
formation like a change of coupling matrix.
Therefore, orthogonality implies u ∶ v = 0 whereas u ∶ u is the square of the norm of
u. Below, we assume the operators to be in their spherical tensor form, with ranks
t and t′:

u ∶ v = ∑
Ψ,Ψ′

⟨ΨJMJ ∣ u(t)Q ∣ Ψ′J ′M ′
J⟩ ⟨Ψ′J ′M ′

J ∣ v(t
′)†

Q′ ∣ ΨJMJ⟩ (14.3)

Using the Wigner Eckart theorem, and the fact that, according to equation (3.6):

v
(t′)†
Q′ = (−1)Q′

v
(t′)
−Q′

we arrive at:

u ∶ v = ∑
Ψ,Ψ′

(−1)J−MJ (−1)J ′−M ′
J( J t J ′

−MJ Q M ′
J

) ( J ′ t′ J ′

−M ′
J −Q′ MJ

)

(−1)Q′ ⟨ΨJ ∥ u(t) ∥ Ψ′
J ′⟩ ⟨Ψ′

J ′ ∥ v(t
′) ∥ ΨJ⟩ (14.4)

148
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Rearranging:

u ∶ v = ∑
MJ ,M

′
J

(−1)J−J ′(−1)J+t+J ′(−1)J+t′+J ′( J J ′ t
−MJ M ′

J Q
) ( J J ′ t′

−MJ M ′
J Q

)

× ⟨ΨJ ∥ u(t) ∥ Ψ′
J ′⟩ ⟨Ψ′

J ′ ∥ v(t
′) ∥ ΨJ⟩

= ∑
Ψ,Ψ′

(−1)J−J ′ δ(t, t′) [t]−1 ⟨ΨJ ∥ u(t) ∥ Ψ′
J ′⟩ ⟨Ψ′

J ′ ∥ v(t) ∥ ΨJ⟩ (14.5)

Each energy operator, being a scalar with respect to the total electronic angular
momentum J , can be expanded in double tensors T (kk)0 where the rank k assumes
the values 0, 1 and 2 in the spin and orbital space.
Again, recoupling and summation over J and J ′ by equation (2.19) can be used to
write inner products between double tensors in a J-independent form.
Starting from equation (14.5) with use of equation (3.42):

u ∶ v = ∑
J,J ′

(−1)J−J ′ δ(t, t′) [J, J ′]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S S′ κ
L L′ k
J J ′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S′ S κ′

L′ L k′

J ′ J t′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ ⟨Ψ SL ∥ u(κk) ∥ Ψ′ S′L′⟩ ⋅ ⟨Ψ′ S′L′ ∥ v(κ′k′) ∥ Ψ SL⟩

= ∑
J,J ′

(−1)J−J ′ δ(t, t′) [J, J ′]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S L J
S′ L′ J ′

κ k t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S L J
S′ L′ J ′

κ′ k′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)(S+L)+(S′+L′)+(κ′+k′)+(J+J ′+t) ⋅ (−1)−(2S′+2L′+2J ′)

⋅ ⟨Ψ SL ∥ u(κk) ∥ Ψ′ S′L′⟩ ⋅ ⟨Ψ′ S′L′ ∥ v(κ′k′) ∥ Ψ SL⟩
= ∑

Ψ,Ψ′
δ(κ,κ′) δ(k, k′) δ(t, t′) (−1)κ+k+t ⋅ [κ, k]−1 ⋅ (−1)(S+L)−(S′+L′)

⋅ ⟨Ψ SL ∥ u(κk) ∥ Ψ′ S′L′⟩ ⋅ ⟨Ψ′ S′L′ ∥ v(κk) ∥ Ψ SL⟩ (14.6)

14.1 Projections

In parametric theory, the operator space is spanned by a set of orthogonal operators
Hi = piPi, where the angular operators pi ∶ pj = 0 (i ≠ j) form an orthogonal set {pi}
and the radial factors Pi are treated as parameters.
In principle, projections of Hamiltonian operators onto this basis can now be
calculated exactly. Any physical operator U = vV , written as a product of an angular
operator v and a radial factor V , can be expressed in terms of a complete basis set
of orthogonal operators by elementary linear algebra. Firstly, the angular part is
given by:

v = ∑
i

αi ⋅ pi = ∑
i

[v ∶ pi]
[pi ∶ pi]

⋅ pi (14.7)

Consequently, the operator U is expanded as:

U = ∑
i

pi ⋅∆Pi = v ⋅ V = (∑
i

αi ⋅ pi) ⋅ V
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The individual contributions ∆Pi now follow immediately:

∆Pi = αi ⋅ V = [v ∶ pi]
[pi ∶ pi]

⋅ V → Pi = ∑
U

[v ∶ pi]
[pi ∶ pi]

⋅ V (14.8)

The projection of the operator U = vV on a finite (and possibly incomplete) basis
{pi} is complete if and only if the magnitude of the operator equals the sum of the
magnitudes of its projections:

[v ∶ v] = ∑
i

[v ∶ pi]2

[pi ∶ pi]
(14.9)

Equation (14.9) can be used to find the percentages by which a given operator is
represented in subsets of a particular type like first, second or third order, or of a
particular n-particle character.
Alternatively, any ’new’ operator t describing effects that are not yet completely
covered by the original orthogonal operator set, will naturally not be completely
represented by {pi}. It may however be orthogonalized straightforwardly:

t⊥ = t −∑
i

αi ⋅ pi = t −∑
i

[t ∶ pi]
[pi ∶ pi]

⋅ pi (14.10)

14.2 N-dependence and n-particle character

Denoting the zero-particle unit operator as 1, the trace Tr (H) of an operator H
will be [H ∶ 1] in this notation. In particular, [1 ∶ 1] = (4l+2

N
) is the number of states

in the lN configuration, the general case being given by [1 ∶ 1] = ∏shell l (4l+2
N

).
Therefore:

[H1 ∶H2](N) = [H1H2 ∶ 1](N) = Tr (H1H2)(N) (14.11)

Let Hn be an n−particle operator in the lN shell. Its average energy equals the trace
divided by the number of states in the shell. From the useful identity:

(4l + 2 − n
N − n

)(4l + 2

N
)
−1

= (N
n
)(4l + 2

n
)
−1

(14.12)

it follows:

Tr H
(N)
n = (4l + 2 − n

N − n
) Tr H

(n)
n (14.13)

Given that [1 ∶ 1] = (4l+2
N

), one may conclude that the unit matrix eav = 1, i.e. the
angular part of Eav, is a zero-particle operator. The trace of an arbitrary operator
yields its average energy contribution. From the above, it follows directly that the
condition for ’no shift’ of any Coulombic operator H means Tr H = 0.
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This leads to relations like:

Eav(dnp) = E(dnp) + 2

3
n(10 − n)αdd

+ 1

18
n(n − 1)β + 35

36
n(9 − n)(10 − n)T + 2αdp (14.14)

The Coulomb interaction, unlike the spin-orbit interaction, shifts the center of gravity while
splitting a configuration into terms.
[Slater, 1960] defined his operators f2 and f4 as early as 1960 to be traceless by extracting
the average energy contributions −2/63 ⋅ (f2 + f4) and thus orthogonalized them to the
average energy operator avant la lettre; however, they still remain non-orthogonal to one
another, application of equation (14.10) gives:

f4⊥ = f4 +
10

53
f2 (14.15)

Inner products are properties of the operators, not just of their matrix elements
in a particular configuration. Therefore, the inner product of two operators in any
configuration is closely related to the inner product in their parent configuration,
i.e. in the configuration where they both first, as a function of N , appear.
The N -dependence of the inner product is given by:

[H1 ∶H2](N) = α Tr H
(n)
1 ⋅Tr H

(n)
2 + β [H1 ∶H2](n) (14.16)

The coefficients α and β only depend on N , the number of electrons the shell, and on
n1 and n2, the n−particle characters of the two operators: α and β are independent
of the operators in question.

Below, two operators H1 and H2 are considered, with n−particle characters in
the lN shell of n1 and n2, respectively. It is assumed that n2 ≥ n1; for the operator
product H1H2 to exist in the lN shell, it follows: n2 ≤ N ≤ 4l+2−n1. The n−particle
character of H1H2 now ranges from n2 to n1 + n2.

Tr (H1H2)(N) = (4l + 2 − n
N − n

) Tr (H1H2)(n)↔ Tr O
(N)
n = (4l + 2 − n

N − n
) Tr O

(n)
n (14.17)

[H1 ∶H2](N) = Tr (H1H2)(N)

= ∏
shell l

n1+n2

∑
n=n2

(−1)n−n2( n1

n − n2

)(4l + 2 − n
N − n

) [H1 ∶H2](n2)

= ∏
shell l

(4l + 2 − n1 − n2

N − n2

) [H1 ∶H2](n2) (14.18)

where n1 and n2 are the n−particle characters of the operators H1 and H2 in the
shell characterized by orbital angular momentum l. Thereby, the expression for the
coefficient β introduced in the above turns out be:

β(n1, n2,N) = (4l + 2 − n1 − n2

N − n2

) (14.19)

The coefficient α is less interesting when dealing with orthogonal operators, as all
of them are traceless except the eav operator. The expression is given below for
completeness:

α(n1, n2,N) = (4l + 2

n2

)
−1

[(N
n1

)(n2

n1

)
−1

(4l + 2 − n2

N − n2

) − (4l + 2 − n1 − n2

N − n2

)] (14.20)
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The N -dependence of the magnitude [H ∶H] of an operator H obviously constitutes
an important special case of the β(n,n,N)−coefficient:

[H ∶H](N) = Tr (H2)(N) = ∏
shell l

(4l + 2 − 2n

N − n
) [H ∶H](n) (14.21)

Equation (14.21) is also given by [Judd and Leavitt, 1986], derived from group-
theoretical arguments. One can verify that β is invariant under conjugation, as
it should:

β(n,n,N) = β(n,n,4l + 2 −N) (14.22)

The derivation relies on the below mathematical formula, to be proved with the
Zeilberger algorithm after a transformation to hypergeometric functions:

n

∑
k=0

(−1)k (n
k
) (a − k

b − k
) = (a − n

b
) (14.23)

With the identifications a→ 4l+2−n2, b→ N −n2, n→ n1 and k → n−n2, equation
(14.18) is retrieved from equation (14.23).
Exactly this relation (14.23), valid for a ≥ n ≥ 0 and a ≥ b ≥ 0, is also given by
[Edmonds, 1957] (equations A1.1 and A1.2), leading to:

n

∑
k=0

(−1)k (a − k)!
k!(n − k)!(b − k)!

= (a − b)!(a − n)!
n! b! (a − b − n)!

(14.24)

Any operator with a particular n−particle character can be expressed in terms of
second quantization, so it basically suffices to calculate inner products of second
quantized operators. As an example, the below operator product contains both a
two-particle and a one-particle part:

(a†a)(kk)0 ∶ (a†a)(kk)0 = [k]−1∑
SL

[S,L] ⟨ΨSL ∣{(a†a)(kk) (a†a)(kk)}
(00)

∣ΨSL⟩

= (4l + 2 − 2

N − 2
) [(4l + 2)δ(k,0) − 1] + (4l + 2 − 1

N − 1
) ⋅ 1 (14.25)

The progression of the N -dependence may be calculated straightforward. For a
single shell lN , the contribution of an arbitrary n−electron operator U = vV to an
orthogonal m−electron parameter Pi (m ≤ n) is given by:

∆Pi = (N
n
)(n
m

)(N
m

)
−1 [v ∶ pi]

[pi ∶ pi]
V (14.26)

Therefore, the dependence on the number of electrons is given by the normalized
ratio of weighting factors

Q = (N
n
)(n
m

)(N
m

)
−1

where the inner products are calculated in ln.
Obviously, Q = 1 for n = m or N = n; as expected, equation (14.26) is identical to
equation (14.8) in these cases.
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In the case of direct proportionality: v = αpi, equation (14.26) reduces to ∆Pi = αV .

An operator may have different n−particle ranks in different shells (like Tdds has
rank 2 in the d shell and rank 1 in the s shell), in which case the total Q is simply
found as the product of the Q of each individual shell.
As a result:

∆E
(N)
i =

(N
n2
)(n2

n1
)

(N
n1
)

∆E
(n2)
i with: (14.27)

∆E
(n2)
i = [g ∶ ei](n2)

[ei ∶ ei](n2)
G (14.28)

Given the N−dependence of the inner products, the full matrix of inner products
for any particular configuration can be predicted in advance and thus serves as a
rather strict check on the parameter calculation.

14.3 Contributions to the spin-orbit interaction

Since the days of [Blume and Watson, 1962], called BW hereafter, it has been re-
alized that the mutual spin-orbit interaction MSO contributes appreciably to the
value of the spin-orbit parameter ζ. Even so, the ζ-contribution of the electrostatic
spin-orbit interaction EL-SO (see 15.5) turns out to be quite dominant for lower
ionization stages.
Before the use of inner products [Uylings and Smid, 1987], only the simpler case of
direct proportionality has been considered by BW and other ab initio calculations.
The idea behind our theory is to use equation (14.26) to the projections on zeta
of all operators of magnetic origin (like MSO and EL-SO operators), not just the
proportional ones. Taking the N−dependence of the inner product into account, we
obtain in a configuration lN l′M the following contribution of U =MSO to ζ:

[MSO ∶ z(l)] = 1
2 ((k + 1)/(k + 2)) (2l + k + 2)(2l − k)

× ⟨l ∥ C(k) ∥ l⟩2 [3 − δ(k,0)(4l + 2)] (14.29a)

[z(l) ∶ z(l)] = (4l′ + 2

M
)( 4l

N − 1
) l(l + 1)(2l + 1)/2 (14.29b)

[z(l′) ∶ z(l′)] = (4l + 2

N
)( 4l′

M − 1
) l′(l′ + 1)(2l′ + 1)/2 (14.29c)

[z(l) ∶ z(l′)] = 0 (14.29d)

Q = (N
2
)(1

1
)(N

1
)
−1

= (N − 1). (14.29e)
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The contribution to ζ thus becomes:

∆ζ = (N − 1)∑
k

α(k, l) Nk(aa;aa) (14.30)

with

α(k, l) = (N − 1)(−δ(k,0)[2 − (2l)−1] + ∑
k>0

3(k + 1)(2l + k + 2)(2l − k)
4(k + 2)l2(l + 1)(2l + 1)

⟨l ∥ C(k) ∥ l⟩2)

(14.31)

The coefficients α(k, l) are given in table 3.1 for p, d and f electrons.
We will work out the contributions to ζ(a) from direct MSO matrix elements in
lN l′M in more detail. The n−particle ranks of the MSO operator in the shells lN and
l′M are n(l) = 1, n(l′) = 1 and, for the spin-orbit operator z(l), m(l) = 1,m(l′) = 0
respectively; the inner products should be taken in ll′.

[MSODIR ∶ z(l)] = −(4l′ + 2)l(l + 1)(2l + 1)N0(ab;ab) (14.32a)

[z(l) ∶ z(l)] = (4l′ + 2)l(l + 1)(2l + 1)/2 (14.32b)

Q = [(N
1
)(1

1
)(N

1
)
−1

] [(M
1
)(1

0
)(M

0
)
−1

] =M (14.32c)

The final result can thus be written:

∆ζ(a) = −∑
b

( M

4l′ + 2
) ⋅ 4(2l′ + 1)N0(ab;ab) (14.33)

Table 14.1: The coefficients α(k, l) appearing in equation (14.31) for the intra-shell MSO con-

tributions to ζ.

k = 0 2 4

p shell -3/2 — —
d shell -7/4 3/14 —
f shell -11/6 1/6 5/66

14.4 Choice of orthogonal operator sets

A useful way to extract information from an observed set of atomic energy levels is
to fit them to the eigenvalues of an energy matrix in which the strengths of the vari-
ous interactions among the particles making up the atom in question are determined
by a collection of parameters. The rows and columns of the matrix are labeled by
a finite set of electronic states (usually one or more complete configurations), and
the influence of the omitted states is reproduced by effective operators acting solely
within the finite set. These effective operators may themselves be parameterized,
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and if one proceeds to a sufficiently high order of perturbation theory one can expect
to introduce as many parameters as there are independent non-vanishing elements
in the matrix. The fitting of atomic energy levels by orthogonal operators has a
number of advantages: the addition of a new operator entails minimal adjustments
to the strengths of those already brought into play, and the mean errors are smaller
than they otherwise would be. An advantage of the method lies in the fact that
we can replace an infinite number of physical interactions from arbitrary orders of
perturbation by a set of finite well defined contributions. What we lose, however,
is specific information about the physical importance of the operators. In partic-
ular, we do not know the order of perturbation at which the operators first arise.
Apparently one must explicitly consider the perturbative processes to retrieve this
information.
One problem with the new set of operators, which has been mentioned before
[Judd and Leavitt, 1986], is the fact that most operators have contributions from
low- and high-order effects at the same time. The result is that nearly all operators
are significant. This is a problem when, as in the present case, some operators are
difficult to determine in particular configurations. It would be advantageous to have
particular operators determined by higher-order effects and others by low-order ef-
fects so that the operators could be introduced, and perhaps neglected, in batches.
There is no unique choice of an orthogonal set (each ‘rotation’ will yield another
one) and we use this freedom to satisfy the following criteria for lN l′ configurations:

1. Due to the fact that the related operators belong to mutually orthogonal sub-
spaces, l − l and l − l′ interactions can be covered by different parameters.
The lN core of an lN l′ configuration is thus described by the same parameter
set as the corresponding lN configuration.

2. For the l − l electrostatic interaction, the principal (first-order) and the sec-
ondary (higher-order) effects are described by separate operators. A method
to work out such a separation is illustrated for pd and fp configurations by
[Klinkenberg and Uylings, 1986]. It enhances the ‘descriptive power’ of the
parameter set, as the secondary operators can be neglected to a first approxi-
mation in a partially incomplete spectrum.

3. All operators are normalized in batches, i.e. at their first appearance the inner
product of an operator with itself is made equal to that for the main operator
of a group:

• two-electron electrostatic operators have the same normalization as the
unit operator eav;

• three-electron electrostatic operators in f 3 have the same normalization
as the two-electron f − f operators. In the d−shell, however, the three-
electron operators share the normalization of the orthogonalized Trees
operator T1 = o′′3 in d3 and as eav in d2s;

• magnetic operators have the same normalization as the spin-orbit opera-
tors zl and zl′ in l2 and ll′, respectively.
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In this way, a complete set of operators is subdivided into groups and subgroups in
a tree-like fashion. At the first level, there is a branching into three orthogonal sub-
spaces for the electrostatic, the spin-orbit and the spin-spin effects. At the second
level, the operators are sorted according to the number n of electrons they act upon
(in most practical cases, n = 2,3,4 for the electrostatic, n = 1,2 (and possibly 3) for
the spin-orbit and n = 2 for the spin-spin space). A third branching yields a distinc-
tion into the order of perturbation theory. When the operators are written in second
quantized form, one can see that in general n-body operators occur in the (n−1) or-
der of perturbation theory for the first time. It is useful to make the same distinction
according to first and higher order effects within the group of two-particle operators
as well [Klinkenberg and Uylings, 1986, Hansen et al., 1988b, Uylings et al., 1989].
With the above construction, one has a measure of the physical content as well as
of the relative importance of the parameters.

With respect to the traditional Slater-Condon approach of parametric fitting, only
the average energies Eav, the spin-orbit parameters ζl and the configuration inter-
action parameters Rk() are retained. The matrix elements of the other operators,
defined on group theoretical or algebraical grounds, need only be given in their par-
ent configuration, i.e. the configuration where they first appear like two-particle
operators in l2 or ll′. The matrix elements of these operators in configurations with
more electrons are then found by the expansion formulae given below in section 14.6.
The operator set for equivalent electrons in the p−, d− and f−shell is described in the
below subsections. The parent matrix elements (or reduced parent matrix elements
for spin-orbit and spin-spin type operators) will either be given directly in tables or
by referring to the relevant literature.

14.4.1 The p−shell

In addition to the zero-particle unit operator eav, there are two electrostatic two-
particle operators in p2. Unlike [Dothe et al., 1985], the operator o2 was chosen
to cover the complete first order Coulomb interaction, in line with the approach
followed by [Klinkenberg and Uylings, 1986]. It is not difficult to see that o2 is
proportional to the traceless Slater operator f 2(p, p); what remains is a Trees-like
two-particle operator eα that is easily orthogonalized. All electrostatic matrix ele-
ments are given in table 14.2. Normalization of o2 and eα to the length

√
15 of eav

is assured by dividing the entries by the constant η given below the column.

Table 14.2: Matrix elements of the electrostatic operators in p2

SL eav o2 eα
3P 1 -1 1
1S 1 4 6
1D 1 1 -3

η 1
√

2
√

6

In addition to the usual spin-orbit operator zp for ζp, there are two two-particle
operators zc and z3 of tensorial character t(11)0. They are defined in a similar fashion
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as the corresponding double-vector operators in d2 [Hansen and Judd, 1985]. Their
reduced matrix elements are given in table 14.3.

Table 14.3: Reduced matrix elements of the double-vector operators in p2

Ψ Ψ′ zp zc z3

3P 3P −3
√

3 −3
√

3/2 −3
√

15/2
1S 3P −3

√
2 6 0

3P 1D 3
√

5/2 3/2
√

5 −9/2

The spin-spin operator z1 has only one non-zero reduced matrix element
⟨3P ∥ z1 ∥3P ⟩ = 10

√
3. The length of all magnetic operators in p2 equals

√
12.

The physical content of these operators is given in equations (14.67), (14.68) and
(14.69). Unlike the case of the d− and the f−shell, no additional three-particle
electrostatic operator appears in p3.

14.4.2 The d−shell

The electrostatic two-particle operators o2 and o′2 currently used in dN configura-
tions, were first defined by [Klinkenberg and Uylings, 1986]; the conversion of the
associated parameters to Slater integrals is given in equation (14.60). They are
supplemented by two Trees-like operators e′α and e′β, apart from the normalization
introduced by [Judd et al., 1982]. The matrix elements are given in table 14.4; again,
normalization to the common length

√
45 requires that all entries are divided by the

constant η at the bottom of the relevant column.

Table 14.4: Matrix elements of the electrostatic operators in d2

SL eav o2 o′2 e′α e′β
1S 1 56 0 0 12
3P 1 -7 21 -14 1
1D 1 11 -9 -54 -3
3F 1 -7 -9 6 1
1G 1 11 5 30 -3

η 1
√

140
√

140
√

560
√

20/3

The orthogonal two-particle fine-structure operators for the d−shell were given
in two tables by [Hansen and Judd, 1985]: in table 1 the 5 spin-orbit type operators
zc, z3, z4, z5 and z6 and in table 2 the 3 spin-spin type operators z1, z2 and z0. In
the present tapes, these magnetic operators are all normalized to the length

√
120

of the spin-orbit parameter ζd in d2. The MSO and EL-SO contributions to the
corresponding Ai parameters are found in equation (14.64).

In d3 to d7, 4 electrostatic three-particle operators t1⋯t4 make their appearance.
The first two o′′3 and o′′′3 were introduced by [Judd et al., 1982]; o′′3 = t1 is actually
the orthogonalized version of the original Trees operator with parameter T .
The newly introduced second three-particle operator o′′′3 differs from the later t2 by a
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factor
√

110/3 such that
√

110/3 ⟨ψ∣o′′′3 ∣ψ′⟩ = ⟨ψ∣t2∣ψ′⟩ for reasons of normalization to
the length

√
162750 of t1 in d3. As a result, the reverse is true for the corresponding

radial parameters: the current T2 is a factor
√

110/3 smaller than the values origi-
nally published before [Hansen et al., 1988a]. The mean error reduction of t1 and t2
turned out to be that significant [Uylings et al., 1984, Hansen and Judd, 1985] that
they became the only orthogonal operators introduced later by Cowan in his pro-
gram suite [Cowan, 1981]. [Hansen and Judd, 1985] added two more three-particle
operators t3 and t4 to include higher order effects; the associated parameters T3 and
T4 are an order of magnitude smaller.
Using their orthogonality and equation (14.8), the contributions to the two T pa-
rameters can be found for all relevant single particle excitations l̄ → d and d→ l′ to
second order. Except for the s → d contribution, which is a direct consequence of
the definition, the angular coefficients have not yet been found in another way.
The overlap between the 3d and the g and i continuum orbitals is most favorable for
high angular momenta states with energy large enough to penetrate the centrifugal
potential barrier. In Fe VI, the 3s → 3d contribution is dominant, as the n = 3
orbitals have become ‘near degenerate’.

Table 14.5: Second-order contributions ∆T1 ∝ RkRk′/∆E to the 3-particle Trees
parameter in Fe VI (3d3)

.

Exc.(kk′) 22 24 44

s→ 3d -12.067 - -
3d→ s 0.209 - -
3d→ d′ -0.198 0.405 -0.129
3d→ g 2.391 0.710 -1.107
3d→ i - - 0.037

Total calc. -9.727
Fitted value -8.452

A set of 12 four-particle operators f1⋯f12 appearing in d4, d5 and d6 was defined
by [Judd and Leavitt, 1986]. They are normalized to unity in d4. Just like the op-
erators z0, t3 and t4 introduced in the above, these operators only describe third
and higher order effects and have no contributions from the first and second order
perturbation theory. Still, the impact is not negligible: the mean error σ in Co VI
e.g. is reduced from 21 to 4 cm−1 by their introduction. Moreover, most parameter
values are well determined and show regular trends in the iron group.
A batch of 16 possible three-particle magnetic operators of spin-orbit type may
still be added, but [Hansen et al., 1997] showed that only the four operators la-
beled by the irreducible representation (11) of SO5 are significant. As demon-
strated in table 13.1, the accuracy of the description is then comparable with the
errors of the experimental levels. A meaningful determination of these higher or-
der effects, however, usually requires a complete set of experimental energies and
configurations that are not too much distorted by strong configuration interaction.
[Uylings and Raassen, 1996] gives an impression of the use of the d−shell operators
in the iron group.
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14.4.3 The f−shell

[Racah, 1949] replaced the scalar products (C(k)1 C
(k)
2 )(0) appearing in equation (6.3)

by the linear combinations e0, e1, e2 and e3 to which well defined group-theoretical
labels can be attached. In the current set of orthogonal operators, the traceless
version e′1 is used [Judd and Crosswhite, 1984] instead of e1. The three operators
e′α, e

′
β and e′γ were introduced earlier by [Judd et al., 1982] to orthogonalize the

generalized Trees operators. Finally, all two-particle operators are normalized in f 2

to the ’length’
√

91 of the unit operator 1 = eav = e0. In this form, they are given in
table 3 of [Judd and Crosswhite, 1984] or table B.III of [Klinkenberg and Uylings, 1986],
and repeated in table 14.6 for completeness. For normalization each entry has to be
divided by the constant η found on the bottom line of the same column.

Table 14.6: Matrix elements of the electrostatic operators in f2

SL eav e′1 e2 e3 e′α e′β e′γ
1S 1 108 0 0 0 0 -18
3P 1 -9 0 33 -11 -1 -1
1D 1 17 286 -11 -33 0 3
3F 1 -9 0 0 0 2 -1
1G 1 17 -260 -4 -12 0 3
3H 1 -9 0 -9 3 -1 -1
1I 1 17 70 7 21 0 3

η 1
√

270
√

11880
√

1980/13
√

1980/13
√

18/3
√

90/13

Most of the orthogonal two-particle magnetic operators happen to be defined
already in the sixties by [Judd and Wadzinski, 1967] for the spin-spin interaction
and [Judd et al., 1968] for the MSO/EL-SO operators.
After normalization to the length

√
504 of the spin-orbit operator zf in f 2, the spin-

spin operators z1⋯z4 may directly be incorporated into the orthogonal operator set;
their reduced matrix elements are given in [Judd and Wadzinski, 1967].
The reduced matrix elements of the 8 spin-orbit type operators z5⋯z12 are found in
[Judd et al., 1968]. Only z12 had to be orthogonalized:

z′12 = z12 − 4/5 ⋅ z14 (14.34)

which seems more straightforward than the definition of the combined operator zc
by [Crosswhite et al., 1968]. In fact, the corresponding parameter A′

12 turns out to
be relatively important and quite stable in the fit. These 8 operators are again
normalized to a length

√
504.

The orthogonal three-electron operators needed to describe single electron excita-
tions from and to the f−shell were already defined on group theoretical grounds by
[Judd, 1966]. From the six operators t2, t3, t4, t6, t7 and t8, only t2 needs to be ad-
justed to remain orthogonal to e3, see equation (6) of [Judd and Crosswhite, 1984]:

t′2 = t2 −
N − 2

70
√

2
⋅ e3 (14.35)
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Table 14.7: Parameter values of the 4fn orthogonal operators in Pr III, Pr IV, Nd IV and Nd V.

Pr III(f3) B-spl Pr IV(f2) B-spl Nd IV(f3) B-spl Nd V(f2) B-spl

Eav 19709.2 10202.8 24892.1 12248.6
E′

1 4924.8 60446.9 6393.5 7101.1
E2 2191.5 2526.1 2671.0 2915.5
E3 4942.9 5899.7 6197.9 6835.0
E′
α 301.7 236.7 224.5 225.6

E′
β 0 6.0 7.6 8.0∗

E′
γ 448.1 290.0 261.0 250∗

T′
2 122.7 64.4

T3 14.7 14.8
T4 24.5 16.0
T6 -49.5 -54.7
T7 60.3 60.2
T8 51.7 53.0

ζf 660.7 711.4 764.6 813.4 892.4 944.0 998.4 1047.7
A5 -2.7 -2.7 -2.4 -2.0 -3.8 -2.6 -3.7 -2.2
A6 4.5 4.5 4.2 3.6 4.4 4.5 4.4 4.1
A7 -2.3 -2.3 -2.8 -2.4 -0.8 -2.8 0 -3.0
A8 4.6 4.6 5.7 5.0 5.1 5.8 5.7 6.3
A9 1.3 1.3 5.4 5.1 4.3 4.8 5.9 7.8
A10 -3.8 -3.8 -2.6 -2.2 -2.8 -3.0 -2.3 -2.0
A11 -5.1 -5.1 -4.2 -3.5 -3.8 -4.6 -3.5 -3.7
A′

12 -10.5 -9.0 -6.0 -4.8 -8.2 -7.0 -6.7 -4.1

A1 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.3
A2 -0.6 -0.6 -0.8 -0.7 -0.8 -0.8 -1.0 -0.9
A3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A4 -1.2 -1.2 -1.7 -1.5 -1.7 -1.7 -2.2 -2.0
σ 14.2 6.9 7.6 3.8

14.5 Orthogonalization of inequivalent electrons

Associating the orbital angular momenta l and l′ with electrons from shell a and b,
one finds from equation (5.39):

⟨ll′(SL) ∥ {(a†a)(κk) (b†b)(κ′k′)}(tt) ∥ ll′(S′L′)⟩

= [t] [S,L,S′, L′]1/2 [κ, k, κ′, k′]1/2
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

1
2

1
2 κ′

S S′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l k
l′ l′ k′

L L′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(14.36)

In the above, the tensor rank t equals 0, 1 and 2 for electrostatic, spin-orbit and
spin-spin effects, respectively. For reasons of Hermiticity, the permutation phase
P = κ + k + κ′ + k′ must be even. Given the values of l and l′, each allowed
combination of {κ, k, κ′, k′} then yields another orthogonal operator.
The orthogonal set of operators found from equation (14.36) is used as a basis to
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start the construction of a final set of orthogonal operators in which a distinction is
made between stronger and less important operators, occurring in first and higher
order of perturbation. In the iron group, the standard deviation for orthogonal
operator fits of 3dn4p configurations is frequently reduced to well below σ = 10
cm−1.

14.5.1 The electrostatic case

Orthogonal parameters for the two-electron electrostatic interaction in ll′ are found
as a special case of equation (14.36) for t = 0. The subject has also been discussed
by [Dothe et al., 1985]. They introduce the orthogonal operators eκk for the config-
uration pd but remark in conclusion that it may well be advantageous to separate
the p − d interaction as a first order effect from the higher order electrostatic ef-
fects attributable to the interaction with many far-lying configurations. We want to
investigate this point more thoroughly. If a† and b† are the creation (or mutatis mu-
tandis annihilation) operators corresponding to l and l′ respectively, the operators
eκk, via their matrix elements, are defined by:

⟨ll′(SL)∣eκk∣ll′(SL)⟩ = 2 [l, l′]
1
2 ⟨ll′(SL) ∣{(a†a)κk (b†b)κk}

(00)0
∣ ll′(SL)⟩

= 2 [l, l′, κ, k]
1
2 (−1)S+L+κ+k(−1)l+l′+1

× {
1
2

1
2 S

1
2

1
2 κ

} { l l′ L
l′ l k

} (14.37)

where κ and k are ranks in the spin and orbital spaces respectively. Here, the factor
2[l, l′]1/2 ensures that the ’length’ of the operators, defined as the inner product
[eκk ∶ eκk]1/2, be equal to that of the average energy operator Eav = e00. The allowed
values for κ and k are: κ = 0,1 and 0 ≤ k ≤ 2l<, with l< the smallest value of l or l′.
In order to avoid square roots in the entries, the common normalization factors ηκk
are given below each column: e′κk = ηκk ⋅ eκk.

Table 14.8: Matrix elements of operators e′κk for dp

e′00 e′10 e′01 e′11 e′02 e′12

1P 1 3 3 9 7 21
1D 1 3 1 3 -7 -21
1F 1 3 -2 -6 2 6
3P 1 -1 3 -3 7 -7
3D 1 -1 1 -1 -7 7
3F 1 -1 -2 2 2 -2

ηκk 1
√

3 2 2
√

3 2
√

7 2
√

21

Mutually orthogonal linear combinations of the e′κk are now to be found such
that one batch of operators covers the first order ll′ interaction (given in terms of
the classical Slater operators fk and gk) while the remaining second batch (so-called
effective operators) account for the higher order interactions.
We label them c (“Coulomb”) and s (“Sack”) respectively.
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In fact, fk turns out to be directly proportional to e′0k.
As for all operators, (e′1k ∶ e′1k) = 3 ⋅ (e′0k ∶ e′0k), it follows that
(e′0k − e′1k) ∶ (e′0k − e′1k) = 4 ⋅ (e′0k ∶ e′0k) and (e′0k − e′1k) ∶ (3 ⋅ e′0k + e′1k) = 0.
Three out of six operators may therefore directly be assigned:
Eav = e′00, c1 = e′02 and s1 = (3 ⋅ e′01 + e′11).
Furthermore, all exchange gk angular matrices can be written as a linear combination
of the operator pairs (e′0k − e′1k):

gk =
2l<
∑
k̃=0

αkk̃ ⋅ (e′0k̃ − e
′
1k̃
) (14.38)

For the case ll′ = pp′:

g0(pp′) = −1/6(e′00 − e′10) + 1/24(e′01 − e′11) − 1/72(e′02 − e′12)
g2(pp′) = −1/15(e′00 − e′10) − 1/120(e′01 − e′11) − 1/1800(e′02 − e′12) (14.39)

As e′00 and e′02 are already assigned, the remaining operators to consider are:
e′10, e′12 and (e′01 − e′11).
Elimination of the factor (e′01 − e′11) from g0 and g2 (by considering g0 + 5g2) then
yields the required ratio 30 ∶ 1 of e′10 and e′12 to be used in c2. We find c2 = (30e′10+e′12)
with the orthogonal counterpart (24e′10 − e′12). Hence, the second Sack-operator s2

must be composed of (e′01 − e′11) and (24e′10 − e′12), and obey the condition s2 ∶ g0 = 0
(or equivalently s2 ∶ g2 = 0). It thus follows that (e′01 − e′11) is not orthogonal to s2

and in order to obtain a correct c3 one has to add a term with (24e′10 − e′12).
Finally, we end up with, except for normalization:
c1 = e′02 c2 = 30e′10 + e′12 c3 = 9(e′01 − e′11) − (24e′10 − e′12)
[first order Coulomb interaction]
s1 = 3e′01 + e′11 s2 = (e′01 − e′11) + 4/9(24e′10 − e′12)
[additional higher order operators]
The ’building blocks’ are indeed mutually orthogonal: (e′01 − e′11) ∶ (3e′01 + e′11) = 0
and (30e′10 + e′12) ∶ (24e′10 − e′12) = 0.

For the case ll′ = dp:

g1(dp) = −1/15(e′00 − e′10) + 1/20(e′01 − e′11) − 1/60(e′02 − e′12)
g3(dp) = −3/70(e′00 − e′10) − 3/140(e′01 − e′11) − 3/980(e′02 − e′12) (14.40)

Elimination of the factor (e′01 − e′11) from g1 and g3 (by considering 3g1 + 7g3) then
yields the required ratio 7 ∶ 1 of e′10 and e′12 to be used in c2. We find c2 = (7e′10+e′12)
with the orthogonal counterpart (4e′10 − e′12). Hence, the second Sack-operator s2

must be composed of (e′01 − e′11) and (4e′10 − e′12), and obey the condition s2 ∶ g1 = 0
(or equivalently s2 ∶ g3 = 0). It thus follows that (e′01 − e′11) is not orthogonal to s2

and in order to obtain a correct c3 one has to add a term with (4e′10 − e′12).
Finally, we end up with, except for normalization:
c1 = e′02 c2 = 7e′10 + e′12 c3 = 11(e′01 − e′11) − (4e′10 − e′12)
[first order Coulomb interaction]
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s1 = 3e′01 + e′11 s2 = 3
2(e′01 − e′11) + 2(4e′10 − e′12)

[additional higher order operators]
The ’building blocks’ are indeed mutually orthogonal: (e′01 − e′11) ∶ (3e′01 + e′11) = 0
and (7e′10 + e′12) ∶ (4e′10 − e′12) = 0.

Table 14.9: Matrix elements of the ci and si operators for dp

eav c1 c2 c3 s1 s2

1P 1 7 42 -57 9 -27
1D 1 -7 0 -55 3 63
1F 1 2 27 38 -6 18
3P 1 7 -14 63 3 15
3D 1 -7 0 33 1 -19
3F 1 2 -9 -42 -2 -10

ηi 1 2
√

7
√

231 2
√

517 2
√

3 2
√

141

Table 14.10: Matrix elements of operators e′κk for df

e′00 e′10 e′01 e′11 e′02 e′12 e′03 e′13 e′04 e′14

1P 1 3 8 24 24 72 6 18 66 198
1D 1 3 6 18 6 18 -3 -9 -99 -297
1F 1 3 3 9 -11 -33 -4 -12 66 198
1G 1 3 -1 -3 -15 -45 4 12 -22 -66
1H 1 3 -6 -18 10 30 -1 -3 3 9
3P 1 -1 8 -8 24 -24 6 -6 66 -66
3D 1 -1 6 -6 6 -6 -3 3 -99 99
3F 1 -1 3 -3 -11 11 -4 4 66 -66
3G 1 -1 -1 1 -15 15 4 -4 -22 22
3H 1 -1 -6 6 10 -10 -1 1 3 -3

ηκk 1
√

3 2
√

6 6
√

2 2
√

42 6
√

14 2
√

3 6 6
√

77 6
√

231

Five out of ten operators may therefore directly be assigned:
Eav = e′00, c1 = e′02, c2 = e′04, s3 = (3 ⋅ e′01 + e′11) and s4 = (3 ⋅ e′03 + e′13).
The actual values of the αkk̃ coefficients may always be established by projecting
the gk operators one by one onto the orthogonal eκk basis, e.g. with the program
PARCALC based on equation (14.8).
Next, the gk may be added to eliminate (e′01 − e′11) and (e′03 − e′13). The orthogonal
counterpart (γe′10 − e′12) of the remaining contribution (ae′10 + be′12) to the ∑k g

k is
subsequently used as a new building block for s1.
Taking c1 = e′02 we try (e′01 − e′11) as the second Coulomb operator, which requires
s1 = (3e′01 + e′11) as its orthogonal counterpart. Elimination of the factor (e′01 − e′11)
from gk (by considering αg2 + βg4) then yields the required ratio of e′10 and e′12 in
c2. We find c2 = (15e′10 + e′12) with the orthogonal counterpart (8e′10 − e′12) . Hence
the second Sack-operator s2 must be composed of (e′01 − e′11) and (8e′10 − e′12), and
obey the condition s2 ∶ g2 = 0 and s2 ∶ g4 = 0. It thus follows that (e′01 − e′11) is not
orthogonal to s2 and in order to obtain a correct c3 one has to add a term with
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Table 14.11: Matrix elements of operators e′κk for dh

e′00 e′10 e′01 e′11 e′02 e′12 e′03 e′13 e′04 e′14

1F 1 3 12 36 52 156 91 273 39 117
1G 1 3 8 24 0 0 -91 -273 -91 -273
1H 1 3 3 9 -35 -105 -56 -168 84 252
1I 1 3 -3 -9 -33 -99 96 288 -36 -108
1K 1 3 -10 -30 30 90 -30 -90 6 18
3F 1 -1 12 -12 52 -52 91 -91 39 -39
3G 1 -1 8 -8 0 0 -91 91 -91 91
3H 1 -1 3 -3 -35 35 -56 56 84 -84
3I 1 -1 -3 3 -33 33 96 -96 -36 36
3K 1 -1 -10 10 30 -30 -30 30 6 -6

ηκk 1
√

3 2
√

15 6
√

5 2
√

273 6
√

91 2
√

1365 6
√

455 6
√

91 6
√

273

(8e′10 − e′12).
The normalization, by which ci ∶ ci = sj ∶ sj = 4[l, l′], greatly facilitates comparison
of the magnitudes of the associated parameters.
The results of this procedure for dp-electrons is given in the above table (14.9).

For M = 1 when l′ is highly excited and thus lN l′ close to the ionization limit, the
only ll′ operator with an appreciable contribution to the structure will be c1 = e′02.
Even this parameter will usually be much less important than ζl, which indicates
that the intermediate jK-coupling scheme may be used to attain more ’unambigu-
ous’ level assignments.
To transform SL-matrices to jK-coupling, one may first recouple from SL to LK-
coupling with equation (2.41) and multiply with the recoupling coefficient (2.40)
from LK to jK-coupling; alternatively, one may directly employ the recoupling
identity (2.49) to arrive at:

⟨S1L1(J1), l′ [K] 1
2 ;J ∣ (S1,

1
2)S (L1, l

′)L;J⟩ =

[J1,K,S,L]
1
2 ⋅ (−1)L1+l′−L ⋅ {S1 L1 J1

l′ K L
} ⋅ (−1)

1
2+S−S1 ⋅ {S1

1
2 S

J L K
} (14.41)

14.5.2 The magnetic case

Using equation (14.36) with t = 1 to find spin-orbit type dp-operators, 12 indepen-
dent orthogonal combinations zi can be classified [Uylings and Raassen, 1996].
The first two (κ, k, κ′, k′) = (1,1,0,0) and (0,0,1,1) are directly proportional to the
matrix elements of ζd and ζp, respectively. To retain an understanding of the phys-
ical content, the EL-SO operators are projected onto the remaining 10 operators.
EL-SO is a perturbative effect arising from Brillouin-type substitutions p → p′ and
d→ d′. The ranks of the Slater integrals involved being 2 (direct), 1 or 3 (exchange),
there are 6 independent EL-SO operators in second order (see section 15.5 for more
details). These operators are projected on the basis operators zi and subsequently
orthogonalized. The resulting operators are named Zk

ll′ ; Z
1
pp′ turns out to be the

largest in most cases.
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With the multiplication numbers ηi of table 14.12 included, one obtains e.g.:

ζd = η1 ⋅ z1

ζp = η2 ⋅ z2

Sd ⋅Lp = η3 ⋅ z3

Sp ⋅Ld = η4 ⋅ z4

Z2
pp′ = η6 ⋅ z6

For pp′ configurations, the operators z9 and z10 do not appear and one is left with a
set of 10 independent orthogonal operators to fully describe the spin-orbit effects.

Table 14.12: zi(dp) tensor ranks. The numbers ηi multiply all entries zi to avoid square roots.

zi κ k κ′ k′ ηi

z1 1 1 0 0 −3
√

10

z2 0 0 1 1 −
√

30

z3 1 0 0 1 7
√

30

z4 0 1 1 0 7
√

10

z5 1 2 0 1 14
√

210

z6 0 2 1 1 14
√

210

z7 1 1 0 2 70
√

2

z8 0 1 1 2 70
√

2

z9 1 3 0 2 70
√

7

z10 0 3 1 2 70
√

7

z11 1 2 1 2 90/7
√

35

z12 1 1 1 1 14
√

15

Spin-spin operators are directly defined by equation (14.36), with (κ,κ′, t) =
(1,1,2). The operators are labeled Skk′ ; the most important cases (k, k′) = (0,2), (2,0)
and (4,2) are included and cover all the direct spin-spin dp−interactions associated
with N0(pd;pd),N0(dp;dp) and N2(dp;dp), respectively.

14.5.3 Three-electron operators

The account for perturbing configurations to second or higher order is to introduce

such schematic operators as (p†p†d† ppd)(00)
, (d†d†p† ddp)(00)

or (d†d†s† dds)(00)
.

From ds and d2, we find six electrostatic operators for d2s: eav, cds and four opera-
tors that describe the d2 structure. As there are seven terms in d2s, we expect one
new three-electron operator, labeled tdds.
To see how such an operator tdds arises, consider the Coulomb excitation of an s
electron of d2s into an unoccupied d or g state. This can be accomplished by an

operator of the type (d†g† ds)(00)
. Returning with the adjoint operator in second-

order perturbation theory, one obtains the product (s†d† gd)(00) ⋅ (d†g† ds)(00)
. Us-

ing equation (5.14) for the interchange of the virtual g electrons, one is left with a

residue of the form (s†d† dd† ds)(00)
. The dd† tensors can be rearranged to yield
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the two-electron operator (s†d† ds)(00)
together with the anticipated three-electron

operator (s†d†d† dds)(00)
. A more detailed study is presented in section 15.3.

The three-electron electrostatic p2d operators ti introduced by [Dothe et al., 1985],
turn out to be orthogonal to all two-electron pd operators but not to the two-
electron p2 operators. The corrected orthogonalization procedure reduces all entries
of t1 and t2 to zero, so these operators are removed from the operator set as their
effects will already be absorbed by the existing p2 operators. All current t′i opera-
tors are normalized to a length of

√
240; the required multiplication factors w.r.t.

to [Dothe et al., 1985, Hansen et al., 1987] are found in table 14.13.

Table 14.13: Multiplication factors for the parameters values of the three-electron operators t′i
and the four-electron operators f ′i w.r.t. [Dothe et al., 1985].

t′i Value f ′i Value

t′3
√

60 f ′1
√

105/2
t′4

√
24 f ′2

√
245/2

t′5
√

120 f ′3
√

15/4
t′6

√
56 f ′4

√
245/2

t′7
√

1176 f ′5
√

45/4
t′8

√
28 f ′6

√
15

t′9
√

35/6
t′10

√
35/2

t′11

√
735/2

In addition, the four-body operator f ′8 introduced by [Hansen et al., 1987], is not
orthogonal to three (out of five) of the dp operators. The operators f ′7, f ′8 and f ′9
are removed from the operator set, also for reasons explained in that article. The
current f ′i operators are normalized to

√
480, with the parameter multiplication

factors given in table 14.13.

14.6 Towards higher N

Matrix elements of orthogonal operators are, unlike the matrix elements of the tra-
ditional Slater-Condon operators, usually not given by closed angular momentum
formulae. Instead, they are defined in their parent configuration, i.e. the most ele-
mentary configuration where they first occur. To find the required matrix elements
in more general configurations, expansion formulae are needed to express them in
terms of the matrix elements of configurations with lower occupation numbers.
Depending on the complexity of the cases at hand, this can either be done directly
or recursively. Both types of expansion formulae are given below.
Occasionally, conjugation properties may be used as well, but care should be taken if
the operators correspond to a mixture of odd and even quasispin ranks as mentioned
in section 5.10.
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Expansion of matrix elements of n−particle operators in lN can be done by uncou-
pling one of the electrons from the lN shell:

⟨lNψ∣Hn∣lNψ′⟩ = (N
n
)(N − 1

n
)
−1

∑
φφ′

(ψ{∣φ) ⟨lN−1φ∣Hn∣lN−1φ′⟩ (φ′∣}ψ′)

= N

N − n ∑
φφ′

(ψ{∣φ) ⟨lN−1φ∣Hn∣lN−1φ′⟩ (φ′∣}ψ′) (14.42)

Similarly for magnetic operators with k ≠ 0, using equation (3.51a):

⟨lNSL ∥Hn ∥ lNS′L′⟩ =
N

N − n ∑
S1L1S′1L

′
1

(lNSL{∣lN−1S1L1) (lN−1S′1L
′
1∣}lNS′L′)

(−1)S1+
1
2+S

′ ⋅ (−1)L1+l+L′ ⋅ [S,L,S′, L′]
1
2 ⋅ {S k S′

S′1
1
2 S1

} ⋅ {L k L′

L′1 l L1
}

⋅ ⟨lN−1S1L1 ∥Hn ∥ lN−1S′1L
′
1⟩
(14.43)

For the special case of the zero-particle unit operator eav = 1, equation (14.42)
reduces to δ(ψ,ψ′) = ∑φφ′ (ψ{∣φ) (φ′∣}ψ′) ⋅ δ(φ,φ′), which is just the completeness
cfp sum rule (5.145).
The progression as a function of N of the lN l′ operators, now originally defined in
their parent configuration ll′, is carried through by a chain calculation analogous to
equation (14.42):

⟨lN l′ ψ∣G ∣lN l′ ψ′⟩ = N

N − 1
∑
φφ′

(ψ{∣φ) ⟨lN−1l′ φ∣G ∣lN−1l′ φ′⟩ (φ′∣}ψ′) (14.44)

where the coefficients of fractional parentage for inequivalent electrons are
introduced, as defined earlier in equation (5.169).
For a general operator T with rank n in the lN shell and rank 1 in the l′ shell, the
more detailed chain formula becomes thereby:

⟨lN(S1L1) l′SL ∣T ∣ lN(S′1L′1) l′SL⟩ =
N

N − n
⋅ ∑
S2L2,S′2L

′
2,SpLp

[Sp, Lp] ⋅ (−1)S1−S′1+L1−L′1

⋅[S1, S
′
1, L1, L

′
1]

1
2 ⋅ {S1 S 1

2

Sp S2
1
2

} ⋅ {L1 L l′

Lp L2 l
} ⋅ {S

′
1 S 1

2

Sp S′2
1
2

} ⋅ {L
′
1 L l′

Lp L′2 l
}

(lN S1L1{∣lN−1S2L2) (lN S′1L′1{∣lN−1S′2L
′
2) ⋅ ⟨lN−1(S2L2) l′SpLp ∣T ∣ lN−1(S′2L′2)l′SpLp ⟩

(14.45)

This is readily generalized to lN l′M configurations:

⟨lN(S1L1) l′M(S2L2)SL ∣T ∣ lN(S′1L′1) l′M(S′2L′2)SL⟩ =
N

N − n
⋅ ∑
S3L3,S′3L

′
3,SpLp

[Sp, Lp]

⋅(−1)S1−S′1+S2−S′2 ⋅ (−1)L1−L′1+L2−L′2 ⋅ [S1, S
′
1, L1, L

′
1]

1
2 ⋅ {S3

1
2 S1

S S2 Sp
} ⋅ {L3 l L1

L L2 Lp
}

(lN S1L1{∣lN−1S3L3) (lN S′1L′1{∣lN−1S′3L
′
3) ⋅ {

S′3
1
2 S′1

S S′2 Sp
} ⋅ {L

′
3 l L′1
L L′2 Lp

}

⋅ ⟨lN−1(S3L3) l′M(S2L2)SpLp ∣T ∣ lN−1(S′3L′3)l′M(S′2L′2)SpLp ⟩
(14.46)
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The comparable expression for magnetic k ≠ 0 operators:

⟨lN(S1L1) l′SL ∥ Gll′ ∥ lN(S′1L′1) l′S′L′⟩ =
N

N − 1
⋅ ∑
Sp,Lp,S′p,L′p

[S,L,S′, L′]
1
2 ⋅ [Sp, Lp, S′p, L′p]

1
2

⋅(−1)S1+L1+S+L+
1
2+l ⋅ (−1)S′1+L′1+S′+L′+

1
2+l ⋅ [S1, S

′
1, L1, L

′
1]

1
2 ⋅ (−1)

1
2+S

′
p+S+k ⋅ (−1)l+L′p+L+k

⋅{S1 S 1
2

Sp S2
1
2

} ⋅ {L1 L l′

Lp L2 l
} ⋅ {S

′
1 S′ 1

2

S′p S′2
1
2

} ⋅ {L
′
1 L′ l′

L′p L′2 l
} ⋅ {S k S′

S′p
1
2 Sp

} ⋅ {L k L′

L′p l Lp
}

⋅ (lN S1L1{∣lN−1S2L2) (lN S′1L′1{∣lN−1S′2L
′
2) ⋅ ⟨lN−1(S2L2) l′SpLp ∥ Gll′ ∥ lN−1(S′2L′2)l′S′pL′p ⟩

(14.47)

Again, generalization to lN l′M configurations is straightforward:

⟨lN(S1L1) l′M(S2L2)SL ∥ Gll′ ∥ lN(S′1L′1) l′M(S′2L′2)S′L′⟩ =
N

N − 1
⋅ ∑
Sp,Lp,S′p,L′p

[S,L,S′, L′]
1
2

⋅[Sp, Lp, S′p, L′p]
1
2 ⋅ (−1)S1+L1+S+L+S2+L2 ⋅ (−1)S′1+L′1+S′+L′+S′2+L′2 ⋅ [S1, S

′
1, L1, L

′
1]

1
2

⋅(−1)
1
2+S

′
p+S+k ⋅ (−1)l+L′p+L+k ⋅ (lN S1L1{∣lN−1S3L3) (lN S′1L′1{∣lN−1S′3L

′
3)

⋅{S1 S S2

Sp S3
1
2

} ⋅ {L1 L L2

Lp L3 l
} ⋅ {S

′
1 S′ S′2
S′p S′3

1
2

} ⋅ {L
′
1 L′ L′2

L′p L′3 l
} ⋅ {S k S′

S′p
1
2 Sp

} ⋅ {L k L′

L′p l Lp
}

⋅ ⟨lN−1(S3L3) l′M(S2L2)SpLp ∥ Gll′ ∥ lN−1(S′2L′2)l′M(S′2L′2)S′pL′p ⟩
(14.48)

Another, compared to a chain calculation possibly more direct way to proceed is to
un- and recouple the ll′ matrix elements from the lN l′ configuration, after a fourfold
(spin- and orbit, bra and ket) application of equation (2.40). In this alternative for a
direct calculation, one calculates (two-particle) reduced matrix elements for higher
N from the matrix elements in its original two-particle configuration:

⟨lN(S1L1) l′(SL) ∣Gll′ ∣ lN(S′1L′1) l′(SL)⟩ = N ⋅ ∑
S1 L1

[S1, S
′
1, L1, L

′
1]

1
2

⋅ ∑
Sp,Lp

{S1
1
2 S1

1
2 S Sp

} ⋅ {S1
1
2 S′1

1
2 S Sp

} ⋅ {L1 l L1

l′ L Lp
} ⋅ {L1 l L′1

l′ L Lp
}

(lN S1L1{∣lN−1S1L1) (lN S′1L′1{∣lN−1S1L1) ⋅ [Sp, Lp] ⋅ ⟨ll′ SpLp ∣Gll′ ∣ ll′ SpLp ⟩
(14.49)

The corresponding formula for magnetic operators with k ≠ 0 is slightly more
complex due to the additional uncoupling equation (3.51b):

⟨lN(S1L1) l′(SL) ∥ Gll′ ∥ lN(S′1L′1) l′(S′L′)⟩ = N ∑
S1 L1

[S1, L1, S
′
1, L

′
1, Sp, Lp, S

′
p, L

′
p]

1
2

⋅ ∑
SpLp,S′pL′p

(−1)S1+S′p+S′ ⋅ {S1
1
2 S1

1
2 S Sp

} ⋅ {S1
1
2 S′1

1
2 S′ S′p

} ⋅ {S k S′

S′p S1 Sp
}

⋅ [S,L,S′, L′]
1
2 ⋅ (−1)L1+L′p+L′ ⋅ {L1 l L1

l′ L Lp
} ⋅ {L1 l L′1

l′ L′ L′p
} ⋅ {L k L′

L′p L1 Lp
}

⋅ (lN S1L1{∣lN−1S1L1) (lN S′1L′1{∣lN−1S1L1) ⋅ ⟨ll′ SpLp ∥ Gll′ ∥ ll′ S′pL′p ⟩
(14.50)



14.6. TOWARDS HIGHER N 169

The generalization of the above towards lN l′M configurations is straightforward:

⟨lN(S1L1) l′M(S2L2)SL ∣Gll′ ∣ lN(S′1L′1) l′M(S′2L′2)SL⟩ = N ⋅M ∑
S1 L1

∑
S2 L2

⋅ (lN S1L1{∣lN−1S1L1) (lN S′1L′1{∣lN−1S1L1) ⋅ (l′M S2L2{∣l′M−1S2L2) (l′M S′2L
′
2{∣l′M−1S2L2)

⋅ ∑
SpLp

(−1)S′1−S1

⎡⎢⎢⎢⎢⎢⎣

1
2 S1

1
2 S′1

S2 Sp S S1

S2 S′2
1
2

1
2

⎤⎥⎥⎥⎥⎥⎦
⋅ (−1)L′1−L1

⎡⎢⎢⎢⎢⎢⎣

l′ L1 l′ L′1
L2 Lp L L1

L2 L′2 l l

⎤⎥⎥⎥⎥⎥⎦

⋅ [S1, L1, S2, L2, S
′
1, L

′
1, S

′
2, L

′
2]

1
2 ⋅ [Sp, Lp] ⋅ ⟨ll′ SpLp ∣Gll′ ∣ ll′ SpLp⟩

(14.51)

Again, a small extension is found for k ≠ 0 magnetic operators:

⟨lN(S1L1) l′M(S2L2)SL ∥ Gll′ ∥ lN(S′1L′1) l′M(S′2L′2)S′L′⟩ = N ⋅M ∑
S1 L1

∑
S2 L2

⋅ (lN S1L1{∣lN−1S1L1) (lN S′1L′1{∣lN−1S1L1) ⋅ (l′M S2L2{∣l′M−1S2L2) (l′M S′2L
′
2{∣l′M−1S2L2)

⋅ ∑
S13L13

[S13, L13] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 S2 S13
1
2

1
2 Sp

S1 S2 S

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 S2 S13
1
2

1
2 S′p

S′1 S′2 S′

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1 L2 L13

l l′ Lp
L1 L2 L

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1 L2 L13

l l′ L′p
L′1 L′2 L′

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⋅(−1)S13+S′p+S ⋅ (−1)L13+L′p+L ⋅ [S,S′, L,L′]
1
2 {S k S′

S′p S13 Sp
} {L k L′

L′p L13 Lp
}

⋅ [S1, L1, S2, L2, S
′
1, L

′
1, S

′
2, L

′
2]

1
2 ⋅ ∑

SpLp,S′pL′p

[Sp, Lp, S′p, L′p]
1
2 ⟨ll′ SpLp ∥ Gll′ ∥ ll′ S′pL′p⟩

(14.52)

Leading to 15j-symbols of the third kind, not much is gained by carrying out the
summation over (S13, L13) analytically.
The case M = 1 has already been treated in equation (14.50).

With the magnitude in the parent configuration ll′ given by 4[l, l′], equation (14.21)
yields the below result for the operator magnitudes in every lN l′M configuration:

[G ∶ G]l
N l′M = ( 4l

N − 1
) ⋅ ( 4l′

M − 1
) ⋅ 4[l, l′] (14.53)

Similar to the two-electron case, the l2l′ electrons can be uncoupled from the bra
and ket lN l′M configurations to retrieve the expressions for the three-electron Tl2l′
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operators in higher N and/or M configurations:

⟨lN(S1L1) l′M(S2L2)SL ∣Tl2l′ ∣ lN(S′1L′1) l′M(S′2L′2)SL⟩ = 1
2N(N − 1) ⋅M∑

S L

∑
S2 L2

∑
S′ L′

⋅ (lN S1L1{∣lN−1S L) ⋅ (lN−1 S L{∣lN−2S1L1) ⋅ (l′M S2L2{∣l′M−1S2L2)
⋅ (lN S′1L′1{∣lN−1S′L′) ⋅ (lN−1 S′L′{∣lN−2S1L1) ⋅ (l′M S′2L

′
2{∣l′M−1S2L2)

⋅ ∑
S13L13

[S13, L13] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 S̃ S1

S2
1
2 S2

S13 Sp S

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 S̃′ S′1
S2

1
2 S′2

S13 Sp S

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1 L̃ L1

L2 l′ L2

L13 Lp L

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1 L̃′ L′1
L2 l′ L′2
L13 Lp L

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(−1)S1−S′1 ⋅ (−1)L1−L′1 ⋅ [S,L,S1, L1, S2, L2]
1
2 ⋅ [S′, L′, S′1, L′1, S′2, L′2]

1
2 ⋅ [S̃, L̃, S̃′, L̃′]

1
2

{S1
1
2 S

1
2 S1 S̃

} {L1 l L

l L1 L̃
} {S1

1
2 S′

1
2 S′1 S̃′

} {L1 l L′

l L′1 L̃′
}

⋅ ∑
SpLp

[Sp, Lp] ⟨l2(S̃L̃) l′ SpLp ∣Tl2l′ ∣ l2(S̃′L̃′) l′ SpLp⟩

(14.54)

Given the magnitude in the parent configuration l2l′, equation (14.21) provides the
operator magnitudes in lN l′M configurations:

[T ∶ T ]l
N l′M = (4l − 2

N − 2
) ⋅ ( 4l′

M − 1
) ⋅ [T ∶ T ]l

2l′
(14.55)

14.7 Conversion of operator sets

Given the equation (14.8) or, more generally, (14.26), it is straightforward to trans-
late conventional or ab initio calculated parameters into their orthogonal counter-
parts. By contrast, the reverse generally requires a full matrix inversion.
Let the matrix A = Aij comprise the elements with row index i of a set of operators
with column index j, then the translation matrix T for two parameter sets, 1 and
2, is given by T = A(1)A−1(2), or in index notation:

Tik = Aij(1)A−1
jk(2). (14.56)

The required relations between parameters Fk(2) and Fi(1) then become:

Fi(1) = TikFk(2). (14.57)

As an example, we give the matrix elements of the conventional operators for d2 in
condensed notation:

Aij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 126 126 −12 5
1 63 −84 −10 0
1 −27 36 −6 0
1 −72 −9 0 0
1 36 1 8 0

(1) (441) (441) (1) (1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14.58)
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A−1
jk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 24 88 36 108
0 210 350 −910 630
0 −504 1512 −756 252
0 −5 −15 5 15
1 0 −160 100 −36

(5) (200) (280) (200) (280)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14.59)

Relations between Cowan’s most relevant parameters [Cowan, 1981] and their or-
thogonal counterparts are given below:

O2 = 50

63

1√
140

(F 2(dd) + F 4(dd)) (14.60a)

O′
2 = 10

7

1√
140

(F 2(dd) − 5

9
F 4(dd)) (14.60b)

O2 +O′
2 = 20

9

1√
140

⋅ F 2(dd) (14.60c)

[Racah, 1952] and Trees introduced the concept of effective operators,
in lN defined as:

⟨lNSL ∣α̂∣ lNSL⟩ = L(L + 1) ⋅ α

⟨lNSL ∣Q∣ lNSL⟩ = 1

4
(N − ν)(4l + 4 −N − ν) ⋅ β → [N = 2, ν = 0,2] ∶

= (2l + 1) ⋅ δ(L,0) ⋅ β (14.61)

These operators became a standard extension of the Slater-Condon theory in the
d-shell with matrix elements ⟨d2 SL∣α̂,Q∣d2 SL⟩ = (0,5)(2,0)(6,0)(12,0)(20,0).
In the f-shell, [Rajnak and Wybourne, 1963] introduced similar operators:

⟨fNψ∣Heff∣fNψ′⟩ = δ(ψ,ψ′) [L(L + 1) ⋅ α +G(G2) ⋅ β +G(R7) ⋅ γ] (14.62)

Here, G(G2) and G(R7) are the eigenvalues of Casimir’s operator for the groups G2

and R7, used by [Racah, 1949] to classify f-shell states unambiguously with labels
U = (u1u2) and W = (w1w2w3) respectively, see chapter 13.
In terms of these labels, the eigenvalues are given by:

⟨u1u2∣ G(G2) ∣u1u2⟩ = 1

12
[u2

1 + u1u2 + u2
2 + 5u1 + 4u2] (14.63a)

⟨w1w2w3∣ G(R7) ∣w1w2w3⟩ = 1

10
[w1(w1 + 5) +w2(w2 + 3) +w3(w3 + 1)] (14.63b)

Table 14.14: Matrix elements of the conventional effective electrostatic operators α,β and γ in

f2

SL U W α̂ 12G(G2) 10G(R7)
1S (00)(000) 0 0 0
3P (11)(110) 2 12 10
1D (20)(200) 6 14 14
3F (10)(110) 12 6 10
1G (20)(200) 20 14 14
3H (11)(110) 30 12 10
1I (20)(200) 42 14 14
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The two-body magnetic dd parameters have both MSO and EL-SO contributions:

Ac(dd) = −11

12
M0(dd) − 1

42
M2(dd) + 5

56
(P 2(d→ d′) + 2

9
P 4(d→ d′))

A3(dd) = 3

7

√
7

6
(M0(dd) − 3

7
M2(dd)) + 3

98

√
7

6
(P 2(d→ d′) − 5

9
P 4(d→ d′))

A4(dd) = 4

21

√
7

4
(M0(dd) + 37

7
M2(dd)) + 2

49

√
7

4
(P 2(d→ d′) − 5

9
P 4(d→ d′))

A5(dd) = 1

3

√
7

2
(M0(dd) + 37

7
M2(dd)) + 1

98

√
7

2
(P 2(d→ d′) − 5

9
P 4(d→ d′))

A6(dd) = − 1

21

√
7

2
(107

2
M0(dd) − 23

7
M2(dd)) + 5

196

√
7

2
(P 2(d→ d′) + 2

9
P 4(d→ d′))

A1(dd) = 6

√
7

6
(1

7
M0(dd) − 8

49
M2(dd))

A2(dd) = −60

49

√
7

3
M2(dd) (14.64)

Here (see section 15.5): P k(d→ d′) = ⨋
d→d′

2ζ(dd′)Rk(dd;dd′)
Edd′

Cls =
1

4l + 2

√
3 ⋅Gl(ls) → Cds = 1

10

√
3 ⋅G2(ds) (14.65)

C1(dp) = 1√
28

(4

5
F 2(dp) − 7

15
G1(dp) − 3

35
G3(dp)) (14.66a)

C2(dp) = 1√
231

(14

5
G1(dp) + 81

70
G3(dp)) (14.66b)

C3(dp) = 1√
2068

(47

5
G1(dp) − 141

35
G3(dp)) (14.66c)

For pN configurations, the first order parameter O2 and the effective parameter Eα
are used. The contribution of F 2(pp) is given by:

O2 =
3

25

√
2 ⋅ F 2(pp) (14.67)

For the two-particle magnetic operators Ac and A3, one obtains the below first and
second order contributions:

Ac = 1

4

√
2(−5M0(pp) + 3

10
P 2(p→ p′))

A3 = 1

4

√
2

5
(−37M0(pp) + 3

10
P 2(p→ p′)) (14.68)
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where the EL-SO contribution (section 15.5) P 2(p→ p′) is given by:

P 2(p→ p′) = ⨋
p→p′

2ζ(pp′)R2(pp;pp′)
Epp′

A1 = −
2

5

√
15 ⋅M0(pp) (14.69)

In pNs configurations, two-electron ps interactions make their appearance as well:

Cls =
1

4l + 2

√
3 ⋅Gl(ls) → Cps =

1

6

√
3 ⋅G1(ps) (14.70)

Contributions to the mutual spin-orbit parameter Amso in ls configurations, are
frequently dominated by the second order effect called EL-SO, discussed more fully
in section 15.5. From equation (5.108), one finds:

Amso = −
6

2l + 1
W l−1(ls; sl) + 4N0(ls; ls) − 1

4l + 2
P l(l → l′) (14.71)

where again P l(l → l′) is defined as:

P l(l → l′) = δ(l, l′)⨋
l→l′

2ζ(ll′)Rl(ls; sl′)
Ell′

More specifically, for ps configurations, one obtains:

Amso(ps) = −2 ⋅W 0(ps; sp) + 4N0(ps;ps) − 1

6
P 1(p→ p′) (14.72)

A numerical example for ds configurations is worked out later in the text in equation
(15.56) and the below table.

Ass = 2

√
6

(2l − 1)(2l + 3)
⋅N0(ls; ls) (14.73)

Of course, the parameters also receive contributions from higher-order effects, so
the above equations should be regarded as providing first, possibly second, order
contributions rather than their entire values.

14.8 Parametric fitting

As in many branches of atomic physics, the challenge of the calculation lies in find-
ing an efficient way to include correlations and, secondary, relativity. The power of
a particular approach varies considerably with the type of system at hand. Roughly,
we may distinguish two cases:
(i) The element is ’light’ (Z < 20) or contains less than three electrons outside closed
shells. This results in energy spectra with a few, relatively well separated levels.
Here, correlation determines the eigenvector composition of the levels to a consid-
erable degree. As electrostatic effects dominate the description of the system. the
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mixing is limited to terms with the same SL−value. Nevertheless, massive config-
uration interaction (CI) calculations are necessary to include the right amount of
correlation.
(ii) The energy structure is ’complex’, i.e. there are several d− or f−electrons out-
side closed shells. The configurations contain quite a number of levels of the same
J-value in a relatively small energy interval. Here, the eigenvector composition of
the levels is mainly determined by the (non-diagonal) magnetic interactions and the
spacing between the levels. In the orthogonal operator approach, the focus lies on
the second case. To calculate energy spacings in complex systems as accurately as
possible, an effectively complete set of orthogonal operators has been introduced
[Hansen et al., 1988b, van het Hof et al., 1991a]. Explicit configuration interaction
can be included in this approach by full diagonalization of a more-configuration
space [Uylings et al., 1993]. Purely ab initio approaches are seldom sufficient to de-
scribe complex spectra, i.e. spectra from atoms with more than two electrons or
holes outside closed shells. Often a large number of close-lying levels is involved in
these systems. The correct LS-coupling fractions therefore critically depend on an
accurate determination of the energy spacings. An alternative is to use experimental
data in the description as well. In the classic semi-empirical approach used e.g. by
Racah, one proceeds as follows:
(i) the usual Hamiltonian including all important interactions is set up,
(ii) the radial parts of the energy operators are, after an initial estimate, treated as
free parameters,
(iii) the eigenvalues of the Hamiltonian are fitted to the experimental energy levels
by adjusting these radial parameters iteratively,
(iv) the final eigenvectors, yielding the level composition in terms of the applied
coupling scheme (like LS-coupling), are used to calculate transition probabilities if
required.
A weak point of the above procedure is the interdependence of the parameters. Ad-
dition of a new parameter (associated with a different physical effect) may change
earlier parameter values as the new operator may in part have the same angular
structure as some of the older ones. This instability and the associated errors on
the parameters are reduced in the orthogonal operator approach [Judd et al., 1982].
”In this approach, the introduced orthogonalization of the conventional Slater-
Condon operators increases the accuracy of the parameter values obtained in the fit
and improves the stability of the fitting procedure. The stability of the fit offers the
possibility to fit parameters one after another and extend the operator set to include
a number of small effects, such as two-body magnetic and three-body electrostatic
interactions. This method has been successfully applied to the 3d-, 4d- and 5d-
spectra and has resulted in reduction of the mean deviations of the fits by an order
of magnitude or more compared to the parametric descriptions based on the con-
ventional Slater-Condon approach. The accuracy of the fits permitted experimental
determination of the mentioned small effects. These effects have been systematically
studied in the 3d- and 4d-spectra. In the 5d-spectra, three isoelectronic sequences
have been studied systematically with the orthogonal operators.” [Azarov, 2018]
Replacing step (i), a basis set of independent operators each with its own angular
structure is constructed (the various allowed angular symmetries may e.g. be de-
termined by group theory). In this way, no unintended effects will be mixed into
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the parameter values. This facilitates ab initio calculations of the parameters and
allows the determination of less important effects as well. One may think of the or-
thogonal operator method as defining a linear space of operators whereupon physical
effects are projected by means of a fit; the coefficient on each orthogonal axis, i.e.
its parameter value, yields the strength of the effect.

14.9 Completeness

Each complete set of operators is shown to yield a unique joint solution to level
energies and level compositions. Consequently, an operator set which consists of
more operators than the number of levels in the configuration is not overcomplete.
In principle there is, in addition to the level energies. sufficient physical information
dependent on the level compositions (g factors, line strengths) to determine all pa-
rameter unambiguously. If, in practice, the experimental information is incomplete,
theoretical or empirical knowledge of the parameters can readily be used to reduce
the number of parameters to be varied.
Complex bound systems like free atoms and ions can accurately be described if
the strengths of the model energy operators are adjusted so as to obtain an opti-
mal agreement between the measured energies and the eigenvalues of the Hamilto-
nian. Orthogonal operators are introduced in this fitting procedure both to minimize
the correlation and, thereby, the mean error of the parameters [Judd et al., 1982,
Hansen et al., 1988b], and to facilitate comparison with ab initio calculations
[Uylings and Smid, 1987, Hansen et al., 1987].
A set of orthogonal operators consists of suited linear combinations of conventional,
for instance Slater-type, operators, completed with effective higher order operators
like three- and four-electron operators.
The principal, though not fully independent, questions to be answered are the
following:

• What is the meaning of a least-squares fit (LSF) involving more parameters
than level values?

• Which of the numerous ’perfect energy fits’ is physically acceptable and by
what criteria does one select the correct solution?

• What information is hidden in the ’superfluous’ parameters?

14.9.1 (Over)completeness

Consider the Hamiltonian of a configuration (or possibly more configurations of the
same parity), with matrix elements explicitly written in terms of an arbitrary ’pure’
coupling scheme such as SL coupling. Because good quantum numbers, and the
corresponding symmetry restrictions on the system, only exist as an approximation
(except, in the absence of strong external fields, the total angular momentum J) ,
every mixing between basis states is allowed, i.e. each off-diagonal matrix element
may be non-zero. By definition, a set of operators is said to be ’complete’ if the
number of operators equals the number of independent matrix elements, including
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off-diagonals, so quite generally M > N in our context. When only the N energies
are used as experimental input, there is an infinite number of sets of M parameter
values which describe them perfectly.
To be specific, let the Hamiltonian be defined by:

⟨b ∣H ∣ k⟩ =
M

∑
i=1

⟨b ∣Oi∣ k⟩Pi (14.74)

In the above, Oi is an angular (orthogonal) operator and Pi is the associated radial
operator strength, which is treated as a parameter. In the parametric approach,
only the angular matrix elements depend explicitly on the basis states. Each uni-
tary transformation UHU−1 of H rotates the basis states ∣k⟩ towards a new coupling
scheme, and leaves the values of Pi unchanged. If, on the other hand, the strength
Pi of one or more operators is changed, we will after diagonalization end up with
different compositions of eigenvectors in terms of the same basis states ∣k⟩. Such a
different ’intermediate coupling’ therefore describes a different physical situation: a
different set of parameter values may possibly yield the same energies, but never the
same set of eigenvectors. Returning to the questions posed in the introduction, we
can conclude that the answer to all three of them lies in the physical significance of
the level composition. Even for M > N , there exists only one ’correct’ solution since
the level compositions can, at least in principle, be determined from other observ-
ables than the energies. The so-called ’overcompleteness’ or ’overparametrization’
is a consequence of the fact that the experimental information is limited to energy
values alone.
Each complete set of operators can be shown to yield a unique joint solution to level
energies and level compositions. Consequently, an operator set which consists of
more operators than the number of levels in the configuration is not overcomplete.
In principle there is, in addition to the level energies, sufficient physical information
dependent on the level compositions (g-factors, line strengths) to determine all pa-
rameters unambiguously. If, in practice, the experimental information is incomplete,
theoretical or empirical knowledge of the parameters can readily be used to reduce
the number of parameters to be varied. The noble-gas configurations p5s have been
used to illustrate these points [van het Hof et al., 1991b].

14.9.2 The use of the parameter set

Although mathematically sound, the use of complete sets may still raise points to
be clarified.
(i) If the condition of full knowledge of the system (energies and compositions) is
satisfied, which hardly ever is the case in practice, one may wonder what purpose is
served describing such a system semi-empirically.
(ii) If this condition is not met, one may wonder if application of a complete set
is not impracticable and whether the predictive power of such a set, if part of the
spectrum is experimentally unknown, is not inferior with respect to a conventional
set with considerably fewer parameters.
In reply to (i), if all experimental data of a system are present, the goal to under-
stand the system in the sense of performing ab initio calculations that conform to
the experiment with sufficient accuracy, still remains. A parametric calculation is
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a means of translating the experimental data into quantities that are traceable to
theory. It is possible to calculate each parameter independently as the sum of the
projections of ’theoretical’ operators derived for instance from perturbation theory,
onto the basis of orthogonal operators. For every particular ab initio calculation,
one can therefore select the parameters of interest.
Secondly, parameters (unlike experimental data) provide the possibility to compare
systems like dN configurations isoionically as a function of N , such as the seemingly
different configurations d3 and d4 [Hansen et al., 1988b].
Thirdly, it is likewise easier to inter- or extrapolate the parameters than the experi-
mental data themselves from one atomic system to analogous (isoionic, isoelectronic)
spectra that are not yet completely known.
In reply to (ii), if the experimental data are incomplete, it is obvious that one cannot
vary all the parameters; however, there are several ways to proceed.
(a) Direct truncation of the parameter set, i.e. fixing several less important pa-
rameters to zero. In this way, one can always obtain an equivalent (same number
of parameters, same scope of description) of the older, conventional parameter set,
with the additional advantage of having an orthogonal, and thus more independent
and stable parameter set.
(b) A more sophisticated approach is to fix the less important parameters to their
ab initio values. Although these values may sometimes be hard to calculate (con-
tributions from higher order perturbation theory), they are usually more plausible
than zero. Especially magnetic effects can fruitfully be added to the Hamiltonian in
this way.
(c) Another possibility is to fix parameters at inter- or extrapolated values from anal-
ogous spectra. An example of the superiority of orthogonal operators in this respect
is the prediction made for the 3d5 configuration in Cu VII [van het Hof et al., 1990].
In some cases, experience with other spectra can be combined with ab initio calculations,
by extrapolating the ratios between fitted and calculated values as scaling factors.
Finally it should be mentioned that, on occasion, other stratagems characteristic to
the system under study, like varying parameters in a fixed relation to others, can be
used.

14.9.3 Truncation of the basis

In principle, a bound-state eigenvector is composed of all possible model states of
the same parity belonging to a particular atom or ion. In practice, the eigenvector
space is partitioned into a model space P consisting of a relatively small number
of configurations (frequently one) and an orthogonal space Q of far-lying configura-
tions. Effects of the far-away configurations on P can be accounted for by so-called
‘effective’ operators, that formally act only within P . Therefore, the strength of
these operators (i.e. the associated parameter value) is zero to first order. As in
our construction the number of real intra-P operators is relatively small, a complete
set is mainly characterized by the presence of ‘all’ effective operators. In this ap-
proach, the energies can always be satisfactorily described, but the eigenvectors are
inherently approximated by the truncation of Q states. This procedure is therefore
justified only if the distance between the configurations A ∈ P and the configurations
B ∈ Q is ‘large’ compared with the energy spread of A, in which case only the repul-
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sion has to be described and eigenvector mixing between A and B can be neglected
in an energy description (in principle, one should use effective dipole operators for
transitions). Comparison between experimental and elementary theoretical results,
as well as purely theoretical arguments can be used to mark the departure from the
single configuration model.
(i) The number of spectral lines is larger, and their intensities deviate from what
would be expected on theoretical grounds.
(ii) Fitted parameters deviate markedly from extrapolated results or theoretical
predictions: the parameters apparently adapt to effects they were not meant to de-
scribe. This situation is analogous to that discussed in subsection (14.9.1): it is true
that the energies are described satisfactorily, but the eigenvectors, and thereby the
predictions of other observables, are deficient.
(iii) Sum rules for g factors fail.
(iv) Hartree-Fock calculations predict either the proximity (energy overlap) of
another configuration B, or large interaction integrals between A and B (orbital
overlap), or both. This leads to a transfer of B from Q to P . Especially in several
times ionized systems, this situation is often encountered in the set of configurations
with equal principal quantum numbers, called the Layzer complex. As suggested by
Brillouin’s theorem, interactions are often larger if A and B differ by a two-particle
substitution than by a one-particle substitution.
If B is transferred to P , the effective operators of A only describe the effects of the
remaining configurations in Q. The contribution of B to these effective operators
(actually to all operators of A) will thereby be subtracted from the corresponding
parameter values. If VAB is the interaction operator between the configurations A
and B, this contribution is found from the projection of the perturbation operator

U = VABVBA
EA −EB

+ VAB [VBB, VBA]
(EA −EB)2 +⋯ (14.75)

14.9.4 Conclusions

It is argued that for a Hamiltonian consisting of angular operators and associated
radial parameters to yield correct energies and level compositions, a complete opera-
tor set should be used in the construction, even though the number of operators may
exceed the number of fitted energy levels. With complete experimental information
lacking in most cases, this is a more philosophical than practical point, but it shows
that there is nothing principally wrong in dealing with complete sets. In practice,
one can always neglect the smaller effects, or add them as non-variable quantities
derived from empirical or theoretical knowledge.



Chapter 15

Perturbation theory

The omission of interaction between configurations is the chief defect of the model
based on a central-field potential. The residual Coulomb interaction not only splits
up each configuration into terms, but it also connects like terms in different con-
figurations. If the levels of two or more configurations overlap or interact strongly,
the only appropriate technique may be to diagonalise their combined matrix. A
notation of the type (3d + 4s)8 implies that eight electrons are assigned to the six
orbitals provided by the five 3d states and the single 4s state. We are thus left with
a superconfiguration 3d8 + 3d74s + 3d64s2.
In perturbation theory, the eigenvector space is divided into a model space P
containing the configuration A (or a small number of strongly interacting configu-
rations) under study and an orthogonal space Q of far-lying configurations B.
A symbolic graphical picture of perturbation theory, with the number of arrows
indicating the 0,1,2,3... order, is given below:

+

EA

+

VAA

+

VAB ⋅ VBA

−

VAB ⋅ VBC ⋅ VCA

+ ⋯

VAB ⋅ VBA ⋅ VAA

To be able to deal with a group of levels simultaneously, the Rayleigh-Schrödinger
formulation is used.
Following equation (10.19):

Q = 1 − P = 1 −∑
a≠v

∣a⟩ ⟨a∣ with Q ∣a⟩ = 0 and Q ∣v⟩ = ∣v⟩ (15.1)

the corresponding projection operators are given by:

P = ∑
α∈P

∣α⟩ ⟨α∣ (15.2a)

Q = ∑
β/∈P

∣β⟩ ⟨β∣ with its resolvent: R = ∑
β/∈P

∣β⟩ ⟨β∣
EA −EB

(15.2b)
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The second-order energy and transition corrections, with A ∈ P and B ∈ Q, are then
respectively:

⟨Aα∣H ′∣Aα′⟩ = ∑
B/∈P

(EA −EB)−1∑
β

⟨Aα∣VAB ∣Bβ⟩ ⟨Bβ∣VBA∣Aα′⟩

⟨Aα∣r′∣Cγ⟩ = ∑
B/∈P

(EA −EB)−1∑
β

⟨Aα∣VAB ∣Bβ⟩ ⟨Bβ∣rBC ∣Cγ⟩

When formulated in second quantization, the operators automatically select the
relevant states ∣Bβ⟩ from the Q-space, and yield zero otherwise. Therefore, one can
extend the summation over β to a summation over all states, the additional ones
yielding only additional zeros. This enables the use of the closure relation:

⟨Aα∣H ′∣Aα′⟩ = ∑
B/∈P

(EA −EB)−1 ⟨Aα∣VABVBA∣Aα′⟩

⟨Aα∣r′∣Cγ⟩ = ∑
B/∈P

(EA −EB)−1 ⟨Aα∣VAB rBC ∣Cγ⟩ (15.3)

The principle perturbation terms are: VAB = (CAB −UAB)+ZAB where C represents
the Coulomb interaction, Z the spin-orbit interaction and U the potential used
to generate the zeroth-order wavefunctions. UAB only comes into play with single
electron (Brillouin) excitations nl → n′l, when (C − U) or (Z − U) rather than C
or Z are to be used. This will introduce cross terms in the perturbation expansion
such as:

−2∑
β

⟨Aα∣UAB ∣Bβ⟩ ⟨Bβ∣CBA∣Aα′⟩
EA −EB

The second quantized form for UAB is given by:

UAB = −δ(l, l′) [1
2 , l]

1
2 (a†b)(00)0 ⟨a∣U ∣b⟩ (15.4a)

In the Hartree-Fock average of configuration approach, a natural choice for pertur-
bation theory, with A = lN l′M and B = lN−1l′M+1, the off-diagonal potential matrix
element becomes:

⟨a∣U ∣b⟩ = ⟨b∣U ∣a⟩ = δ(l, l′) [(N − 1) ⟨Caa;ab⟩ +M ⟨Cab;bb⟩ +∑
c

Nc ⟨Cac;bc⟩]

= δ(l, l′)
⎡⎢⎢⎢⎢⎣
(N − 1)(R0(aa, ab) − ∑

k>0

⟨l ∥ C(k) ∥ l⟩2

(2l + 1)(4l + 1)
Rk(aa, ab))

+M (R0(ab, bb) − ∑
k>0

⟨l ∥ C(k) ∥ l⟩2

(2l + 1)(4l + 1)
Rk(ab, bb))

+∑
c

Nc

⎛
⎝
R0(ab, ac) − 1

2 ∑
k′

⟨l ∥ C(k′) ∥ l′⟩2

(2l + 1)(2l′ + 1)
Rk(ab, ca)

⎞
⎠

⎤⎥⎥⎥⎥⎦
(15.4b)

as defined earlier in equations (10.8a) and (10.8b), ⟨Cab;cd⟩ is the average Coulomb
interaction between the electron pairs (ab) and (cd):

⟨Cab;cd⟩ =
∑SL[S,L] ⟨l1l2(SL)∣C ∣l3l4(SL)⟩

∑SL[S,L]
(15.5)
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The notation Hn
k is used to indicate an n-particle operator of the kth-order Hamilto-

nian in the below. Terms like (EA−EB)−1CABCBA give rise to two- and three-particle
electrostatic operators in second order, written further below as H2

2 and H3
2 .

As for both the angular and the radial parts, by far the most dominant contributions
to the two-particle parameters in lN configurations come from terms with a radial
factor R0(ll; ll′)Rk(ll; ll′)(EA − EB)−1. Here, the angular coefficients all turn out
to be proportional to the coefficients fk(l, l) of the Slater parameter F k. This can
be calculated from the corresponding general formulae (e.g. [Uylings, 1985]), but
it can be understood more easily by considering the individual cases, graphically
represented by their Feynman diagrams in figure 15.1 (the circled cross denoting the
potential interaction). Here, lines with a double arrow represent valence electrons,
lines a single upward arrow represent virtual electrons and with a single downward
arrow closed shells electrons. The topologically equivalent angular momentum dia-
grams are given in figure 15.2.
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nl

nl

nl

n′l

nl

(a)

nl

nl

nl

n′l

nl

nl

nl

(b)

nl

nl

nl

n′l

nl

(c)

⊗

Figure 15.1: Feynman graphs for the two-particle (a), the three-particle (b) and
potential (c) operators that appear in the second-order Hamiltonian for an nl → n′l
excitation.
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Figure 15.2: Angular momentum graphs corresponding to the cases (a), (b) and (c)
of the topologically equivalent diagrams of figure 15.1

After the removal of the zero branches (the factor [l]−1 is canceled by ⟨l ∥ C(0) ∥ l⟩2
)

figures 15.2(a,b) reduce to the form indicated in figure 15.2(c) , which is precisely
the graphical representation of fk(l, l). Realizing that unlike ⟨l2∣C ∣l2⟩ the matrix
elements ⟨l2∣C ∣ll′⟩ and ⟨l2∣U ∣ll′⟩ carry a weighting factor

√
2 and that in addition

there are two possible choices for the zero line, we see that the first two terms have
angular coefficients 4fk(l, l); the potential term has the coefficient −4fk(l, l) as a
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result of the factor of −2 that occurs in the second-order energy expression. From
equation (14.26) it can be seen that the N -dependence of the three-particle contri-
bution is given by Q = (N

3
)(3

2
)/(N2 ) = (N − 2); the R0 term in ⟨nl∣U ∣n′l⟩ according to

equation (15.4b) is prefaced by (N − 1); recall that closed shells can be neglected in
this equation. In summary, the contributions of the three terms to the two-particle
parameters are:

∑
k

4fk(l, l)R0(ll; ll′)Rk(ll; ll′) [1 + (N − 2) − (N − 1)] (EA −EB)−1 = 0 (15.6)

The three dominating contributions therefore cancel for all values of N and only
smaller ones are left, e.g. ⟨d∣U ∣d′⟩ simply becomes −2/63 ⋅ (N − 1)[R2(d2;dd′) +
R4(d2;dd′)]. Similar cancellations of unphysically large contributions connected
with the occurrence of R0 in the radial factor also occur in the third-order calcu-
lation. This result indicates the danger involved in arbitrarily selecting some large
contributions of a particular radial class without calculating them all.

15.1 Two perturbed levels

Given that two levels with initial energies E1 and E2 (assuming E1 > E2) are per-
turbed by an interaction F , the equation to solve becomes:

∣E1 − λ F
F E2 − λ

∣ = 0 (15.7)

with the solution:

λ1,2 =
E1 +E2

2
±
√

(E1 −E2

2
)

2

+ F 2 (15.8)

The perturbed eigenvalues λ1 and λ2 retain the center of gravity: 1
2(E1 + E2) =

1
2(λ1 + λ2). Both are repelled by an amount ∆ w.r.t. their original energy value:
λ1 −E1 = E2 − λ2 = ∆. Or:

1
2(E1 −E2) = 1

2(λ1 − λ2) −∆ (15.9)

It follows: F 2 = ∆(E1 −E2) +∆2 or F 2 = ∆(λ1 − λ2) −∆2.
The eigenvectors are determined by:

(E1 − λ F
F E2 − λ

)(C
C ′) = (0

0
) with C2 +C ′2 = 1 (15.10)

yielding:

C2 = F 2

F 2 +∆2
and C ′2 = ∆2

F 2 +∆2

F 2 = C2 ⋅∆2

1 −C2
(15.11)

Therefore, finally:

∆ = (λ1 − λ2) ⋅ (1 −C2)
F 2 = (λ1 − λ2)2 ⋅C2 ⋅ (1 −C2) (15.12)
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Without loss of generality, one may take E1 = 1,E2 = 0 and express the energies ∆
and F in terms of the unperturbed energy distance E1 − E2. Put differently, the
quantities displayed below are actually ∆/(E1 −E2) and F /(E1 −E2).
Both ∆ and C2 are a function of F 2:

∆ = 1
2 (

√
1 + 4F 2 − 1)

C2 = 2F 2

1 + 4F 2 −
√

1 + 4F 2
(15.13)

It follows:

lim
F→0

∆ = 0 lim
F→0

C2 = 1 lim
F→0

C ′2 = 0

lim
F→∞

∆ = F − 1
2 lim

F→∞
C2 = 1

2 lim
F→∞

C ′2 = 1
2 (15.14)
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∆
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15.2 lN configuration

The following definition from [Rajnak and Wybourne, 1963] (RW) and [Racah and Stein, 1967]
(RS) is adopted:

P (kk′, l1l2, l3l4) = ∆E−1Rk(l1l2, l3l4) Rk′(l1l2, l3l4)
× ⟨l1 ∥ Ck ∥ l3⟩ ⟨l2 ∥ Ck ∥ l4⟩ ⟨l1 ∥ Ck′ ∥ l3⟩ ⟨l2 ∥ Ck′ ∥ l4⟩ (15.15)

As an example:

P (22,22,20) = −10

7

(R2(sd, dd))2

EA −EB
.

The Trees operator [Trees, 1963] T is associated with an inner shell excitation l′ → l
from
A = l′4l′+2lN to B = l′4l′+1lN+1. Now, according to the basic perturbation equation
(15.3), the quantity to be calculated is: VABVBA(EA −EB)−1.
Using equation (5.77) for the Coulomb interaction, one finds:

VAB = 2 ⋅ ∑
k

(−1)k[k]−
1
2Rk(aa;ac′) ⟨l ∥ C(k) ∥ l⟩ ⟨l ∥ C(k) ∥ l′⟩ {(c†a)(0k)(a†a)(0k)}(00)
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and

VBA = 2⋅∑
k′
(−1)k′[k′]−

1
2Rk′(aa;ac) ⟨l ∥ C(k′) ∥ l⟩ ⟨l ∥ C(k′) ∥ l′⟩ {(a†a)(0k′)(a†c)(0k′)}(00)

Next, the operator product is reduced by means of equation (5.12):

[{(c†a)(0k)(a†a)(0k)}(00) {(a†a)(0k′)(a†c)(0k′)}(00)] → [{a†(a†a†)SL}S3L3 {(aa)S′L′a}S3L3]
(00)

Using equations (5.16) and (5.17), one obtains for the pure three-, two- and
one-particle matrix elements:

⟨l3(S3L3ν3)∣H3
2 ∣l3(S3L3ν

′
3)⟩ = −3(EA −EB)−1

× ∑
SL,S′L′

[S,L,S′, L′]
1
2 ⟨l′l(SL)∣C ∣l2(SL)⟩ ⟨l′l(S′L′)∣C ∣l2(S′L′)⟩

× {
1
2 S S3
1
2 S′ 1

2

} {l L L3

l L′ l′
} (l3(S3L3ν3){∣l2(SL)) (l2(S′L′)∣}l3(S3L3ν

′
3))

(15.16a)

⟨l2(S2L2)∣H2
2 ∣l2(S2L2)⟩ = −2∑

kk′
P (kk′, ll, ll′)(2(−1)L2δ(kk′)[k]−1{ k l l

L2 l l
}

−(−1)L2{k
′ l l
k l′ l

} ({ k l l
L2 l l

} + {k
′ l l

L2 l l
} ) −

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k′ l′ l
l l L2

l k l

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠

(15.16b)

⟨l ∣H1
2 ∣ l⟩ = −[l]−1 ∑

kk′
P (kk′, ll, ll′)(2δ(kk′) [k]−1 − {k

′ l l
k l′ l

} ) . (15.16c)

For the Trees operator, l′ = 0 and l = 2. In fact, as ∆E−1 = −(EA −EB)−1:

T = (R2(sd, dd))2

352(EA −EB)
= −P (22,22,20)

1750
.

Here, (SL) = (S′L′) = (02) and ⟨sd(1D)∣C ∣d2(1
2D)⟩ = −2/

√
35 ⋅R2(sd, dd). For the

angular n-electron matrices O3,O2 and O1 of the Trees operator, one obtains:

⟨d3(S3L3ν3)∣O3∣d3(S3L3ν
′
3)⟩ = 210 ⋅ δ(S3,

1
2)(−1)L3

× (d3(S3L3ν3){∣12D) (1
2D∣}d3(S3L3ν

′
3)) (15.17a)

⟨d2(S2L2)∣O2∣d2(S2L2)⟩ = −700{L2 2 2
2 2 2

} (15.17b)

⟨d ∣O1∣ d⟩ = 70. (15.17c)

Below, the contributions to the A = lN configuration deriving from all accessible
configurations B are explored to second order.
Here, every electrostatic operator in which an l2 pair is participating in the Coulomb
interaction, will be seen to satisfy the joint formula:

H2
2 = (EA −EB)−1 ∑

SL

⟨l2(SL)∣C ∣l′l′′(SL)⟩2
HSL (15.18)

where there is no restriction on l′ and l′′.
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15.2.1 B = l′4l′+1lN+1

The one-, two- and three-particle parts of the Coulomb interaction Cl′l;ll have already
been considered in the above equations (15.16).
Some relevant Feynman diagrams are given below. Downward lines refer to closed
shells electrons.

⊗

⊗

Therefore, only the two-particle contributions of the Coulomb interaction Cl′l′;l′l
and the potential are considered below.

⟨l2(SL)∣H2
2 ∣l2(SL)⟩ = −4δ(ll′) (EA −EB)−1

×([l]−1∑
k

⟨l ∥ C(k) ∥ l⟩2 (2[l]−1 δ(k,0) − 1)Rk(l′l; l′l′) − ⟨n′l′∣U ∣nl⟩)

×∑
k′

⟨l ∥ C(k′) ∥ l⟩2
Rk′(l′l; ll) (−1)L{k

′ l l
L l l

} . (15.19)

15.2.2 B = lN−1l′

In this case, there is a potential contribution present if l′ = l; as illustrated by
equation (15.6), closed shells are removed from U by cancellation. The Feynman
diagrams were given earlier in figure 15.1:

⊗

⊗

⟨l2(SL)∣H2
2 ∣l2(SL)⟩ = −2∑

kk′
P (kk′, ll, ll′){k l l′

L l l
} {k

′ l l′

L l l
}

−4δ(ll′) (EA −EB)−1∑
k

⟨l ∥ C(k) ∥ l⟩2 (−1)L{k l l
L l l

} ⟨nl∣U ∣n′l′⟩Rk(ll, ll′) (15.20a)
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⟨l3(S3L3ν3)∣H3
2 ∣l3(S3L3ν

′
3)⟩ = 3(EA −EB)−1

× ∑
SL,S′L′

[S,L,S′, L′]
1
2 ⟨l2(SL)∣C ∣ll′(SL)⟩ ⟨ll′(S′L′)∣C ∣l2(S′L′)⟩

× {
1
2 S S3
1
2 S′ 1

2

} {l L L3

l L′ l′
} (l3(S3L3ν3){∣l2(SL)) (l2(S′L′)∣}l3(S3L3ν

′
3))

(15.20b)

Notice the similarity between the equations (15.16a) and (15.20b).

15.2.3 B = lN−2l′l′′

l

l′

l

l

l′′

l

⟨l2(SL)∣H2
2 ∣l2(SL)⟩ = −2∑

kk′
P (kk′, ll, l′l′′){k l l′′

L l′ l
} {k

′ l l′′

L l′ l
} (15.21)

15.2.4 B = lN−2l′2

⟨l2(SL)∣H2
2 ∣l2(SL)⟩ = −∑

kk′
P (kk′, ll, l′l′){k l l′

L l′ l
} {k

′ l l′

L l′ l
} (15.22)

15.2.5 B = l′4l′+1l′′4l
′′+1lN+2

⟨l2(SL)∣H2
2 ∣l2(SL)⟩ = −2∑

kk′
P (kk′, l′l′′, ll){k l′′ l

L l l′
} {k

′ l′′ l
L l l′

} (15.23a)
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⟨l∣H1
2 ∣l⟩ =

−2(2l + 1 −N)
(2l + 1) ∑

kk′
P (kk′, l′l′′, ll)(2δ(kk′) [k]−1 − {l l′′ k′

l l′ k
} ) (15.23b)

.

15.2.6 B = l′4l′lN+2

⟨l2(SL)∣H2
2 ∣l2(SL)⟩ = −∑

kk′
P (kk′, l′l′, ll){k l′ l

L l l′
} {k

′ l′ l
L l l′

} (15.24a)

⟨l∣H1
2 ∣l⟩ =

−(2l + 1 −N)
(2l + 1) ∑

kk′
P (kk′, l′l′, ll)(2δ(kk′) [k]−1 − {l l′ k′

l l′ k
} ) (15.24b)

.

15.2.7 B = l′4l′+1lN l′′

⊗

⊗

⊗

⊗

In this case, the Coulomb matrix element ⟨l′l(SL) ∣C ∣ ll′′(SL)⟩ contains both direct
and exchange terms. As a result, the product CC includes three radial factors:
P (kk′, l′l, ll′′), P (kk′, l′l, l′′l) and a cross term M(kk′), defines by RW and RS:

M(kk′) = ∆E−1 Rk(l′l, ll′′) Rk(l′l, l′′l)
× ⟨l′ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⟨l′ ∥ C(k′) ∥ l′′⟩ ⟨l ∥ C(k′) ∥ l⟩ (15.25)
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⟨l2(SL)∣H2
2 ∣l2(SL)⟩ = − 4∑

kk′
P (kk′, l′l, l′′l) δ(kk′) [k]−1(−1)L{k l l

L l l
}

+ 4∑
kk′

(−1)kM(kk′)(−1)L{k
′ l l
L l l

} { l l′′ k
l′ l k′

}

+ 2∑
kk′
P (kk′, l′l, ll′′)(−1)L

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L l l
l k′ l′′

l l′ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (15.26a)

⟨l∣H1
2 ∣l⟩ = − 2∑

kk′
P (kk′, l′l, l′′l) δ(kk′) [k]−1[l]−1

+ 2∑
kk′

(−1)kM(kk′){k
′ l l
k l′ l′′

} [l]−1

− 2∑
kk′
P (kk′, l′l, ll′′) δ(kk′) [k]−1[l]−1

− 2 δ(l′l′′) (EA −EB)−1[l]−1 ⟨n′l′ ∣U ∣n′′l′′⟩

× (2[l, l′]R0(ll′′, ll′) −∑
k

⟨l ∥ C(k) ∥ l′⟩2
Rk(ll′′, l′l)) (15.26b)

Again, note the similarity with equations (15.16).

15.3 Three-electron operators in l2l′.

Below, we will associate the radial orbitals a, b, c and v with the orbital angular
momenta l, l′, l, l′′, the first two referring to open shells and the last two to closed
and virtual shells, respectively. We consider the two-particle excitation cb → a2 in
detail as a running example of the general method, and give the formulae for the
other excitations in appendix A. Numerical applications are given in 17.3. Actually,
it is an exception that a two-electron excitation yields a three-electron operator, but
this is readily understood from the schematic form of VABVBA:
(c†ab†a)(a†ba†c). The combination (c†c) is coupled to zero ranks and removed
while the remainder is rearranged towards (a†a†b†)(aab), with a phase (−1)P = 1
because of the even number of permutations P . We multiply VAB and VBA by
joining their graphical expressions given in the below figure 15.27, while extracting
the numerical factor from the two Coulomb graphs as in 5.84:

∑
k,k′

4(−1)k+k′ ⟨l ∥ C(k) ∥ l⟩ ⟨l ∥ C(k′) ∥ l⟩ ⟨l′ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k′) ∥ l′⟩ R
k(cb;aa)Rk′(aa; bc)

EA −EB
.

As prescribed, c† and c are coupled to zero. Both the creation and the annihilation
operators are coupled to the angular momenta S3L3 of the terms of l2l′, anticipating
the standard three-particle matrix element from equation (5.18).
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The resulting graph 15.27 is reduced by standard graphical algebra [Lindgren and Morrison, 1982].

+
c† a

−

−b† a

k

1

2

3
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6

7

8

+

0

⨉ +
a† b

+

−a† c

k′

−

0

⨉

− +
L L′

L3

(15.27)

Using a ’Hamiltonian’ line (that passes through every vertex once) along the route
of the consecutive red node numbers, we obtain the graph of figure 15.28 with all
the nodes now on the periphery. Figure 15.28 can be cut over the two dashed lines
to yield three 6j-symbols.
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Schematized graph 15.27.
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(15.28)

Multiplying the result with the corresponding spin-expression for which k = k′ = 0,
we obtain the final equation:

⟨l2(SL)l′(S3L3) ∣T (cb→ a2)∣ l2(S′L′)l′(S3L3)⟩
= ∑
k,k′

2 ⟨l̄ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k′) ∥ l̄⟩ ⟨l′ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k′) ∥ l′⟩

× [S,L,S′, L′]
1
2 (−1)S+S′+1{S

1
2

1
2

S′ S3
1
2

}

× {L l̄ l′

k′ l l
} {L

′ l̄ l′

k l l
} {L l̄ l′

L′ L3 l′
} Rk(cb;aa)Rk′(aa; bc)

EA −EB
(15.29)

15.4 Third order

The symbolic graphical picture of perturbation theory is repeated below:
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+

EA

+

VAA

+

VAB ⋅ VBA

−

VAB ⋅ VBC ⋅ VCA

+ ⋯

VAB ⋅ VBA ⋅ VAA

In third order, one finds therefore:

⟨Aα∣H3∣Aα′⟩ = ∑
B,C/∈P

(EA −EB)−1 (EA −EC)−1∑
β,γ

⟨Aα∣VAB ∣Bβ⟩ ⟨Bβ∣VBC ∣Cγ⟩ ⟨Cγ∣VCA∣Aα′⟩

− ∑
B/∈P

(EA −EB)−2 ∑
β,α′′

⟨Aα∣VAB ∣Bβ⟩ ⟨Bβ∣VBA∣Aα′′⟩ ⟨Aα′′∣VAA∣Aα′⟩

After closure, this gives for the leading ’diagonal’ third-order correction:

⟨Aα∣H3∣Aα′⟩ = ∑
B/∈P

(EA −EB)−2 (⟨Aα∣VABVBBVBA∣Aα′⟩ − ⟨Aα∣VABVBAVAA∣Aα′⟩)

(15.30)

Except for some terms in the l′ = 0 case, the interactions for the configurations A
and B are the same: VBB = VAA. Thus, one can reformulate equation (15.30) as
follows:

H3 =
VAB [VBB, VBA]
(EA −EB)2 (15.31)

As a result, passive closed shells will not appear in the above.
Five terms (α)...(ε) remain in VAA:

VAA = − 1
2 ∑
SL

[S,L]
1
2 ⟨l′2(SL)∣C ∣l′2(SL)⟩ {(b†b†)SL(bb)SL}(00) (α)

+ [1
2 , l

′]
1
2 ⟨n′l′∣U ∣n′l′⟩ (b†b)(00) (β)

− ∑
S′L′

[S′, L′]
1
2 ⟨l′l(S′L′)∣C ∣l′l(S′L′)⟩ {(b†a†)S′L′(ba)S′L′}(00) (γ)

− 1
2 ∑
S′′L′′

[S′′, L′′]
1
2 ⟨l2(S′′L′′)∣C ∣l2(S′′L′′)⟩ {(a†a†)S′′L′′(aa)S′′L′′}(00) (δ)

+ [1
2 , l]

1
2 ⟨nl∣U ∣nl⟩ (a†a)(00) (ε)

(15.32)

15.5 EL-SO: Electrostatic spin-orbit effects

In second order, the most important spin-dependent operators are given by:

(EA −EB)−1VABVBA = (EA −EB)−1 (CABZBA +ZABCBA −UABZBA −ZABUBA)
∶= H2(ZC) −H2(ZU) (15.33)

These perturbative mixed electrostatic-magnetic contributions are called EL-SO
effects. The off-diagonal potential matrix elements are given equation (15.4b).
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In many cases, especially with lower ionization, EL-SO proves to be dominant over
the MSO effects discussed in chapter 14. As a consequence of the properties of the
spin-orbit interaction, EL-SO only connects members A and B of the same channel
or Rydberg series (including the continuum), so B differs from A by a single electron
substitution (n/ε) l → (n′/ε′) l′, where the orbital angular momentum is conserved:
l = l′, B is a Brillouin excited configuration.
Assuming δ(l, l′), only excitations a→ b between configurations
A = lN l′M(N ≠ 0) and B = lN−1l′M+1(M ≠ 4l′ +2) with a magnetic connection ζ(a, b)
will be considered. Closed shells c(N = 4l + 2) and virtual shells v(M = 0) will
appear as special cases. For practical purposes, effects involving a third shell will
only be considered for those cases.
EL-SO is schematically illustrated in figure (15.3):

Rk(l̄l, l̄l′)

A

�
�
�
�
�
�7

B

S
S
S
S
S
Sw

A

ζ(ll′) + ζ(ll′)

A

�
�
�
�
�
�7

B

S
S
S
S
S
Sw

A

Rk(l̄l, l̄l′)

Figure 15.3: Graphical representation of EL-SO.

Using equations (3.51b) and (5.89), off-diagonal spin-orbit matrix elements are
calculated straightforwardly, e.g.:

⟨lN(SL) ∥ z(a, b) ∥ lN−1(S1L1), l′(S′L′)⟩ = δ(l, l′) ⋅ ζ(a,b) ⋅ −3
√
N ⋅ (lNSL{∣lN−1S1L1)

⋅(−1)S1+
1
2+S+L1+l+L ⋅ [S,L,S′, L′]

1
2 ⋅ {S 1 S′

1
2 S1

1
2

} ⋅ {L 1 L′

l L1 l
} ⋅ (l(l + 1)(2l + 1)/2)

1
2

(15.34)

Yielding an additional minus sign in the angular factor because of the positive
denominator, the radial factors have the form P k = ⨋B 2ζ(a, b)Rk/(EB − EA) and
T = ⨋B 2ζ(a, b) ⟨b∣U ∣a⟩ /(EB−EA). Candidates for the Slater integral are: Rk(aa;ab),
Rk(ab; bb) and finally Rk(ac; bc) plus Rk(ac; cb); these three cases will be labeled in
the operators H2(ZC), H2(ZU) and the radial integrals P k, as (a), (b) and (c),
respectively.
To exemplify the general course of the calculation, we put one of the above terms,
i.e. CABZBA, into second quantized form for A = lN and B = lN−1l′ (associating v
with l′):

CABZBA = ∑
k

2 ⋅ [k]−
1
2 ⟨l ∥ C(k) ∥ l⟩2 {(a†a)(0k)(a†v)(0k)}(00)

Rk(aa, av)

⋅ (l(l + 1)(2l + 1)/2)
1
2 ⋅ (v†a)(11) ⋅ ζ(a, v) (15.35)
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Following the prescription given directly above section 5.1, this operator may be
converted to an operator acting within configuration A only.
Interchanging v and v†, the operator part is recoupled after application of equation
(5.14) to a two-particle operator:

CABZBA = ∑
k

2 ⋅ [k, 1
2
]−

1
2 ⋅ ⟨l ∥ C(k) ∥ l⟩2 ⋅ (l(l + 1)(2l + 1)/2)

1
2 ⋅Rk(aa, av) ⋅ ζ(a, v)

⋅ ∑
K≠k

[K]
1
2 ⋅ {k 1 K

l l l
} ⋅ {(a†a)(0k)(a†a)(1K)}(11)

(15.36)

As an example, the matrix elements of CABZBA+ZABCBA in l2 are, after application
of equation (5.39) and summing over K using equation (2.18):

⟨l2(SL) ∥H2(ZC) ∥ l2(S′L′)⟩

= − 3 ((l(l + 1)(2l + 1)/2)
1
2 [S,L,S′, L′]

1
2{L L′ 1
l l l

} {S S′ 1
1
2

1
2

1
2

}

×∑
k

⟨l ∥ C(k) ∥ l⟩2
P k(a)((−1)L{L l l

k l l
} + (−1)L′{L

′ l l
k l l

} ) →

⟨l2(SL) ∥H2(ZC) ∥ l2(S′L′)⟩ = − ⟨l2(SL) ∥ z(l) ∥ l2(S′L′)⟩

⋅ 1
2 [∑

k

⟨l2(SL)∣ck∣l2(SL)⟩ + ⟨l2(S′L′)∣ck∣l2(S′L′)⟩] ⋅ ⨋
l→l′

2ζ(ll′)Rk(aa, av)
∆E

(15.37)

Alternatively, equation (15.37) may also be derived directly by graphical second
quantization. In anticipation of equation (5.37), (a†a†) is coupled to (SL), (aa) to
(S′L′) while (vv†) is coupled to zero for use of equation (5.14).

The numerical factors from (5.84) and (5.89) are 2∑k ⟨l ∥ C(k) ∥ l⟩
2
Rk(aa, av) and

(l(l + 1)(2l + 1)/2)
1
2 ζ(va), respectively; in addition, the reduced matrix element

(5.37) yields a factor −6 and the conversion of Rk() ⋅ ζ() to P k(a) a factor −2.

+

0

⨉
−

v†

a

L′
+

+

1

a† a

+

−a†

v

+

k

L

(15.38)
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Placing the nodes on the periphery and multiplying with the associated spin
symbol for which k = 0, this yields:

l

k

l

l

l

l

L

L′ 1

+ − ⋅ [S,L,S′, L′]
1
2 ⋅

+ −

+ +

1
2

0

1
2

1
2

1
2

1
2

S

S′ 1

+ −

+ −

+ +
(15.39)

The graphs are reduced by JLV3 to:

(−1)S+1 ⋅ [1
2]
−1 ⋅ {L l l

k l l
} ⋅ {L L′ 1

l l l
} ⋅ {S S′ 1

1
2

1
2

1
2

} ⋅ [S,L,S′, L′]
1
2

The final result after taking the numerical factors into account, becomes:

⟨l2(SL) ∥ −CABZBA/∆E ∥ l2(S′L′)⟩

= − 3 ((l(l + 1)(2l + 1)/2)
1
2 [S,L,S′, L′]

1
2{L L′ 1
l l l

} {S S′ 1
1
2

1
2

1
2

}

×∑
k

⟨l ∥ C(k) ∥ l⟩2
P k(a)((−1)L{L l l

k l l
} ) (15.40)

This corresponds exactly to the first term of equation (15.37); the second term is
derived in much the same way.

The exchange term ZABCBA for ll′ configurations is selected as a second example of
graphical second quantization of EL-SO operators:

b

a

−

+
L′

L

b†

v

+

v†

a†

−

+

k −

+

0

⨉1

(15.41)
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Similar to the preceding example, this reduces to:

l′

1

l′

l

k

L′

L

l

l′

+ − ⋅ [S,L,S′, L′]
1
2 ⋅

− −

+ +

1
2

1

1
2

1
2

0

S′

S

1
2

1
2

+ −

− −

+ +
(15.42)

Combined with the associated numerical factors from equations (5.36), (5.86) and
(5.89) plus reordering of the ket state, this yields:

⟨ll′(SL) ∥ ZABCBA ∥ ll′(S′L′)⟩ = −3 ⋅ (−1)l+l′ ⋅ (−1)S+L+S′ ⋅ [S,L,S′, L′]
1
2

⋅ (l′(l′ + 1)(2l′ + 1)/2)
1
2 ⋅ ζ(bv) ⋅ {L L′ 1

l′ l′ l
} ⋅ {S S′ 1

1
2

1
2

1
2

}

⋅∑
k′

⟨l ∥ C(k′) ∥ l′⟩2 ⋅ {L
′ l l′

k′ l l′
} ⋅Rk′(av, ba) (15.43)

The expressions for ⟨ll′(SL) ∥ zl′ ∥ ll′(S′L′)⟩ (6.25) and ⟨ll′(S′L′)∣gk′ ∣ll′(S′L′)⟩ (6.14a)
are readily recognized in the above.
Combined with CABZBA, one arrives at a general expression for EL-SO operators:

⟨ll′(SL) ∥H2(ZC) ∥ ll′(S′L′)⟩ = − ⟨ll′(SL) ∥ zl′ ∥ ll′(S′L′)⟩

⋅12 [∑
k

⟨ll′(SL)∣ck∣ll′(SL)⟩ + ⟨ll′(S′L′)∣ck∣ll′(S′L′)⟩] ⋅ ⨋
b→v

2ζ(bv)Rk()
∆E

(15.44)

For the dp two-particle magnetic EL-SO operators, the contributions originate from
p→ p′ and d→ d′ excitations. An example of the first:

⟨dp(SL) ∥H2(ZC) ∥ dp(S′L′)⟩ = − ⟨dp(SL) ∥ zp ∥ dp(S′L′)⟩

⋅ 1
2 [∑

k

⟨dp(SL)∣ck∣dp(SL)⟩ + ⟨dp(S′L′)∣ck∣dp(S′L′)⟩] ⋅ ⨋
p→p′

2ζ(pp′)Rk()
∆E

(15.45)

For dp EL-SO, the operator tensor rank k equals 2 for the direct part, and 1 or 3
for the exchange. These operators may be projected onto the spin-orbit orthogonal
basis operators defined in section 14.5.2.
EL-SO effects are expected to be particularly large in systems with an inner shell
hole, if parity(l̄) ≠ parity(l) notably for excitations l̄ → l′:
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⟨l̄4l̄+1lN(S1L1)SL ∥ z(l̄l′) ∥ l̄4l̄(S2L2)lN(S1L1)S3L3, l
′ S′L′⟩ = −3 ⋅ δ(l̄l′) (l̄(l̄ + 1)(2l̄ + 1))

1
2

⋅(−1)N ⋅ (−1)1+S1+L1+S3+L3 ⋅ [S2, L2, S3, L3]
1
2 {

1
2 S S1

S3 S2
1
2

} { l̄ L L1

L3 L2 l̄
}

⋅(−1)S3+
1
2+S ⋅ (−1)L3+l′+L ⋅ [S,S′, L,L′]

1
2 ⋅ {S 1 S′

1
2 S3

1
2

} {L 1 L′

l′ L3 l̄
}

(15.46)

Given the above expressions, the contributions of H2(ZU) and H2(ZC) can subse-
quently be calculated from equation (14.26) as projections to ζ. Adding the results,
we see that the unrealistically large contribution from P 0(a) to ζ is canceled, which
is characteristic for a central-field perturbation theory:

∆ζ(a) = (N − 1) (1 − M

4l + 2
)∑
k>0

β(k, l)P k(a) (15.47)

and

∆ζ(b) = N(4l + 1)
4l + 2

) (1 − M

4l + 1
)∑
k>0

β(k, l)P k(b) (15.48)

where

β(k, l) = ⟨l ∥ C(k) ∥ l⟩2

2l(2l + 1)(4l + 1)
((2l + 1) − (4l + 1)k(k + 1)

4l(l + 1)
) (15.49)

The coefficients β(k, l) are listed in table (15.1) for p, d and f electrons.

Table 15.1: The coefficients β(k, l) appearing in equation (15.47) and (15.48) for the EL-SO

contributions to ζ(a) and ζ(b).

k = 2 4 6

p shell -3/100 — —
d shell 11/504 -5/252 —
f shell 43/2340 19/5148 -875/66924

For the ζ contributions involving interactions with a third shell c not directly in-
volved in the excitation a → b, only two special cases: M = 0 and N = 4l + 2 are
investigated. They yield similar results, with only contributions to ζ(c):

M = 0 ∶
∆ζ(c) = N

4l + 2
∑
k

γ(k, l, lc)P k(c, exch) (15.50a)

N = 4l + 2 ∶
∆ζ(c) = (1 − M

4l + 2
) ∑

k

γ(k, l, lc)P k(c, exch) (15.50b)
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where the ”exch” in P k means that only the Slater integral Rk(ac; cb) contributes
and γ is given by:

γ(k, l, lc) =
l(l + 1) + lc(lc + 1) − k(k + 1)

2lc(lc + 1)(2lc + 1)
⟨l ∥ C(k) ∥ lc⟩

2
(15.51)

Combined MSO and EL-SO effects can be compared to experimental orthogonal
parameters, see table 15.2:

Table 15.2: Values of one- and two-body magnetic operators in Fe VI 3d3

Fit(1) DF DF+Breit B-splines Fit(2)

ζd 578.63 636.97 579.56 598.09 594.52
Ac 0 4.43 2.95 3.16 2.84
A3 0 0.18 2.07 1.97 2.41
A4 0 4.39 4.37 4.31 3.86
A5 0 1.64 7.18 7.05 6.86
A6 0 2.33 -9.22 -9.08 -9.85

A1 0 -0.12 0.41 0.88 0.90
A2 0 0.12 -2.31 -2.73 -2.90
σ 28.3 73.4 14.2 5.8 1.9

Table 15.3: Values of one- and two-body magnetic operators in Os VI 5d3

DF DF & B B-splines Fit

ζd 4387 4280 4619 4546
Ac 29.8 30.9 0.00 21.6
A3 5.4 6.3 0.00 2.4
A4 8.3 8.1 0.00 4.2
A5 6.4 9.6 0.00 4.3
A6 13.2 13.5 0.00 11.7

It has been known for some time that the inverted fine structure of the 2D states
of Na-like ions is due to the spin polarization of the core by an electrostatic exchange
effect [Lindgren and Mårtensson, 1982, Lindgren and Morrison, 1982].
This spin polarization effect is in our framework given by a second order contribution
to the fine structure parameter ζnd with a = 2p, b = p′ and c = nd, equation (15.50):

∆ζnd = 1
5 ⨋

2p→p′
2ζ(2p, p′)R1(2p, nd;nd, p′)

εp′ − ε2p

− 3
35 ⨋

2p→p′
2ζ(2p, p′)R3(2p, nd;nd, p′)

εp′ − ε2p

(15.52)

As opposed to the first-order fine splitting, this effect is larger and negative, hence
the inversion. The same effect is responsible for the inverted fine structure of the
3s3d(3D) term in Mg-like systems; in this case, the interpretation is complicated by
additional 3s3d two-particle magnetic effects such as mutual spin-orbit and spin-spin
interaction. Some details of the calculation and a comparison with the experiment
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are given in table (15.4).
A similar effect in the 3s23d(2D) term in neutral Al is vastly overshadowed by a
magnetic correlation in the 3s3p2(2D) perturber [Uylings and Buurman, 1990].
It should be noted that the sign of the second-order contributions is not always nega-
tive: EL-SO corrections in the 3s3p(3P) term of Al+ raise the fine-structure splitting
(3P2−3P1) -and thereby ζ3p in the absence of a two-body sp-parameter Amso- from
the first-order value 101.6 cm−1 to 124.1 cm−1, to be compared with an experimental
value of 123.9 cm−1. Other approaches give 125 cm−1 [Konovalova and Kozlov, 2015]
(CI+AO) and 122.4 cm−1 [Cheng et al., 2010] (RCI).

Table 15.4: Second order contributions to the 3d fine structure splitting in Al+ and Al2+,

compared with experiment. Two-particle mutual spin-orbit (MSO) and magnetic correlation effects

(due to 3d→ d′ excitations) are included in the first case; here, the splitting is taken between the

J = 1 and J = 3 levels.

Al+ 3s3d(3D) Al2+ 3d(2D)
First order HF 1.284 3.461
2p→ p′ -2.556 -6.032
MSO 0.670 -
3d→ d′ -1.182 -
Total calc. -1.784 -2.57
Experiment -2.02 -2.29
Relativistica -2.17 -3.41
Other theoryb - -2.96
a MCDHF
b [Lindgren and Mårtensson, 1982]

Another important example of EL-SO effects is found with:
∆ζ(p) = ζ(p,MSO) + ζ(p,EL-SO). Here:

ζ(p,EL-SO) = − 3

25 ⨋p→p′
2ζ(p, p′)R2(pp;pp′)

εp′ − εp

+ ⨋
d̄→d′

2ζ(d̄, d′)R1(d̄p;pd′)
εd′ − εd̄

− 3

7 ⨋d̄→d′
2ζ(d̄, d′)R3(d̄p;pd′)

εd′ − εd̄

+ ⨋
p̄→p′

2ζ(p̄, p′)R0(p̄p;pp′)
εp′ − εp̄

− 1

5 ⨋p̄→p′
2ζ(p̄, p′)R2(p̄p;pp′)

εp′ − εp̄
(15.53)

The second most important magnetic effect in dn−1s configurations is given by the
two-body parameter Amso [Uylings et al., 1989].
Recall that, to compare parameter values T (of operators t ) with the results of
ab initio perturbation theory, one can project the perturbation operators onto the
orthogonal model operators by means of inner products, assumed to be taken in
their parent configurations by means of equation (14.26):

T = ∑
p

( t ∶ p
p ∶ p

)P (15.54)
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This results in the below second order expressions for Amso and Ass:

Amso = −6

5
W 1(ds; sd) + 4N0(ds;ds) − 1

10 ⨋d→d′
2ζ(dd′)R2(ds; sd′)

Edd′
(15.55)

Ass = 4√
14
N0(ds;ds) (15.56)

The W k- and Nk integrals are defined in equation (5.97).
Numerical values for Fe VI and Ga V are given in table 15.5:

Table 15.5: First and second order contributions to the Amso parameter in Fe VI and Ga V,

compared with experiment.

Fe VI (3d24s) Ga V (3d84s)

−6/5 ⋅W 1 -0.18 -0.26
4 ⋅N0 1.78 2.24

3d→ d′ 1.60 4.06
Total calc. 3.20 6.04

Experiment 2.98 6.59

The parameters of the 2-particle magnetic interaction (spin-orbit type) of the
ds-type (Amso) in the 5dN−16s and of the dp-type (Zk

ll′) in the 5dN−16p configura-
tion, as well as the parameter of the 3-particle electrostatic interaction (Tdds) in the
5dN−16s configuration, are usually well defined with small uncertainty. The high
order parameters Amso and Tdds are very important for theoretical description of the
5dN−16s configurations as they improve the fit to the experimental levels consider-
ably. The obtained values of the two parameters are in reasonable agreement with
those obtained in the neighboring ions.

15.6 EL-HFS: CP-C effects in hyperfine structure

As mentioned in section 3.8.2 already, a single parameter ⟨r−3⟩ does not suffice to
adequately describe the effects of configuration interaction and relativity on the
hyperfine structure. Relativity will be discussed later in section 22.1.
In addition to an extended model space and similar to the approach of EL-SO,
second order perturbation theory may be used to describe the remaining EL-HFS
effects of core polarization and correlation (CP-C):

(EA −EB)−1VABVBA = (EA −EB)−1 (CABT (t)BA + T
(t)
ABCBA −UABT

(t)
BA − T

(t)
ABUBA)

(15.57)

Here, T (t) = ∑κk F
(κk)t with according to equation (5.53):

F (κk)t = −[κ, k]−
1
2 ⟨a ∥ F (κk) ∥ b⟩ (a†b)(κk)t. T (t) is the electronic part of either the

magnetic dipole operator T (1): (κk) = (10), (12) or (10) or the electric quadrupole
operator T (2): (κk) = (02), (11) or (13). The second order perturbation terms will
therefore involve the off-diagonal reduced matrix elements:

⟨a ∥ F (κk) ∥ b⟩ = −[κ, k]
1
2 ⋅ aκknl (bκknl ) ⋅ fκk (15.58)
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In equation (15.58), aκknl (bκknl ) are the well known hfs interaction parameters defined
by equations (3.87) and (3.102), obviously now in off-diagonal form. The coefficients
fκk are found in equations (5.66) and (5.59).

Further on, the Sκknl −integrals defined by Sκknl = [κ, k]−
1
2 ⟨a ∥ F (κk) ∥ b⟩ are specified

relativistically in equation (22.17) .
The complete expression for the first order hyperfine interaction in terms of second
quantization is given in equation (5.67). In second order, two- and even three-
particle hfs operators make their appearance, in which case the usual (1 +∆) cor-
rections do not suffice and one has to throw equation (14.26) into battle to find the
required contributions to the first order parameters. To this end, only the reduced
matrix elements of the second order operators in their parent configurations are
needed: they will be given explicitly in the following subsections.
As T (t) is a one-particle operator, the excited configurations B are related to con-
figuration A by a single electron excitation only.
The four pertinent excitation classes are [Bauche-Arnoult, 1971, Bauche-Arnoult, 1973]:
core → virtual, core → valence, valence → virtual and valence to → valence.

15.6.1 Core → virtual

In graphical second quantization, the first class CABT
(t)
BA for c(1

2 l̄) → v(1
2 l
′) -where

CAB contains both direct and exchange terms- is depicted by:

+

0

⨉
−

v†

c

+

0

⨉
a†

+

k

c† a

−
v

+

k′

(15.59a)

and:

+

0

⨉
−

v†

c

+

0

⨉
a†

+

k

c† v

−
a

+

k̄

(15.59b)

With the numerical factors taken from equations (5.79) with (5.84) and Sκkcv =
[κ, k]−

1
2 ⟨c ∥ F (κk) ∥ v⟩, followed by application of equation (5.12) and (5.14) to re-

duce the first graph to a 6j−symbol and using JLV2 for the second, the final second
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order perturbation contribution becomes:

−
CABT

(t)
BA + T

(t)
ABCBA

∆E
= 2 ⋅ ∑

k′
(−1)k+k′+1 ⋅ { l l k

l′ l̄ k′
} ⋅ ⟨l̄ ∥ C(k′) ∥ l⟩ ⋅ ⟨l ∥ C(k′) ∥ l′⟩

⋅ ⨋
c→v

Rk′(ca, av) ⋅ Sκkcv
∆E

⋅ (a†a)(κk)t

+4 ⋅ δ(κ,0)
(2k + 1)

⋅ ⟨l̄ ∥ C(k) ∥ l′⟩ ⋅ ⟨l ∥ C(k) ∥ l⟩ ⋅ ⨋
c→v

Rk(ca, va) ⋅ Sκkcv
∆E

⋅ (a†a)(κk)t (15.60)

Being directly proportional to the first order term −Sκknl ⋅ (a†a)(κk)t, this gives the
second order correction:

Sκknl → Sκknl − 2 ⋅ ∑
k′

(−1)k+k′+1 ⋅ { l l k
l′ l̄ k′

} ⋅ ⟨l̄ ∥ C(k′) ∥ l⟩ ⋅ ⟨l ∥ C(k′) ∥ l′⟩ ⋅ ⨋
c→v

Rk′(ca, av) ⋅ Sκkcv
∆E

−4 ⋅ δ(κ,0)
(2k + 1)

⋅ ⟨l̄ ∥ C(k) ∥ l′⟩ ⋅ ⟨l ∥ C(k) ∥ l⟩ ⋅ ⨋
c→v

Rk(ca, va) ⋅ Sκkcv
∆E

(15.61)

Dividing both sides by Sκknl and using S(a, b) = [κ, k]−
1
2 ⋅ ⟨a ∥ F (κk) ∥ b⟩, this matches

exactly the expression given by [Judd, 1963] for Sκknl → (1 +∆)Sκknl :

∆ = −2⨋
c→v

⟨c ∥ F (κk) ∥ v⟩
⟨a ∥ F (κk) ∥ a⟩

⋅ [∑
k′

(−1)k+k′+1 ⋅ { l l k
l′ l̄ k′

} ⋅ ⟨l̄ ∥ C(k′) ∥ l⟩ ⋅ ⟨l ∥ C(k′) ∥ l′⟩ ⋅ R
k′(ca, av)

∆E

+2 ⋅ δ(κ,0)
(2k + 1)

⋅ ⟨l̄ ∥ C(k) ∥ l′⟩ ⋅ ⟨l ∥ C(k) ∥ l⟩ ⋅ R
k(ca, va)

∆E
]

(15.62)

Derived along the lines of Many-Body Perturbation Theory, [Lindgren and Morrison, 1982]
give an equivalent expression (p 351). Equation (15.62) is the dominant CI correc-
tion to the hyperfine structure: it covers both the spin polarization for (κk) = (10)
and the Sternheimer effect (orbital polarization) [Sternheimer, 1986] for (κk) = (02).
When l̄ = l′ = 0 and t = 1, equation (15.60) specializes to the well-known expression
for the hyperfine spin polarization of the core by the inter-configuration Fermi con-
tact term with S(1) = ∑i s

(1)
i :

−
CABT

(t)
BA + T

(t)
ABCBA

∆E
= −[l]−

1
2 ⋅ ⨋

n̄s→n′s

2Rl(n̄s nl, nl n′s) ⋅ S10
n̄sn′s

∆E
⋅ (a†a)(10)1

= α2 ⋅ 8π

3 ⨋
n̄s→n′s

2Rl(n̄s nl, nl n′s) ⋅ ⟨n̄s ∣δ(r)∣n′s⟩
(2l + 1) ⋅∆E

⋅ S(1)

(15.63)

where in the last line, equation (5.66c) and S(a, b) = (8πα2)/(3
√

2) ⋅ ⟨a ∣δ(r)∣ b⟩ are
used. Given that non-relativistically ⟨n̄s ∣δ(r)∣n′s⟩ = Ψn̄s(0) ⋅Ψn′s(0), the
corresponding contribution to the Hamiltonian becomes thereby:

HD
hfs =

α2

2
⋅ (me

mp

) ⋅ µI
I
⋅ 8π

3 ⨋
n̄s→n′s

2Rl(n̄s nl, nl n′s) ⋅Ψn̄s(0) ⋅Ψn′s(0)
(2l + 1) ⋅∆E

⋅ (S(1) ⋅ I(1))

(15.64)
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Derived by more conventional tensor operator techniques, this expression was given
earlier by [Bauche and Judd, 1964]; using second quantization in the uncoupled
form, the same result was derived by [Judd, 1967]. Comparison with equation (3.86)
immediately gives the important spin polarization correction:

δ a10
nl =

α2

2
⋅ (me

mp

) ⋅ µI
I
⋅ 2

3 ⨋n̄s→n′s
2Rl(n̄s nl, nl n′s) ⋅ ⟨n̄s ∣δ(r)/r2∣n′s⟩

(2l + 1) ⋅∆E
(15.65)

For l ≠ 0, the first order contribution to a10
nl is purely relativistic and the above

spin polarization term is expected to dominate in most cases. In fully relativistic
calculations, 8π/3 ⋅Ψn̄s(0) ⋅Ψn′s(0) = 2

3 ⟨n̄s ∣δ(r)/r2∣n′s⟩ is to be replaced by
−4/3α ⋅ ∫

∞
0 (Fn̄sGn′s + Fn′sGn̄s) /r2 dr; the correspondence between the first expres-

sion as the non-relativistic limit of the second is worked out in some detail in equation
(22.24).

15.6.2 Core → valence

A core → valence excitation c→ a is written schematically in second quantization as:
{(c†a)(a†a)} (a†c) + (c†a) {(a†a)(a†c)}. Application of equations (5.11) and (5.12)
then yields both a one- and a two-particle operator. How to use graphical second
quantization in such cases is exemplified in the next subsection.
The two-particle reduced matrix element in l2 becomes:

⟨l2(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)/∆E ∥ l2(S′L′)⟩ =

− 2⨋
c→a

⟨c ∥ F (κk) ∥ a⟩ ⋅ [S,L,S′, L′]
1
2 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ (−1)κ+k ⋅ ∑
k′

⟨lc ∥ C(k
′) ∥ l⟩ ⟨l ∥ C(k′) ∥ l⟩

⋅Rk′(aa, ac) ⋅∆E−1 [(−1)S′ ⋅ {L
′ lc l
k′ l l

} ⋅ {L
′ k L
l l lc

} + (−1)S ⋅ {L lc l
k′ l l

} ⋅ {L k L′

l l lc
} ]

(15.66)

Application of equation (5.11) yields an additional one-particle term after an iden-
tical recoupling as depicted in graph 15.59a, with a instead of v. Obviously, the
operator expression is quite similar:

−
CABT

(t)
BA + T

(t)
ABCBA

∆E
= 2 ⋅ ⨋

c→a
[κ, k]−

1
2 ⋅ ⟨c ∥ F (κk) ∥ a⟩ ⋅∆E−1

∑
k′

(−1)k+1 ⋅ {l l k
l lc k′

} ⋅ ⟨lc ∥ C(k
′) ∥ l⟩ ⋅ ⟨l ∥ C(k′) ∥ l⟩ ⋅ Rk′(ca, aa) ⋅ (a†a)(κk)t (15.67)

Dividing the above by the first order operator −[κ, k]−
1
2 ⋅ ⟨a ∥ F (κk) ∥ a⟩ (a†a)(κk)t

gives immediately:

∆ = −2⨋
c→a

⟨c ∥ F (κk) ∥ a⟩
⟨a ∥ F (κk) ∥ a⟩

⋅∑
k′

(−1)k+1 ⋅ {l l k
l lc k′

} ⋅ ⟨lc ∥ C(k
′) ∥ l⟩ ⋅ ⟨l ∥ C(k′) ∥ l⟩ ⋅ R

k′(ca, aa)
∆E

(15.68)
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For the Brillouin excitation c → a with lc = l, the configurations A and B are
connected by the potential matrix element (15.4b) as well. The pertinent single
particle operator is:

[{(c†a)(00)(a†c)(κk)}(κk) + {(c†a)(κk)(a†c)(00)}(κk)] = 2 ⋅ [1
2 , l]

−1
2 ⋅ (a†a)(κk) (15.69)

The corresponding potential term becomes:

(UABT (t)BA + T
(t)
ABUBA) /∆E = 2⨋

c→a
[κ, k]−

1
2 ⋅ ⟨a∣U ∣c⟩ ⋅ ⟨c ∥ F (κk) ∥ a⟩ ⋅∆E−1 (a†a)(κk)t

(15.70)

With equation (5.30) and the potential matrix element given by equation (15.4b),
the reduced matrix element of 15.70 becomes:

⟨l2(SL) ∥ (UABT (t)BA + T
(t)
ABUBA) /∆E ∥ l2(S′L′)⟩ =

4⨋
c→a

⟨c ∥ F (κk) ∥ a⟩ ⋅∆E−1 ⋅ [S,L,S′, L′]
1
2 ⋅ (−1)κ+k ⋅ {S κ S′

1
2

1
2

1
2

} {L k L′

l l l
}

⋅
⎡⎢⎢⎢⎢⎣
R0(ca, aa) − ∑

k′>0

⟨l ∥ C(k′) ∥ l⟩2

(2l + 1)(4l + 1)
Rk′(ca, aa)

⎤⎥⎥⎥⎥⎦
(15.71)

Use of the correct potential in this a priori spherical model therefore automatically
cancels the dominant spherical deviation R0(ca, aa) in equation (15.66), in addition
to some corrections for the higher ranks k′.
Unfortunately, this effect has frequently been overlooked in the literature [Bauche-Arnoult, 1971,
Bauche-Arnoult, 1973, Dembczyński et al., 1985].

15.6.3 Valence → virtual

As usual in perturbation theory, the spin-angular matrix elements of single elec-
tron core → valence excitations are, except for a minus sign, identical to valence
→ virtual excitations. The latter is schematically displayed as {(a†a)(a†v)} (v†a)+
(a†v) {(v†a)(a†a)}. To demonstrate the course of the calculation, the class T

(t)
ABCBA

for a valence to virtual excitation a→ v is considered below:

a

a

+

+
L′

L

a†

v

+

a†

v†

−

+

k′ −

+

0

⨉
k

(15.72)

A pure two-particle operator in normal form {(a†a†)(SL)(aa)(S′L′)}(κk) is found.
Parallel for the orbital and spin quantum numbers, the graph is reduced to a product
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of two 6j-symbols, with the result:

[1
2]
−1 ⋅ [S,L,S′, L′]

1
2 ⋅ (−1)κ+k+S′ ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ {L
′ lv l
k′ l l

} ⋅ {L
′ k L
l l lv

}

The final second order reduced matrix element in l2 thus becomes:

⟨l2(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)/∆E ∥ l2(S′L′)⟩ =

2⨋
a→v

⟨a ∥ F (κk) ∥ v⟩ ⋅ [S,L,S′, L′]
1
2 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ (−1)κ+k ⋅ ∑
k′

⟨lv ∥ C(k
′) ∥ l⟩ ⟨l ∥ C(k′) ∥ l⟩

⋅Rk′(aa, av) ⋅∆E−1 [(−1)S ⋅ {L lv l
k′ l l

} ⋅ {L k L′

l l lv
} + (−1)S′ ⋅ {L

′ lv l
k′ l l

} ⋅ {L
′ k L
l l lv

} ]

(15.73)

As expected, equation (15.73) bears a close resemblance to equation (15.66), except
for a minus sign and an interchange of the two RHS terms.
As is usual in perturbation theory, Brillouin excitations nl → nvlv with lv = l
entail a potential correction, represented by the single particle operator:

[{(a†v)(00)(v†a)(κk)}(κk) + {(a†v)(κk)(v†a)(00)}(κk)] = −2 ⋅ [1
2 , l]

−1
2 ⋅ (a†a)(κk) (15.74)

The corresponding potential term becomes:

(UABT (t)BA + T
(t)
ABUBA) /∆E = −2⨋

a→v
[κ, k]−

1
2 ⋅ ⟨a∣U ∣v⟩ ⋅ ⟨a ∥ F (κk) ∥ v⟩ ⋅∆E−1 (a†a)(κk)t

(15.75)

Using equation (15.4b) for the potential, this yields the required reduced matrix
element:

⟨l2(SL) ∥ (UABT (t)BA + T
(t)
ABUBA) /∆E ∥ l2(S′L′)⟩ =

− 4⨋
a→v

⟨a ∥ F (κk) ∥ v⟩ ⋅∆E−1 ⋅ [S,L,S′, L′]
1
2 ⋅ (−1)κ+k ⋅ {S κ S′

1
2

1
2

1
2

} {L k L′

l l l
}

⋅
⎡⎢⎢⎢⎢⎣
R0(aa, av) − ∑

k′>0

⟨l ∥ C(k′) ∥ l⟩2

(2l + 1)(4l + 1)
Rk′(aa, av)

⎤⎥⎥⎥⎥⎦
(15.76)

As expected, the potential cancels the large term containing R0(aa, av) in equation
(15.73) exactly and corrects the remaining terms.

The final resulting two-particle operator is neither orthogonal nor proportional to
the single particle first order term: the projection formula (14.26) has to be used to

find the contribution with the N−dependence Q = (N
2
)(1

1
)(N

1
)−1 = (N − 1).

According to equations (5.31) and (5.53), or alternatively equation (14.43), the cor-
responding first order reduced matrix element in l2 is given by:

⟨l2(SL) ∥ F (κk) ∥ l2(S′L′)⟩ = −2 ⟨a ∥ F (κk) ∥ a⟩ [S,L,S′, L′]
1
2 (−1)κ+k{S κ S′

1
2

1
2

1
2

} {L k L′

l l l
}

(15.77)
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According to equation (15.58), ⟨a ∥ F (κk) ∥ a⟩ = −[κ, k]
1
2 ⋅ aκknl ⋅ fκk for the magnetic

dipole interaction or −[κ, k]
1
2 ⋅ bκknl ⋅ fκk for the electric quadrupole interaction.

For configurations lN l′ with two open shells occupied with electrons a and b, a → v
or b→ v excitations bring both direct and exchange Coulomb interactions into play
with associated Slater integrals Rk′(ab, vb), Rk′′(ab, bv), Rk′(ab, av) and Rk′′(ab, va);
these four cases are labeled below aD, aE, bD and bE. They all give rise to two-

particle operators of the normal form {(a†b†)(SL)(ab)(S′L′)}(κk). As an example,

the exchange term of −CABT (t)BA/∆E for b→ v excitations is explored in some detail:

+

0

⨉
−

v†

b

L′
+

+

k

a† v

+

−b†

a

+

k′′

L

(15.78)

After reducing the graph, one obtains the result:

[{(a†v)(0k′′)(b†a)(0k′′)}(00) (v†b)(κk)]
(κk)

= (−1)L+k′′+1+κ+k ⋅ [k′′]
1
2 ⋅ [S,L,S′L′]

1
2

⋅ [1
2]
−1 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ {L k L′

l′ l lv
} ⋅ {L lv l

k′′ l′ l
} ⋅ {(a†b†)(SL)(ab)(S′L′)}(κk)

The reduced matrix elements of the above four cases are given below:

⟨ll′(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)aD/∆E ∥ ll′(S′L′)⟩ =

⨋
a→v

⟨a ∥ F (κk) ∥ v⟩ ⋅ [S,L,S′, L′]
1
2 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ (−1)κ+k+S′ ⋅ ∑
k′

⟨l ∥ C(k′) ∥ lv⟩ ⟨l′ ∥ C(k
′) ∥ l′⟩

⋅Rk′(ab, vb) ⋅∆E−1 [(−1)L+L′ ⋅ {L lv l′

k′ l′ l
} ⋅ {L k L′

l l′ lv
} + {L

′ lv l′

k′ l′ l
} ⋅ {L

′ k L
l l′ lv

} ]

(15.79a)

⟨ll′(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)aE/∆E ∥ ll′(S′L′)⟩ =

⨋
a→v

⟨a ∥ F (κk) ∥ v⟩ ⋅ [S,L,S′, L′]
1
2 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ (−1)κ+k+L′ ⋅ ∑
k′′

⟨l ∥ C(k′′) ∥ l′⟩ ⟨l′ ∥ C(k′′) ∥ lv⟩

⋅Rk′′(ab, bv) ⋅∆E−1 [(−1)S+S′ ⋅ {L lv l′

k′′ l l′
} ⋅ {L k L′

l l′ lv
} + {L

′ lv l′

k′′ l l′
} ⋅ {L

′ k L
l l′ lv

} ]

(15.79b)
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⟨ll′(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)bD/∆E ∥ ll′(S′L′)⟩ =

⨋
b→v

⟨b ∥ F (κk) ∥ v⟩ ⋅ [S,L,S′, L′]
1
2 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ (−1)κ+k+S ⋅ ∑
k′

⟨l ∥ C(k′) ∥ l⟩ ⟨l′ ∥ C(k′) ∥ lv⟩

⋅Rk′(ab, av) ⋅∆E−1 [{L lv l′

k′ l l
} ⋅ {L k L′

l′ l lv
} + (−1)L+L′ ⋅ {L

′ lv l′

k′ l l
} ⋅ {L

′ k L
l′ l lv

} ]

(15.79c)

⟨ll′(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)bE/∆E ∥ ll′(S′L′)⟩ =

⨋
b→v

⟨b ∥ F (κk) ∥ v⟩ ⋅ [S,L,S′, L′]
1
2 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ (−1)κ+k+L ⋅ ∑
k′′

(−1)k′′ ⟨l ∥ C(k′′) ∥ lv⟩ ⟨l′ ∥ C(k
′′) ∥ l⟩

⋅Rk′′(ab, va) ⋅∆E−1 [{L lv l
k′′ l′ l

} ⋅ {L k L′

l′ l lv
} + (−1)S+S′ ⋅ {L

′ lv l
k′′ l′ l

} ⋅ {L
′ k L
l′ l lv

} ]

(15.79d)

It is gratifying to verify that Hermiticity as prescribed by equation (3.46) is
satisfied in all cases.
Brillouin excitations necessitate the implementation of potential terms (15.75).
Using equations (5.32), the pertinent reduced matrix elements become:

⟨ll′(SL) ∥ (UABT (t)BA + T
(t)
ABUBA)

a
/∆E ∥ ll′(S′L′)⟩ =

− 2⨋
a→v

⟨a ∥ F (κk) ∥ v⟩ ⋅∆E−1 ⋅ [S,L,S′, L′]
1
2 ⋅ (−1)l+l′+S′+L′+κ+k{S κ S′

1
2

1
2

1
2

} {L k L′

l l′ l
}

⋅ [R0(ab, vb) − 1
2 ∑
k′′

[l, l′]−1 ⟨l ∥ C(k′′) ∥ l′⟩2
Rk′′(ab, bv)] (15.80a)

⟨ll′(SL) ∥ (UABT (t)BA + T
(t)
ABUBA)

b
/∆E ∥ ll′(S′L′)⟩ =

− 2⨋
b→v

⟨b ∥ F (κk) ∥ v⟩ ⋅∆E−1 ⋅ [S,L,S′, L′]
1
2 (−1)l+l′+S+L+κ+k{S κ S′

1
2

1
2

1
2

} {L k L′

l′ l l′
}

⋅ [R0(ab, av) − 1
2 ∑
k′′

[l, l′]−1 ⟨l ∥ C(k′′) ∥ l′⟩2
Rk′′(ab, va)] (15.80b)

As always, the R0(ab, vb) and the R0(ab, av) terms cancel exactly in addition to
some corrections in the exchange terms.
The above contributions may again be compared with the corresponding first order
expression:

⟨ll′(SL) ∥ F (κk) ∥ ll′(S′L′)⟩ = −[S,L,S′, L′]
1
2 ⋅ (−1)l+l′+κ+k{S κ S′

1
2

1
2

1
2

}

⋅ [(−1)S′+L′{L k L′

l l′ l
} ⟨a ∥ F (κk) ∥ a⟩ + (−1)S+L{L k L′

l′ l l′
} ⟨b ∥ F (κk) ∥ b⟩] (15.81)
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15.6.4 Valence → valence

Valence→valence excitations concern single electron excitations a → b and b → a
between open shells. With A = lN l′M , this corresponds to B = lN−1l′M+1 and
B = lN+1l′M−1, respectively. The EL-HFS operators are represented schematically
by expressions like: {(a†a)(a†b)} (b†a) + (a†b) {(b†a)(a†a)}. Reduction to nor-
mal form now gives rise to both three- and two-particle operators. Below, graph-
ical second quantization applied to the second term shows the recoupling to a

pure three-particle operator [{(a†a†)(SL)b†}(S3L3) {(aa)(S′L′)b}(S
′
3L

′
3)](κk), anticipat-

ing equation (5.42):

a

a

+

L′

L

L3

a†

b

+

a†

b†

−

+

k′ −

k

+

+

−

L′3

1

2

3

4

5

6

7

8

(15.82)

= −[S,L,S′, L′, S3, L3, S′3, L
′
3]

1
2

L′

k′

+

−

− +

−

+

++
l

1

2

3

4 5

6

7

8

l l′

⨉ l

= 1
2 ⋅ [S,L,S′, L′, S3, L3, S′3, L

′
3]

1
2

L′3 ⋅ (−1)l−
1
2+S

′+S3+L3+κ+k{ l l L′

l′ l k′
} { l l′ L′

L3 l L
}

⋅{
1
2

1
2 S′

S3
1
2 S

} { l L3 L′

L′3 l′ k
} {

1
2 S3 S′

S′3
1
2 κ

}

l L3

L

k

(15.83)
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After multiplication with the factors from equation (5.42), (5.79) and (5.84), the
corresponding reduced matrix elements combined with the first term become:

⟨l2(SL)l′(S3L3) ∥ −(CABT (t)BA + T
(t)
ABCBA)a

2b/∆Ea→b ∥ l2(S′L′)l′(S′3L′3)⟩ =

2 ⟨a ∥ F (κk) ∥ b⟩ ⋅ [S,L,S′, L′, S3, L3, S
′
3, L

′
3]

1
2 ⋅ (−1)l−

1
2+S3+L3+κ+k

⋅ ∑
k′

⟨l ∥ C(k′) ∥ l⟩ ⟨l ∥ C(k′) ∥ l′⟩ ⋅Rk′(aa, ab) ⋅∆E−1

⋅ [(−1)S{ l l L
l′ l k′

} { l l′ L
L′3 l L′

} {
1
2

1
2 S

S′3
1
2 S′

} { l L′3 L
L3 l′ k

} {
1
2 S′3 S
S3

1
2 κ

}

+ (−1)S′{ l l L′

l′ l k′
} { l l′ L′

L3 l L
} {

1
2

1
2 S′

S3
1
2 S

} { l L3 L′

L′3 l′ k
} {

1
2 S3 S′

S′3
1
2 κ

} ]

(15.84)

Remember that with an a→ b excitation, equation (10.13a) implies ∆E = εb − εa.
A two-particle operator {(a†a†)(SL)(aa)(S′L′)}(κk) arises from the second term of
equation (5.11), which is equivalent to considering b as a virtual electron. The
reduced matrix element matches therefore exactly equation (15.73):

⟨l2(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)a

2/∆Ea→b ∥ l2(S′L′)⟩ =

2 ⟨a ∥ F (κk) ∥ b⟩ ⋅ [S,L,S′, L′]
1
2 ⋅ {S κ S′

1
2

1
2

1
2

} ⋅ (−1)κ+k ⋅ ∑
k′

⟨l ∥ C(k′) ∥ l′⟩ ⟨l ∥ C(k′) ∥ l⟩

⋅Rk′(aa, ab) ⋅∆E−1 [(−1)S ⋅ {L l′ l
k′ l l

} ⋅ {L k L′

l l l′
} + (−1)S′ ⋅ {L

′ l′ l
k′ l l

} ⋅ {L
′ k L
l l l′

} ]

(15.85)

Still more operators appear when considering a second schematic expression:
{(a†b)(b†b)} (b†a) + (a†b) {(b†b)(b†a)} → (a†b†b†)(abb) + (a†b†)(ab).

⟨l l′2(SL)S3L3 ∥ −(CABT (t)BA + T
(t)
ABCBA)ab

2/∆Ea→b ∥ l l′2(S′L′)S′3L′3⟩ =

2 ⟨a ∥ F (κk) ∥ b⟩ ⋅ [S,L,S′, L′, S3, L3, S
′
3, L

′
3]

1
2 ⋅ (−1)l−

1
2+S

′
3+L′3+κ+k

⋅ ∑
k′

⟨l ∥ C(k′) ∥ l′⟩ ⟨l′ ∥ C(k′) ∥ l′⟩ ⋅Rk′(ab, bb) ⋅∆E−1

⋅ [(−1)S′{L
′ l l′

k′ l′ l′
} {L

′ l′ L3

L l l′
} {S

′ 1
2 S3

S 1
2

1
2

} {L
′
3 k L3

l′ L′ l
} {S

′
3 κ S3

1
2 S′ 1

2

}

+ (−1)S{L l l′

k′ l′ l′
} {L l′ L′3

L′ l l′
} {S

1
2 S′3

S′ 1
2

1
2

} {L3 k L′3
l′ L l

} {S3 κ S′3
1
2 S 1

2

} ] (15.86)

In fact, the (a†b†)(ab) term derives from two different (bb†) annihilations that were
unnecessarily treated by [Bauche-Arnoult, 1973] as two separate operators d3 and
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d4 in their table 4. The reduced matrix element of the combined operator becomes:

⟨ll′(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)ab/∆Ea→b ∥ ll′(S′L′)⟩ = ⟨a ∥ F (κk) ∥ b⟩ ⋅ [S,L,S′, L′]

1
2

⋅ {S κ S′
1
2

1
2

1
2

} ⋅ (−1)κ+k ⋅ ∑
k′

⟨l ∥ C(k′) ∥ l′⟩ ⟨l′ ∥ C(k′) ∥ l′⟩ ⋅Rk′(ab, bb) ⋅∆E−1⋅

⎡⎢⎢⎢⎢⎣
(−1)S′+L′(1 + (−1)S+L)(−1)S ⋅ {L l′ l′

k′ l′ l
} ⋅ {L k L′

l l′ l′
}

+ (1 + (−1)S′+L′)(−1)S′ ⋅ {L
′ l′ l′

k′ l′ l
} ⋅ {L

′ k L
l l′ l′

}
⎤⎥⎥⎥⎥⎦

(15.87)

Hermiticity according to equation (3.46) is thereby directly manifest.

For the Brillouin case l = l′, potential contributions (UABT (t)BA + T
(t)
ABUBA) make their

appearance again. The schematic expression [{(a†b)(00)(b†a)(κk)}(κk) + {(a†b)(κk)(b†a)(00)}(κk)]
reveals a one- and a two-particle part. The graphical second quantized recoupling
of the first two-particle term is given below:

b†

a

+

+ L′

−

−
k k

L

a†

b

+ −
⨉

0

(15.88)

The reduced two-particle potential matrix element thereby becomes:

⟨ll′(SL) ∥ (UABT (t)BA + T
(t)
ABUBA) /∆Ea→b ∥ ll′(S′L′)⟩ = −δ(l, l′) ⋅ ⟨a ∣U ∣ b⟩

⋅ [(−1)S+L+S′+L′ + 1] ⋅ ⟨a ∥ F (κk) ∥ b⟩ ⋅∆E−1 ⋅ [S,L,S′, L′]
1
2 ⋅ (−1)κ+k{S κ S′

1
2

1
2

1
2

} {L k L′

l l l
}

(15.89a)

After one (bb†) annihilation, the reduced one-particle matrix element becomes:

⟨ll′(SL) ∥ (UABT (t)BA + T
(t)
ABUBA)

a
/∆Ea→b ∥ ll′(S′L′)⟩ = −2 ⋅ δ(l, l′) ⋅ ⟨a ∣U ∣ b⟩

(−1)S′+L′ ⋅ ⟨a ∥ F (κk) ∥ b⟩ ⋅∆E−1 ⋅ [S,L,S′, L′]
1
2 ⋅ (−1)κ+k{S κ S′

1
2

1
2

1
2

} {L k L′

l l l
}

(15.89b)

Considering next b → a excitations from the initial configuration A = lN l′M , it is
clear that all the foregoing a→ b equations can be adopted directly with the obvious
substitutions a↔ b, l↔ l′,N ↔M and the phase-factor from equation (2.36).
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To verify this point, an example of the direct calculation is carried out below:

b
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+
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k
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1

4
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3
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(15.90)

Comparison immediately reveals that graph 15.90 is topologically equivalent to
graph 15.82 and can likewise be reduced to a product of three 6j-symbols each
in the spin and orbital space. After multiplication with −∆E−1 times the fac-

tors from equation (5.44), (5.79) and (5.84): 2[κ, k]
1
2 ⋅ −[κ, k]−

1
2 ⟨b ∥ F (κk) ∥ a⟩ ⋅

2Rk′(ab, bb) ⟨l ∥ C(k′) ∥ l′⟩ ⟨l′ ∥ C(k′) ∥ l′⟩, the corresponding reduced matrix elements
combined with the first term become:

⟨ll′2(SL)(S3L3) ∥ −(CABT (t)BA + T
(t)
ABCBA)ab

2/∆Eb→a ∥ ll′2(S′L′)(S′3L′3)⟩ =

2 ⟨a ∥ F (κk) ∥ b⟩ ⋅ [S,L,S′, L′, S3, L3, S
′
3, L

′
3]

1
2 ⋅ (−1)l′−

1
2+S

′
3+L′3+κ+k

⋅ ∑
k′

⟨l′ ∥ C(k′) ∥ l′⟩ ⟨l′ ∥ C(k′) ∥ l⟩ ⋅Rk′(bb, ba) ⋅∆E−1

⋅ [(−1)S{l
′ l′ L
l l′ k′

} { l
′ l L
L′3 l′ L′

} {
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1
2 S

S′3
1
2 S′

} {L3 k L′3
l′ L l

} {S3 κ S′3
1
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}

+ (−1)S′{l
′ l′ L′

l l′ k′
} { l

′ l L′

L3 l′ L
} {

1
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1
2 S′

S3
1
2 S

} {L
′
3 k L3

l′ L′ l
} {S

′
3 κ S3

1
2 S′ 1

2

} ]

(15.91)

As stated above, equation (15.91) may also be retrieved from equation (15.84) with
the substitutions a↔ b, l↔ l′ and the phase-factor (−1)(S3+L3)−(S′3+L′3) from equation
(2.36). This procedure can be followed to find all the required b→ a cases from the
corresponding a→ b equations.



Chapter 16

Fano-Weiss theory

The long-range interaction between a series of bound and continuum nl/εl states and
a perturber coupled to this channel, is formulated by [Fano, 1961] for the continuum
and [Weiss, 1969] for the discrete region; [Smid and Hansen, 1983] combined their
theories with application to the rare gases. Due to Brillouin’s theorem, intra-channel
interactions are absent if the series members are calculated from a frozen core, see
equation (10.14a). Remains a bordered matrix to diagonalize, with no other non-
diagonal matrix elements than those between the perturber and each of the series
members:

⎛
⎜⎜⎜
⎝

Ep Vnl V(n+1)l . . .
Vnl Enl 0

V(n+1)l 0 E(n+1)l
⋮ ⋱

⎞
⎟⎟⎟
⎠

(16.1)

where Ep is the diagonal energy of the perturber, E(n+k)l is the diagonal energy for
the (n+k)l series member and V(n+k)l is the non-diagonal matrix element connecting
the perturber with the (n + k)l term.
Thus, eigenfunctions of the perturbed states are of the form:

φE = CE
p φp +∑

m

CE
ml φml + ∫ CE

εl φεl dε (16.2)

The perturber energy is shifted by a quantity F (E) and the eigenvalues, E, of the
matrix (16.1) must fulfill:

E −Ep = ∑
m

V 2
ml

E −Eml
+ PV ∫

V 2
ε

E − ε
dε = F (E) (16.3)

where the principal value of the integral is taken when necessary.

(CE
p )2 (1 +∑

m

V 2
ml

(E −Eml)2 + PV ∫
V 2
ε

(E − ε)2
dε) = (CE

p )2 (1 − F ′(E)) = 1 (16.4)

Including the continuum, the perturber percentages in this framework, are given by:

(CE
p )2 = (1 − F ′(E))−1

E < 0 (16.5a)

(CE
p )2 =

V 2
E

(E −Ep − F (E))2 + π2V 4
E

E > 0 (16.5b)
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Using B-splines to describe the whole Rydberg channel, the continuum is
effectively included in the higher discrete states and as a result, all integral and/or
continuum effects are circumvented.
In fact, the equation:

E −Ep = ∑
m

V 2
ml

E −Eml
= F (E) (16.6)

then reduces to standard perturbation theory cut after the second order because the
intra-channel interaction is negligible.
Neglecting off-diagonal spin-orbit interactions, the actual term splitting ∆νE of
bound states is found from the weighted average of the unperturbed splittings ∆νp
(of the perturber) and ∆νml (of the channel:

∆νE = (CE
p )2 (∆νp +∑

m

V 2
ml

(E −Eml)2 ∆νml) (16.7)

The absorption probability from a ground state φ0 exhibits a characteristic broad,
asymmetrical Fano-Beutler profile.
The contributions of the perturber and the series interfere positively on one side of
the resonance E = Ep + F (E) and negatively at the other side:

⟨φE ∣ r⃗ ∣ φ0⟩ = aE ⟨φEp ∣ r⃗ ∣ φ0⟩ +∑
m

bEml ⟨φEml ∣ r⃗ ∣ φ0⟩

The energy dependent coefficients aE and bEml have different signs at different sides
of the resonance.
In the present discussion, the matrix elements connecting the perturber with the
series are all proportional to the Slater integral R1(nsmd;np2).
In the rare gases Cl I, Ar II and K III (group 17 elements), one finds:

Vmd = ⟨nsnp6 2S ∣C ∣ns2np4(1D)md 2S⟩ = −
√

2/3 R1(nsmd;np2) (16.8a)

in the group 13 elements Al I, Ga I and In I, one finds:

Vmd = ⟨nsnp2(1D) 2D ∣C ∣ns2md 2D⟩ = −
√

2/15 R1(nsmd;np2) (16.8b)

similarly, for the group 12 elements Zn I, Cd I and Hg I, one finds:

Vmd = ⟨np2 1D ∣C ∣nsmd 1D⟩ =
√

4/15 R1(nsmd;np2) (16.8c)

16.1 Fano theory for the nsnp2 perturber

For the ns2md (2D) series in Al I, Ga I and In I (n = 3,4 or 5, respectively and
m ≥ n), the interaction with the nsnp2(2D) perturber is given by:

Vmd = −
√

2/15 R1(nsmd;np2) [Uylings and Buurman, 1990]. The second order result
from equations (2.40), (3.54b) and subsection 15.2.3 is identical to equation (16.6):

⟨sp2(1D)2D∣H2
2 ∣ sp2(1D)2D⟩ = − 2

15 ⨋md
R1(nsmd;np2)2

∆E
= 2

15 ⨋md
R1(nsmd;np2)2

EA −EB
(16.9)
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More generally, the Coulomb interaction between ns2ml (2L) states and a nsnl′2(2L)
perturber equals (viz. subsection A.9 for N = 2):

⟨ns2mlSL ∣C ∣nsnl′2(S′L′)SL)⟩ = δ(SL, 1
2 l) ⋅ δ(L

′, l) ⋅ (−1)l′ ⋅ [l, l′]−
1
2 ⋅ ⟨l′ ∥ C(l′) ∥ l⟩

⋅(−1)S′+1 ⋅ [S′]
1
2 ⋅Rl′(sl; l′2) (16.10)

Before [Uylings and Buurman, 1990], the fine structure of the 2D series has not been
considered theoretically, although the behavior over the series: the lowest member
has a smaller splitting than the succeeding one, and notably the magnitude of the
effect seriously deviate from what would be expected in a normal Rydberg series
(being ’too large’ by a factor of 10 in In, 20 in Ga and 250 in Al).
The contributions of the second term in expression (16.7) being at least an order of
magnitude smaller than the experimental values, the perturber apparently exhibits
a relatively large fine splitting. The source of the perturber fine splitting is found to
be the two-body magnetic [MSO+EL-SO] s-p interaction; EL-SO constitutes here
95% to 99% of the effect.

∆νp = 5W 0(ps; sp) − 10N0(ps;ps) + 5

12 ⨋p′
2ζ(pp′)R1(ps; sp′)

εp′ − εp
(16.11)

The W k and the Nk MSO integrals in the above are defined in equation (5.97).
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Figure 16.1: Theoretical (HF vs. Fano) and experimental 3s2md energies.
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Figure 16.2: Theoreticala,b and experimental FS 2D splittings.

a This work; b [Papoulia et al., 2019].
The calculation will be performed for Al I, core charge Z = 13, effective core charge
Zeff = 1; l-value of channel: l = 2. E(limit) = 48278.5 E(perturber) = 44501.3
Electron configuration of the perturber is given by:
shell 1s 2s 2p 3s 3p
occupation 2 2 6 1 2
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m EHF C2
p ∑C2

p
Eth Eexp

3 35577.8 0.32049 0.32049 32197.7 32436.3
4 41127.7 0.18365 0.50415 38838.8 38932.1
5 43725.5 0.08551 0.58966 42396.9 42236.2
6 45131.7 0.04364 0.63330 44333.5 44167.9
7 45975.5 0.02480 0.65809 45468.3 45345.0
8 46520.8 0.01535 0.67345 46181.3 46094.0
9 46893.2 0.01015 0.68360 46655.9 46593.7
10 47158.8 0.00706 0.69065 46986.7 46941.3
11 47354.7 0.00511 0.69576 47226.2 47192.4
12 47503.4 0.00382 0.69958 47405.0 47379.7
13 47618.9 0.00293 0.70251 47541.9 47521.1
14 47710.4 0.00230 0.70481 47649.0 47632.6
15 47785.6 0.00185 0.70665 47734.6 47721.3
16 47857.6 0.00168 0.70833 47806.9 47793.0
17 47940.9 0.00190 0.71023 47881.1 47850.9
18 48039.9 0.00223 0.71246 47968.7 47900.1
19 48151.6 0.00269 0.71515 48073.6 47940.7
20 48310.8 0.00289 0.71804 48185.5 47975.1

Additional perturbers like nsnp(3P)mp 2D (and nsnp(1P)mp 2D) were later empha-
sized by [Komninos et al., 1995]. Here, with S1 = 1,3 the spin of the nsnp(1,3P)
limit:

Vmd =
1√
15

⋅ [S1]
1
2 ⋅ [2 ⋅ δ(S1,0)R1(sd;pp′) −R1(sd;p′p)] (16.12)

16.2 Fano theory for the np2 perturber in Cd

In the case of Cd, the perturber is ∣5p2 1
2D⟩ and the series: ∣5smd 1D⟩.

that satisfies equation (16.6) for m = 5,6, ..:

E −Ep = ∑
m=5,6,..

V 2
md

E −Emd
= F (E)

To calculate the energies of the 5smd series as perturbed by the 5p2 state, intra
channel interactions are neglected and the below Hamiltonian is diagonalized:

⎛
⎜⎜⎜
⎝

Ep2 V5d V6d ⋯
V5d E5d 0
V6d 0 E6d

⋮ ⋱

⎞
⎟⎟⎟
⎠

In the present case, Vmd =
√

4/15 R1(5smd;5p2).
The second order result from subsection 15.2.3 is again identical to equation (16.6):

⟨p2(1D)∣H2
2 ∣p2(1D)⟩ = − 4

15 ⨋md
R1(nsmd;np2)2

∆E
= 4

15 ⨋md
R1(nsmd;np2)2

EA −EB
(16.13)

The program ’Fano’ returns the following result:
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Figure 16.3: Theoretical (HF vs. Fano) and experimental 5smd energies.

Channel: 5s md (m=5,6,..,ε) 1D2.
E(limit) = 72538.8 cm−1

E(perturber) = 80813.0 cm−1

Electron configuration of the perturber is given by:
shell 1s 2s 2p 3s 3p 3d 4s 4p 4d 5p
occupation 2 2 6 2 6 10 2 6 10 2

Experimental and calculated energies with their percentages are calculated as:

5smd EHF Cp2 ∑C2
p

Eth Eexp

5 60637.8 0.08306 0.08306 59218.2 59219.8
6 65845.4 0.04765 0.13071 65164.0 65134.9
7 68242.5 0.03103 0.16174 67845.7 67837.1
8 69547.2 0.02054 0.18228 69299.7 69292.5
9 70336.0 0.01402 0.19630 70172.7 70175.9
10 70849.4 0.00988 0.20618 70736.6 70741.9
11 71202.1 0.00713 0.21332 71121.8 71119.5
12 71455.4 0.00520 0.21852 71398.3 71393.6
13 71646.9 0.00394 0.22246 71607.7 71596.3
14 71802.3 0.00377 0.22623 71773.3 71748.9
15 71932.6 0.00602 0.23225 71899.8 71869.2
16 72039.1 0.00723 0.23948 71980.6 71964.1
17 72123.1 0.00181 0.24129 72053.5 72040.7
18 72187.4 0.00034 0.24163 72129.5 72103.2
19 72231.7 0.00010 0.24173 72192.7 72151.7



Chapter 17

CI versus perturbation

An effective parameter set is based on the assumption that the effects of configu-
ration interaction on the configuration under study can be accounted for by per-
turbation theory. In principle, they allow CI to be included to infinite order in
a perturbation expansion. However, it is well known that if the interaction with
a configuration of equal parity is very strong, either by proximity or by orbital
overlap, it is more realistic to include this interaction explicitly. This is because,
if a strong mixing exists, the choice of which of the mixed terms to include in a
single-configuration fit becomes arbitrary. However, the explicit inclusion of these
interactions means that it is difficult to determine all the effective parameters at the
same time with the direct CI integrals and the parameters describing the excited
configuration.
The merits and pitfalls of using orthogonal operators in systems with strong
configuration interaction are illustrated by a study of a number of (5d + 6s)N con-
figurations (N = 8,9) ranging from Ir to Pb. Both the perturbational and the full
diagonalization approach are applied. Criteria are given to indicate the regions
where either operators based on perturbation theory or explicit configuration inter-
actions are dominant. In both regions, orthogonal operators describe the (ground
and) excited states well, provided they are extended by interconfiguration operators
in the case of lower ionization, where full diagonalization of the three (5d + 6s)N
configurations is required.
Ab initio calculations using second order perturbation theory show satisfactory agree-
ment with the results from fits to experimental energy levels, except again for the
lowest ionization stages, where perturbation theory breaks down.
In both the even and odd parity systems, three configurations may be included in
the calculations: (5dN+5dN−16s+5dN−26s2) and (5dN−16p+5dN−26s6p+5dN−36s26p).
Interaction between the configurations in these cases is added explicitly. The interac-
tion integrals, parameters of yet unknown configurations and some of the parameters
of the studied configurations are kept fixed at the predetermined values.
It turns out to be a good approximation to exclude interactions treated by complete
diagonalization from the perturbation expressions: both approaches can then be
combined to describe excited state interactions.
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17.1 Where do orthogonal operators come in?

Parametric fitting with orthogonal operators can be used to extract second- and
higher order effects from experimental data of complex atoms [Hansen et al., 1988a].
In contrast to (near) closed shell systems, small but theoretically interesting effects
like three- and four-body interactions manifest themselves in the structure of com-
plex spectra, and can be isolated one by one by fitting orthogonal operators with the
corresponding angular definition. With orthogonal operators, the reference states
are (only) distinguished by their angular behavior, whereas the radial parameters
are taken equal for a configuration as a whole. In this respect, the procedure is con-
sistent with the configuration average approach [Froese Fischer, 1977, Cowan, 1981]
or the average level formalism [Grant et al., 1976] but, due to the fitting, corrected
to all orders of perturbation theory. With large configuration interaction effects,
the efficiency is increased by including more configurations into the first order. If
the fitting process converges to physically realistic values, one may assume that the
eigenvector composition as well as the (experimentally unknown) predicted level
values are quite accurate. Like the energies, the transition probabilities are not
calculated state-by-state but for a whole configuration at the time. In addition
to the fitted eigenvector compositions, one has to rely here on ab initio calculated
transition integrals. The effect of configurations outside the model space as well
as the state dependence of the orbitals are basically neglected in this procedure.
Both effects are usually small and can in principle be dealt with by perturbation
theory. In summary, the orthogonal operator method is most effective for complex
spectra, where the number of relevant configurations and the term dependence of
the orbitals are comparatively small. Starting with ab initio calculations or extrap-
olations, perturbation effects up to infinite order are subsequently embodied in the
fit.

17.2 Two classes of configuration interaction

Interactions between configurations can somewhat arbitrarily be partitioned into two
kinds, usually called strong and weak configuration interactions. With the strong
interaction, the interacting configurations are assumed to lie close enough to ‘see’
each other’s energy structure. Such a system has to be diagonalized as a whole,
which means that those configurations will be included into the reference or model
space where the zero and first order calculations are carried out. Weak configuration
interaction, on the other hand, refers to the effects of many far-lying configurations.
In this case one may construct operators that accommodate the totals of these
interactions within the original model space. These so-called ‘effective’ operators
are usually less important than the pure single configuration operators, although
they frequently dominate over two-particle magnetic effects. The physical content
is found in the net result of a large number of small interactions with far-away
configurations
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17.3 Interplay explicit and implicit CI

Below, we derive from equation (14.8) the complete second-order expression of Tdds,
the only three-electron operator in the d2s configuration. The first two terms were
originally omitted [Uylings et al., 1989, van het Hof et al., 1991a]. Summation im-
plies both summation over virtual discrete states and integration over virtual con-
tinuum states. The energy denominators ∆Ev are defined as EB − EA and, as a
result, they are normally positive.

Tdds =
−
√

7

735
(18 ∑

d→d′

R2(ds; sd′)R2(d2;dd′)
∆Ed′

− 10 ∑
d→d′

R2(ds; sd′)R4(d2;dd′)
∆Ed′

+18 ∑
s→d′

R2(ds;dd′)R2(ds;d′d)
∆Ed′

− 9 ∑
s→d′

(R2(ds;d′d))2

∆Ed′

−10 ∑
s→g

R4(ds;dg)R2(ds; gd)
∆Eg

+ 9 ∑
s→g

(R2(ds; gd))2

∆Eg
) (17.1)

The second line of equation (17.1) describes (to second order) the net effect of the
s → d and the d → s excitations from the dN−1s configuration, i.e. amongst others
the interactions with the configurations dN and dN−2s2, respectively; their contribu-
tion should be omitted if these interactions are included into the first order already
by a more-configuration approach. As the four-particle parts of the two interactions
cancel each other exactly, only a three-particle part contributes to Tdds.

Table 17.1: Second order contributions to the Tdds parameter in MnV, Fe VI and Ga V, compared

with experiment.

Mn V (3d24s) Fe VI (3d24s) Ga V (3d84s)

3d→ d′ 33.3 27.8 37.0
4s→ d′ -111.8 -118.7 -99.0
4s→ g 3.0 3.0 2.3
Total calc. -75.5 -87.9 -59.7
Experiment -82.0 -91.2 -58.6

Table 17.2: Second order contributions to the Tdds parameter in Ir I and Bi VII, with and without

the 5d↔ 6s interaction.

Ir I (5d86s) Bi VII (5d86s)

5d→ d′ 56.98 25.75
6s→ d′ -26.30 -69.20
6s→ g -4.74 1.03
Subtotal 25.94 -42.42
5d↔ 6s 703.00 98.90
Total 729.00 56.50

Although the magnetic 5d2 parameters are considerably larger than in correspond-
ing 3d- and 4d- systems, they are less important than Tdds and Amso, and the current
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amount of experimental data does not allow to fit them reliably. Therefore, they
are frequently fixed to their ab initio values in the fits.
Finally, spin-spin effects are neglected throughout; they are expected to be negligi-
ble in systems with high Z.
A complication in fitting the three lowest even configurations for neutral to six times
ionized systems is that only a limited amount of information about the 5dN−26s2

configuration exists; even in the other two configurations there are several energy
levels unknown. Therefore one cannot vary all parameters freely and constraints
have to be introduced. Except for the I- and II-spectra, the average energy of the
5dN−26s2 configuration is derived from the Hartree-Fock energy difference with the
5dN−16s configuration whereas the other 5dN−26s2 parameters are linearly extrapo-
lated from corresponding 5dN and 5dN−16s parameters.
For the single configuration approach, the agreement between fitted and ab initio values
of Tdds runs from very satisfactory to poor in the direction of lower ionization, the
serious discrepancies starting with the three times ionized systems. Apparently we
witness the breakdown of the (second order) perturbation theory in favor of a full
diagonalization of explicit configuration interactions.

17.4 Turning point in the validity perturbational

approach

Most calculations in complex (3d + 4s)N systems have been carried out within the
single configuration approach. Is this approximation justified and, if so, by what
criterion? Below, we formulate a criterion for the introduction of more configura-
tions in the model space and investigate this criterion with the (5d + 6s)N systems.
First, one has to identify the candidate configurations for strong interaction with
the reference configuration: they have to possess the same parity, lie ‘nearby’, and
differ in no more than two single electron states with a reasonable overlap of their
respective wavefunctions. Then, the normalized values of the effective parameters
and the interaction integrals are compared to see their relative importance. This
may be done in advance of a full study of the system if ab initio or extrapolated
parameter values are used. To compare an effective parameter Pweak acting within
configuration A with a strong interaction effect between the configurations A and
B described by a Slater-type Rk-integral, the average magnitude of the angular co-
efficients should be equal.
We introduce the quantity Pstrong = (Rk)2/EAB with EAB the energy difference
between the centres of gravity of A and B. Then the quantities NweakPweak and
NstrongPstrong, with N the angular ‘length’ of the operator defined by pi ∶ pj = N2

i δij,
are to be compared.
For the present system, we take Tdds and Amso as Pweak and use the two integrals
R2(5d5d; 5d6s) for the interactions 5dN ↔ 5dN−16s and 5dN−16s↔ 5dN−26s2

respectively, to form Pstrong.
The turning point of the normalized Pweak and Pstrong are seen to take place around
the III-spectra. For lower ionization, full diagonalization of the three strongly inter-
acting configurations is clearly indispensable, while for higher ionization the ‘weak’
correlation operators dominate and perturbation theory alone may be sufficient.
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Compared to corresponding 5d-systems, the Rk-integrals in the 3d-systems are
roughly four times as small, whereas the relevant energy distances are about twice
as large. As a result, Pstrong is in the order of 25 times smaller in 3d-systems than in
5d-systems, while Pweak is comparable in magnitude: it therefore seems justified to
describe many 3d-systems with effective correlation parameters in the single config-
uration approach.
To investigate the validity of the above criterion, we considered the behavior of the
mean error σ of the fit as a function of ionization stage in three steps:
(i) the three interaction integrals are set to zero to see the effect of the effective
operators alone.
(ii) The effective parameters are set to zero to study the impact of the strong inter-
action alone.
(iii) Both the interaction integrals as well as the effective operators are used in the
fit.
The turning point of steps (i) and (ii) takes place in the vicinity of the III-spectrum
for N = 9 and is shifted towards the IV-spectrum for N=8; this shift reflects the
fact that the relevant N = 8 configurations have a broader spread in energy which
enhances the importance of a more-configuration description.

17.5 Conclusion

We conclude that it is possible to meaningfully combine perturbation theory
(using effective parameters) and a diagonalization approach (using interaction
integrals) into one description of an atomic system.
Satisfactory agreement between ab initio and fitted values of the effective parame-
ters can be obtained if the interactions accounted for explicitly by diagonalization
are omitted from the (perturbative) ab initio calculation.
Using (5d + 6s)N (N = 8,9) systems as an example, the breakdown of the purely
perturbative single configuration description can actually be followed (in a direction
from high to low ionization) in three different ways:
(i) comparison of the ab initio and fitted values of an effective parameter (here Tdds)
that includes a contribution of the interaction with the nearby configurations;
(ii) comparison of (normalized) parameter values of an effective parameter and a
parameter (Rk)2/EAB associated with a strong configuration interaction;
(iii) comparison of the mean error of a fit using effective parameters only with a fit
using explicit interactions only.
All three methods show the breakdown point for the same ionization stage (here the
III-spectra). Higher order electrostatic and magnetic effects (described by effective
orthogonal operators) can only be determined reliably if the first order model is
reasonably accurate. In cases of close-lying configurations of the same parity, this
implies a more-configuration model as starting point.



Chapter 18

Core polarization

The electric field of valence electrons induces a dipole moment opposite to the
original dipole moment. This core-valence effect reduces the transition probability.
A non-penetrating valence electron ’far outside’ the core carries an electric dipole
moment d = −er, producing an electric field E = −d/r3 at the nucleus. This induces
in the ’dielectric’ core an electric dipole moment:

αdE = −αd d
r3

(18.1)

This effect yields the above mentioned reduction:

d→ d(1 − αd
r3

) (18.2)

Therefore, one may include core polarization into the transition integral by means
of the replacement:

r → r (1 − αd
r3
W3 (

r

rα
)) (18.3)

where the cut-off function W3 was introduced by [Laughlin, 1992] in his model
potential approach to avoid unphysical infinities at r = 0:

Wn (
r

rα
) = 1 − exp( r

rα
)
n

(18.4)

Here, the cut-off radius rα(nl) is equated to the radius for which the partial norm
of Pnl equals 99%:

∫
rα

0
P 2
nl dr = 0.99 (18.5)

An alternative cut-off procedure is used by Migdalek and coworkers [Migdalek and Baylis, 1978]:

r → r
⎛
⎜
⎝

1 − αd

(r2 + r2
0)

3
2

⎞
⎟
⎠

(18.6)

Here, the cut-off radius r0 corresponds to the mean radius ⟨r⟩ of the outermost core
orbital.

221
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A similar procedure was introduced by P. Quinet and E. Biémont, e.g. [Quinet et al., 1999].
They employ the replacement:

∫
∞

0
Pnl r Pn′l′ dr →

∫
∞

0
Pnl r

⎛
⎜
⎝

1 − αd

(r2 + r2
c)

3
2

⎞
⎟
⎠
Pn′l′ dr − αd

r3
c
∫

rc

0
Pnl r Pn′l′ dr (18.7)

The cut-off radius rc corresponds here as well to the expectation value of r for the
outermost core orbital.
In fact, all of these procedures boil down to scaling the dipole transition integral by
80 to 90%.

The static dipole polarizability αd of the core is defined as:

αd = −
2

3
∑
c→v

⟨c ∣r⃗∣ v⟩ ⋅ ⟨v ∣r⃗∣ c⟩
εc − εv

(18.8)

Therefore:

αd = −2

3
∑
γJ

1

2J + 1
∑
γ′J ′

∣ ⟨γJ ∥ rC(1) ∥ γ′J ′⟩ ∣2
E(γJ) −E(γ′J ′)

= −2

3
∑
nl

qnl
2l + 1

∑
l′=l±1

⟨l ∥ C(1) ∥ l′⟩2

⨋
l→l′

[∫
∞

0 Pnl r Pn′l′ dr]2

εnl − εn′l′
(18.9)

In the case of hydrogen, this simplifies to:

αd = −
2

3 ⨋1s→np

⟨1s ∣ r ∣np⟩2

ε1s − εnp
(18.10)

More in general, the polarization correction to electric multipole transition integrals
is given by:

Dk(r) = rk ⋅C(k)(Ω) ⋅ [1 − αk
r2k+1

⋅W2k+1 (
r

rα
)] (18.11)

Where:

αk = 2 ⋅ ⨋
∣⟨Ψ∣rk∣Ψ′⟩∣2

EΨ′ −EΨ

(18.12)

For hydrogenic atoms, the polarizabilities αd and αq are for k = 1,2 given by:

αk =
(2k + 2)!(k + 2)

22k+1 ⋅Z2k+2 ⋅ k(k + 1)
(18.13)

Bearing in mind that 10−24 cm3 = 6.74833 a3
0, this yields the exact value

αd = 9
2 ⋅

1
Z4 = 4.5 (a3

0) for hydrogen:
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Table 18.1: Comparison of various hydrogen dipole polarizability calculations.

B-splines HF+B-spl+HUP RCN+B-spl+HUP Analytical

Discrete: 3.66424935360687935 3.6635 3.6501 3.663257890309
Continuum: 0.83575064639396738 0.8365 0.8513 0.836742109691

Total: 4.50000000000084673 4.5000 4.5014 4.500000000000

Figure 18.1: Individual contributions from continuum orbitals in the calculation of the hydrogen

polarizability.

Likewise, the hydrogenic quadrupole polarizability is found to be αq = 15
Z6 (a5

0).

Various neutral closed-shell atoms are known to support bound states; the electron
binds to the closed core to form a one-electron negative ion. The valence electron
induces a dipole moment (18.1) in the core and interacts with this induced moment
as a kind of self-energy. The binding force is provided by the polarization potential
of the core −1

2αd/r4, this being the classical interaction of a valence electron with
the induced dipole field. The effect may be described approximately by adding a
phenomenological polarization term Vpol = −1

2αd/r4 − 1
2(αq −β1)/r6 to the HF poten-

tial and solving the modified Schrödinger equation. Here, αd and αq are the static
dipole and quadrupole core polarizabilities and β1 is a dynamical correction term.
The contribution to the orbital energy εnl of high angular momentum Rydberg states
becomes thereby:

∆Epol = −1
2αdZ

4
c ⟨r−4⟩ − 1

2(αq − 6β1)Z6
c ⟨r−6⟩ (18.14)
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where the expectation values are calculated from hydrogenic radial functions. Values
for αd and (αq−6β1) may therefore be obtained semi-empirically from the difference
between experimental term energies Enl and the eigenvalues εnl.
In this form, Vpol is less valid for penetrating low angular momentum electrons and
singular for ns states, and again a cut-off procedure becomes necessary:

Vpol = −
1

2

αd
r4

W6 (
r

rα
) − 1

2

αq − 6β1

r6
W8 (

r

rα
) [Laughlin, 1992] (18.15a)

Vpol = −
1

2

αd ⋅ r2

(r3 + r3
0)2

− 1

2

(αq − 6β1) ⋅ r4

(r5 + r5
0)2

[Migdalek and Baylis, 1978] (18.15b)

In reaction to an electric field E, a polarizable medium will adjust its potential
energy with an amount ∆E given by:

∆E = −1
2αdE

2

This so-called Stark effect is found under varied circumstances:

∆E = −1
2αdE

2 d.c. Stark effect (18.16a)

∆E = −1
4αdE

2 a.c. Stark effect (18.16b)

∆E = −1
2αd ⟨r

−4⟩ internal Stark (core-valence) effect (18.16c)

Table 18.2: Values of the dipole polarizabilities αd (and their cut-off radii rα) in the iron group

elements.

3d2 3d3 3d4 3d5 3d6 3d7 3d8 3d9

II Sc Ti V Cr Mn Fe Co Ni

αd(3p) 3.54(2.5) 2.68(2.4) 2.07(2.2) 1.63(2.1) 1.31(2.1) 1.06(2.0) 0.87(1.9) 0.72(1.7)
αd(3d) 5.88(4.1) 5.86(3.5) 5.52(3.3) 5.10(3.1) 4.68(3.0) 4.29(2.9) 3.39(2.6) 3.61(2.7)

III Ti V Cr Mn Fe Co Ni Cu

αd(3p) 2.50(2.4) 1.95(2.2) 1.55(2.0) 1.25(1.9) 1.01(1.8) 0.83(1.7) 0.69(1.6)
αd(3d) 3.23(3.0) 3.08(2.9) 2.89(2.7) 2.69(2.6) 2.50(2.5) 2.33(2.4) 2.16(2.3)

IV V Cr Mn Fe Co Ni Cu

αd(3p) 1.82(2.0) 1.46(1.9) 1.18(1.8) 0.96(1.7) 0.80(1.7) 0.66(1.6) 0.56(1.6)
αd(3d) 2.16(2.5) 2.00(2.4) 1.86(2.3) 1.72(2.2) 1.60(2.1) 1.49(2.1) 1.35(2.0)

V Cr Mn Fe Co Ni Cu

αd(3p) 1.37(1.9) 1.11(1.8) 0.91(1.7) 0.76(1.7) 0.63(1.6) 0.53(1.6)
αd(3d) 1.56(2.1) 1.42(2.0) 1.31(2.0) 1.21(1.9) 1.12(1.8) 1.04(1.8)

VI Mn Fe Co Ni Cu

αd(3p) 1.05(1.7) 0.87(1.7) 0.72(1.6) 0.61(1.5) 0.52(1.5)
αd(3d) 1.17(2.0) 1.08(1.9) 0.98(1.9) 0.90(1.8) 0.85(1.7)
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Table 18.3: Example of a B-spline calculation of αd in Fe VI.

Length form Velocity form

3s→ np 0.011 0.010
3p→ ns 0.035 0.028
3p→ nd 0.827 0.808

αd(3p) (0.873) (0.846)

3d→ np 0.041 0.040
3d→ nf 0.165 0.151
αd(3d) 1.079 1.037

18.1 Core and valence excitations

The calculation of transition probabilities now proceeds in three steps:
(i) Calculation of the eigenvectors (expanded in pure ∣SLJ⟩ coupled states) of both
the even and the odd system.
(ii) Ab initio calculation of the transition integrals from fully relativistic Dirac-
Hartree-Fock (MCDHF) wavefunctions [Parpia et al., 1996].
(iii) Calculation of the final transition matrix by transforming the pure SLJ tran-
sition matrix, including the above transition integral(s), by means of the fitted
eigenvectors.
Due to the large amount of possibly unknown levels, the fitting procedure is inher-
ently restricted to a limited number of strongly interacting configurations.
Energy effects from configurations outside the model space can be fitted with
’effective’ operators based on perturbation theory. Still, the eigenvectors will be
truncated to the components of the model space only. The resulting transition
probabilities, very sensitive to correlation, therefore remain somewhat defective.
It is the aim of the present paragraph to include correlation with the large number
of configurations outside the reference space with second-order perturbation theory.
Let ∣Ψ⟩ and ⟨Ψ′∣ refer to the full odd and even states of the system, to be approxi-
mated by the model states ∣α⟩ and ⟨α′∣ , respectively:

⟨Ψ′∣r ∣Ψ⟩ = ⟨α′∣r ∣α⟩ +∑
β

⟨α′∣r ∣β⟩ ⟨β∣V ∣α⟩
Eα −Eβ

+∑
γ

⟨α′∣V ∣γ⟩ ⟨γ∣r ∣α⟩
Eα′ −Eγ

(18.17)

In principle, the above summation runs over all states β(γ) with the same parity as
α(α′) that are not included in the model space.
Perturbation theory seems to be a good approximation to the diagonalization ap-
proach, even when the interaction strength would favor the latter over the former
method. In summary, application of perturbative corrections in addition to diago-
nalizing the most relevant configurations seems a promising way towards calculating
accurate transition probabilities with orthogonal operators.
A simple example with ⟨α′∣ = ⟨5d9∣ , ∣α⟩ = ∣5d86p⟩ and ∣γ⟩ = ∣5d86s⟩ would be:

⟨Ψ′∣ r ∣Ψ⟩ ≈ ⟨5d9∣ r ∣5d86p⟩ + ⟨5d9∣V ∣5d86s⟩ ⟨5d86s∣ r ∣5d86p⟩
E5d −E6s

(18.18)
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The results turn out to be in quite good agreement with the results from the full
diagonalization procedure:

⟨Ψ′∣ r ∣Ψ⟩ ≈ ⟨5d9+5d86s∣ r ∣5d86p⟩ (18.19)

The iron group elements are complicated by the fact that the n = 3 shell is not
closed so that core excitations such as 3s→ 3d or 3p2 → 3d2 are possible within this
shell; the effect of the 3s2 → 3d2 excitation is usually much smaller. Due to the
good overlap between electrons with the same n value these interactions are very
large and significantly influence the energy level structure of, for example, the 3dN

configurations.
[Quinet, 1995] pointed out that for the calculation of oscillator strengths, the explicit
introduction of core excitations is important when considering transitions out of the
open 3dN subshell but it is crucial when considering transitions out of the full 3p6

subshell.
The transitions from ⟨α′∣ = ⟨3p63d∣ → ∣α⟩ = ∣3p53d2⟩ provide the simplest example
of this effect. Here, the even system should be extended by ∣γ⟩ = ∣3s3p63d2⟩ and
∣γ⟩ = ∣3s23p43d3⟩, while ∣β⟩ = ∣3s3p53d3⟩ and ∣β⟩ = ∣3s23p33d4⟩ are included in the
odd system. The contributions of the γ configurations are dominant, as they yield
allowed dipole transitions with the same 3d→ 3p radial dipole integral.
In summary, it is vital to include 3p2 → 3d2 core excitations in the calculation of the
3p63dN − 3p53dN+1 transition rates in iron group elements.
Similar considerations underline the importance of the 5p2 → 5d2 and 4f 2 → 5d2 core
excitations, in the computed radiative lifetimes of W VIII [Prince and Quinet, 2015]
with lifetime changes of about 20%.
Likewise, the 3s→ 3d core excitation plays an important role in E2 transitions rates,
as it corresponds to an allowed quadrupole transition from 3s23p63d.
Another striking example of this effect is given by the ⟨α′∣ = ⟨3p63d8∣ → ∣α⟩ = ∣3p53d9⟩
transitions, where especially ∣γ⟩ = ∣3p43d10⟩ should be included in the calculation.

18.2 Use with orthogonal operators

Transition probabilities (gA) are calculated from the final fitted parameter values.
Intensities of the spectral lines (Int) are commonly obtained by measuring the plate
darkening, converting optical density to spectral intensity and subtracting the spec-
tral background approximated by a spline curve. For isolated, unperturbed and
unsaturated lines originating from the same upper level or from close upper lev-
els, agreement between gA and Int is usually quite good. Taking into account the
Boltzmann factor describing the decrease of population for levels with increasing
energy, agreement between the presented gA and Int is good throughout the entire
list. Different exposures may have different T values and thus different Boltzmann
factors, exp (−E/kT ).
The conventional (Cowan code [Cowan, 1981]) and orthogonal methods of semi-
empirical (LSF) calculations of the energy level structures, level compositions and
transition probabilities are compared below. Transition probabilities are calculated
using eigenvectors obtained in the LSF. Since the level mixing depends strongly on
the separation between levels, it is essential that this separation is described accu-
rately. In complex spectra, the separation is often of the same order as the mean
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error of the fit or even smaller. However, one cannot describe the level structure in
detail when the spacing between levels is smaller or comparable to the mean error.
In that case, the calculated eigenvector composition becomes unreliable.
Transition probabilities, calculated by means of the orthogonal operator approach
show much better agreement with experimental intensity numbers than values ob-
tained from the conventional method. This is especially true when close lying levels
are considered:
”However, difficulties arise when a much larger number of strongly interacting levels
have to be included in the same calculation, either because they do interact strongly,
or because they are quite high-lying in energy and all levels with lower energy also
need to be included in the calculation. Ions with open d-shells are particularly chal-
lenging, and we consider now some calculations which have proven and continue
to prove difficult for theorists in their attempts to provide oscillator strengths of
sufficient accuracy, and with an accuracy which can be substantiated. In this in-
stance though (the Fe II lines 2507.5 and 2509.1 Å, from the close 3d64p/5p levels
90042.884[6F9/2] and 90067.357[4G9/2]), the upper levels were so close in energy that
small modifications to the fine-tuning corrections leads to very different mixings and
therefore oscillator strengths. Extrapolation such as a fine-tuning process, needs to
be undertaken very carefully, moving from the ab initio calculation in small steps.”
[Hibbert, 2018].
Despite the high accuracy of the experimental as well as the orthogonal operator
technique discrepancies between the methods remain. Possible error sources in the
compared results are as follows.
(i) Inaccurate values for the ab initio calculated transition integrals or other contri-
butions to the transition matrix from neglected valence CI effects. In our approach
an average level (AL) approximation is used. This means that the transition integrals
are not term dependent to this order, just like the energy parameters. Most fitted
(electrostatic and magnetic) interactions differ from the ab initio calculated value,
resulting in scaling factors. The same might be true for the ab initio calculated
transition integral. Another approach to model the core polarization, such as a dif-
ferent calculation of the polarizability αd or another choice for the cut-off radius, will
affect the value of the transition integrals, but only in the order of a few per cent.
Valence effects are accounted for by applying extended CI, but may also be covered
by means of perturbation theory [Uylings and Raassen, 1995]. The latter was not
applied here. No deviations may occur from the third power of the wavenumber
that appears in the expression for the transition probabilities, since the accurate
experimental wavenumbers are used in the theoretical model.
(ii) Inaccurate eigenvector compositions, especially for the small contributions, re-
sulting in deviations for intercombination lines (∆S = 1). We expect that thanks
to the small deviations between the experimental and calculated energy values the
eigenvector compositions are optimal within the model space of configurations used.

18.3 Illustrative examples

In [Uylings and Raassen, 1996], using data on the Ni V and Fe III spectra, two
examples of comparison of the conventional and orthogonal methods are given. The
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mean error can be interpreted as the ’blobsize’ used by painters (Seurat and others)
of the art-movement ’Pointillism’. They used blobs for their painting and could not
paint objects smaller than the blobsize. In the same way we cannot describe level
structures in detail when the spacing between levels is smaller or comparable to the
mean error.
In the Ni V example, the observed separation (22 cm−1) between two 3d54p levels
was five times smaller than the mean error of the conventional fit, resulting in the
calculated spacing between the levels 13 times larger than the observed one. The
orthogonal method resulted in a mean error of two times smaller than the actual
level separation and the calculated spacing between the levels close to observed. For
the two methods, the mixing between the levels differed enormously; and so did
the calculated probabilities of the transitions from the two considered levels. For
these levels, the calculated percentages of the same eigenvector components differed
by the factors of 0.57 and 4.0 for the leading and second components, respectively.
The calculated probabilities of the transitions differed by a factor of up to 1500. In
fact, the conventional method failed to predict three of five strongest lines for the
first level and two of five strongest lines for the second level. In the Fe III example,
the observed separation (46 cm−1) between two 3d54p levels was about three times
smaller than the mean error of the conventional fit and two times larger than that for
the orthogonal operators fit. Despite the fact that the calculated splitting for these
two levels was about the same (near 28 cm−1), the eigenvectors differed considerably
between the two methods. For these levels, the calculated percentages of the same
eigenvector components differed by the factors of 0.59 and 4.2 for the leading and
second components, respectively. This was due to the better description of the
positions and spacing of the neighboring levels in the orthogonal calculations. For
eight transitions from the two considered levels, the probabilities differed by a factor
from 0.1 to 10 between the two methods.

Table 18.4: Two close lying levels in the J = 4 matrix of the 3d54p configuration of Ni V,

calculated by the conventional and by the orthogonal method

Conventional method, mean error full fit σ = 120 cm−1

Exp. Calc. Diff. Eigenvector composition

296919.3 296645.1 274.2 68% (4D)5D + 22%(4P )5D
296897.0 296925.4 -28.4 91% (4G)3G

Orthogonal method, mean error full fit σ = 5.4 cm−1

Exp. Calc. Diff. Eigenvector composition

296919.3 296645.1 2.3 45% (4D)5D + 22%(4P )5D
296897.0 296925.4 6.1 59% (4G)3G + 25%(4D)5D
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Table 18.5: Two close lying levels in the J = 5 matrix of the 3d54p configuration of Fe III,

calculated by the conventional and by the orthogonal method

Conventional method, mean error full fit σ = 139 cm−1

Exp. Calc. Diff. Eigenvector composition

139509.2 139407.4 101.8 49% (2H)3I + 21%(4F )3G
139463.0 139378.4 84.7 40% (2H)3I + 32%(4F )3G

Orthogonal method, mean error full fit σ = 12 cm−1

Exp. Calc. Diff. Eigenvector composition

139509.2 139504.1 5.0 83% (2H)3I + 6%(4F )3G
139463.0 139476.0 -13.0 44% (2H)3I + 29%(4F )3G
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Chapter 19

Dirac-Breit equations

The Hamiltonian for an N−electron system is given by:

H = ∑
i

hi +∑
i<j

hij (19.1)

Electromagnetic interactions are included in minimal coupling by the replacement
of the kinetic momentum operator p→ π = p − qA, with q = −e the electron charge.
As an intermediate step towards full relativity, one may consider the minimally
coupled Schrödinger-Pauli equation for an electron moving in an electromagnetic
field described by a scalar potential Φ and a vector potential A:

[1
2 (p − qA)2 + qΦ −µs ⋅B]ψ = Eψ (19.2)

Here, ψ is a two-component spinor and µs = −µB σ. The Schrödinger-Pauli equation
is the direct non-relativistic limit of Dirac’s equation. It can be derived from the
Schrödinger equation by the substitution p2 → (σ ⋅π)2

, see further below.
It demonstrates that the electron spin is, contrary to common belief, basically of a
non-relativistic nature.

For full relativity, the one-electron Dirac operator with c = α−1 is used for hi:

hi = cαi ⋅ pi + (βi − 1)c2 + 1Vi with Vi = −Z/ri +Ui (19.3)

The four Hermitian operators β and α anti-commute and their squares are equal
to 1. The three components of the polar vector operator α are given by the Dirac
matrices αi. The αi are related to the usual Pauli spin matrices σi of the axial
vector operator σ = 2s, with the properties σ ⋅σ = 3 ⋅1, ∣σi∣ = −1 and Tr(σi) = 0, by:

αi = ( 0 σi
σi 0

) (19.4a)

The scalar matrix operator β is given by:

β = (1 0
0 −1

) → (β − 1) = (0 0
0 −2

) (19.4b)

For the two-particle relativistic energy operator hij, the usual Coulomb-Breit
interaction [Breit, 1929, Breit, 1932] is used; it is the sum of the Coulomb term and
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the zero-frequency limit of the transverse Breit interaction:

hij =
1

rij
− (
αi ⋅αj

2rij
+

(αi ⋅ rij)(αj ⋅ rij)
2r3

ij

) (19.5)

The ket state is represented by the column vector ψ = (Φ
χ
):

∣nljm) = ∣ [Fnj(r)/r] ∣(sl)jm⟩
[iGnj(r)/r] ∣(sl̄)jm⟩) with l̄ = l ± 1 as j = l ± 1

2 , or: l̄ = 2j − l = j ± 1
2 .

(19.6a)

Similarly, the Hermitian conjugate or bra state ψ† is represented by the row vector:

(nljm∣ = (⟨(sl)jm∣[Fnj(r)/r];−i⟨(sl̄)jm∣[Gnj(r)/r] ∣ (19.6b)

Fnj and Gnj are the large and small radial components, normalized as:

∫
∞

0
(F 2

nj +G2
nj) dr = 1 (19.7)

Fnj and Gnj are calculated self-consistently as one-electron wavefunctions of the
Dirac-Breit Hamiltonian. The projection operators B± = 1

2(1 ± β) may be used to
select either the large or the small component.

1,J2, L2 and S2 all commute with the single electron Hamiltonian (19.3), and so
does any operator constructed from them.
As σ ⋅ L = J2 − L2 − S2, the operator K = −(1 +σ ⋅ L) = −(1 + 2S ⋅ L) will therefore
commute with the Dirac Hamiltonian.
With K ∣ jlm) = κ ⋅ ∣ jlm), the eigenvalues satisfy κ = −(1 + j(j + 1) − l(l + 1) − 3

4
):

κ = (l − j)[j] = l(l + 1) − j(j + 1) − 1
4 → κ± = ∓(j + 1

2
) as j = l ± 1

2 → j = ∣κ∣ − 1
2 :

κ− = l for j = l − 1
2 and κ+ = −(l + 1) for j = l + 1

2 . In each case, κ(κ + 1) = l(l + 1).
It should be noted that some authors, e.g. [Armstrong and Feneuille, 1974], define
κ with an opposite sign; κ = −κ and κ = κ still holds of course.
Except for specifying the total angular momentum, κ therewith also defines the par-
ity (−1)l of the state: l = j + κ

2∣κ∣ = j ∓
1
2 . As (−1)l = −(−1)l̄, or equivalently κ = −κ̄,

the small component χ has the opposite parity of the large component Φ.
The four operators H,J2, Jz,K now form a complete set of mutually commuting
operators with eigenvalues E = −εnκ, j(j + 1),m,κ. The Dirac equation conserves
total angular momentum, but not its separate spin and orbital parts.

The (2×2) Pauli spin matrices form, up to a factor 2, the Cartesian components
of the spin angular momentum s, the first row and column corresponding to ms = 1

2 .
Therefore, the resulting identification is s(1) = 1

2σ
(1) or s = 1

2σ:

sx =
1

2
(0 1

1 0
) sy =

1

2
(0 −i
i 0

) sz =
1

2
(1 0

0 −1
) (19.8)

For any two vector operators a and b commuting with σ, the below identity applies:

(σ ⋅ a) (σ ⋅ b) = (a ⋅ b)1 + iσ ⋅ (a × b) (19.9)
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It follows directly that (σ ⋅ er)2 = 1, (σ ⋅ p)2 = p21 and, using equation (1.3):

(σ ⋅π)2 = π2 − qσ ⋅ [(∇ ×A) + (A ×∇)]
= π2 − qσ ⋅B (19.10)

The substitution: p2 → (σ ⋅π)2 = (π2 − qσ ⋅B) in the Schrödinger equation yields
the Schrödinger-Pauli equation (19.2).
In a constant magnetic field B with A = 1

2 (B × r) (see section 22.2), expansion of
π2 keeping only linear B-terms for weak fields yields:

π2 ≈ p2 − qL ⋅B→ (σ ⋅π)2 ≈ p2 − q (L +σ) ⋅B (19.11)

thus retrieving the atomic magnetic moment (L +σ) = (L + 2S) used in section 3.7.

Equation (19.9) may also be put to use to find the effect of (σ ⋅ p) occurring in
equation (19.3):

(σ ⋅ p) = (σ ⋅ er) [(σ ⋅ er)(σ ⋅ p)] = −i (σ ⋅ er) [er ⋅ ∇ − σ ⋅L

r
] (19.12)

Recall that ∇f(r) = (df/dr)er → er ⋅ ∇ = ∂/∂r and −(σ ⋅L) = (K + 1), so:

(σ ⋅ er) ∣κm⟩ = − ∣κm⟩ (19.13a)

(σ ⋅ p) f(r)∣κm⟩ = i (df

dr
+ κ + 1

r
f) ∣κm⟩ →

(σ ⋅ p)F /r ∣κm⟩ = i

r
(dF

dr
+ κ F

r
) ∣κm⟩ (19.13b)

Equation (19.13b) turns out to be yet another version of the gradient formula and is
used to derive a set of coupled first-order differential equations from equation (19.3):
hD ψ = Eψ yields [α ⋅ p + (β − 1)/α + α(V −E)]ψ = 0, or in matrix notation:

(α(V −E) (σ ⋅ p)
(σ ⋅ p) α(V −E) − 2/α) ∣ F /r ∣κm⟩

iG/r ∣κm⟩) = 0→ (19.14)

F ′ + κ ⋅ F /r + (α(V −E) − 2/α) ⋅G = 0 (19.15a)

G′ − κ ⋅G/r − α(V −E) ⋅ F = 0 (19.15b)

In the Pauli limit α → 0, Fnj → (1− 1
4α

2 ⋅T )Pnl after renormalization with the kinetic
energy operator T = −1

2d2/dr2 + l(l + 1)/2r2 and, using α(V −E) ≪ 2/α:

Gnj → 1
2α(P

′
nl + κ ⋅ Pnl/r) (19.16)

The reader is referred to [Froese Fischer et al., 2016] for a topical review of the
ab initio multi-configuration methods in this field.
Alternatively, the Pauli spin matrices are also directly related to the 4 by 4 Hermitian
and traceless matrices γµ satisfying {γµ, γν} = 2gµν , with γ0γi = αi or γ = βα.
The known metric tensor gµν is given by:

gµν =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

(19.17)
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where γµ = gµνγν → γ0 = γ0 and γi = −γi.

γ0 = (1 0
0 −1

) = β = β−1 = γ4 γi = ( 0 σi
−σi 0

) (19.18)

The γµ appear in the covariant form of the Dirac equation:

[γµ(ih̵∂µ − eAµ) −mc]ψ = 0 (19.19)

The Dirac representation of the four contravariant gamma matrices is:

γ0 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

γ1 =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟
⎠

γ2 =
⎛
⎜⎜⎜
⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎟
⎠

γ3 =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠

(19.20)

To define a pseudo- or axial vector and a pseudoscalar that both appear in PNC, the
product of all four gamma matrices is used: γ5 = γ5 = iγ0γ1γ2γ3, where {γ5, γµ} = 0.

γ5 =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
= (0 1

1 0
) (19.21)

The upper or lower position of the index 5 is therefore of no significance. Whereas
ψ†ψ is a scalar, ψ†γ5ψ is a pseudoscalar as it changes sign under parity inversion.
Similarly, while ψ†γµψ yields a (polar) vector, ψ†γ5γµψ classifies as an axial or

pseudovector. Other conventions such as γi = ( 0 −iσi
iσi 0

) and γ5 = ±γ0γ1γ2γ3 are

also in use, where e.g. γ5 = ( 0 −1
−1 0

). Apparently, γ5 interchanges the upper and

lower component of the relativistic wavefunction.



Chapter 20

Reduced matrix elements

The matrix elements of an operator set between the large and small components
of the wavefunctions (19.6), may always be written as (a sum of) diagonal or anti-
diagonal contributions.
For a diagonal operator with respective matrix elements u

(t)
11 and u

(t)
22 one finds for

the reduced matrix element:

(p ∥ Û (t) ∥ q) = ⟨l1j1 ∥ u(t) ∥ l2j2⟩∫
∞

0
F1F2U(r)dr + ⟨l̄1j1 ∥ u(t) ∥ l̄2j2⟩∫

∞

0
G1G2U(r)dr

(20.1a)

and for an anti-diagonal operator with respective matrix elements v
(t)
12 and v

(t)
21 :

(p ∥ V̂ (t) ∥ q) = i ⟨l1j1 ∥ v(t) ∥ l̄2j2⟩∫
∞

0
F1G2V (r)dr − i ⟨l̄1j1 ∥ v(t) ∥ l2j2⟩∫

∞

0
F2G1V (r)dr

(20.1b)

[Grant, 1970] names the diagonal operators from equation (20.1a) type A and the
anti-diagonal operators from equation (20.1b) type B, respectively.
Both the product of two diagonal and the product of two anti-diagonal operators
yield a diagonal operator. The product of a diagonal and an anti-diagonal operator
is anti-diagonal with w12 = u11v12 and w21 = u22v21. The same is true for the product
of an anti-diagonal and a diagonal operator, but here w12 = u22v12 and w21 = u11v21.

20.1 Diagonal

An important example of equation (20.1a) for Û (t) = f(r) ⋅C(t):

(l1j1 ∥ f(r) ⋅C(t) ∥ l2j2) = ⟨l1j1 ∥ C(t) ∥ l2j2⟩∫
∞

0
F1F2 ⋅ f(r)dr

+ ⟨l̄1j1 ∥ C(t) ∥ l̄2j2⟩∫
∞

0
G1G2 ⋅ f(r)dr

= ⟨j1 ∥ C(t) ∥ j2⟩∫
∞

0
(F1F2 +G1G2) ⋅ f(r)dr

= (−1)j1−
1
2 ⋅ [j1, j2]

1
2 ⋅ ( j1 t j2

−1
2 0 1

2

) ∫
∞

0
(F1F2 +G1G2) ⋅ f(r)dr

≡ (−1)j1−
1
2 ⋅ [j1, j2]

1
2 ⋅ ( j1 t j2

−1
2 0 1

2

) ⋅Uf (20.2)
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In the last steps, use is made of equation (3.51b) and identity (C.52) from [Brink and Satchler, 1968],
Appendix II:

⟨1
2 lj ∥ C

(t) ∥ 1
2 l
′j′⟩ = (−1)

1
2+l+j [j, j′]

1
2 {j t j′

l′ 1
2 l

} ⟨l ∥ C(t) ∥ l′⟩

= (−1)j−
1
2 ⋅ [j, j′]

1
2 ⋅ ( j t j′

−1
2 0 1

2

) (20.3)

As a result, ⟨j ∥ C(t) ∥ j′⟩ explicitly depends on j only as long as l + t + l′ is even.
By definition:

∫
∞

0
(F1F2 +G1G2) ⋅ f(r)dr = Uf (20.4)

and Uk is used for f(r) = rk, such that U0 = 1 if bra and ket are equal. An important
example, in accordance with the WE theorem for k = q = 0, being:

⟨1
2 lj ∥ 1 ∥ 1

2 l
′j′⟩ = δ(j, j′) ⋅ [j]

1
2 → (1

2 lj ∥ 1 ∥ 1
2 lj) = [j]

1
2 (20.5)

20.2 Anti-diagonal

A second, somewhat more complicated example of physical interest is the anti-

diagonal operator V̂ (t) = f(r) (αC(k))(t) with k = t, t ± 1.
With differing conventions and notations, the reduced matrix element is calculated
by a number of authors [Bhalla, 1970, Grant, 1970, Grant, 1974, Armstrong, 1966,
Armstrong, 1968, Feneuille, 1971, Lindgren and Rosén, 1974].
Below, equation (20.1b) and subsequent techniques are applied to find the more
explicit expression (20.10) for the reduced matrix element of this operator:

(1
2 l1j1 ∥ f(r)(αC(k))(t) ∥ 1

2 l2j2) =

i ⟨1
2 l1j1 ∥ (σC(k))(t) ∥ 1

2 l̄2j2⟩∫
∞

0
F1G2 ⋅ f(r)dr − i ⟨1

2 l̄1j1 ∥ (σC(k))(t) ∥ 1
2 l2j2⟩∫

∞

0
G1F2 ⋅ f(r)dr

(20.6)

In turn, ⟨1
2 lj ∥ (σC(k))(t) ∥ 1

2 l
′j′⟩ is found from equations (3.49), (C.55), (C.56) and

(C.57), with ⟨1
2 ∥ σ(1) ∥

1
2
⟩ =

√
6:

⟨1
2 lj ∥ (σ(1)C(k))(t) ∥ 1

2 l
′j′⟩ = ⟨1

2 ∥ σ
(1) ∥ 1

2
⟩ ⋅ ⟨l ∥ C(k) ∥ l′⟩ ⋅ [j, t, j′]

1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

l l′ k
j j′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= δ(k, t) ⋅ (−1)l ⋅ [j, j′]
1
2 ⋅ ( j j′ t

−1
2 −1

2 1
) + (−1)j′−

1
2+t ⋅ [j, j′]

1
2 ⋅ ( j j′ t

−1
2

1
2 0

)

⋅ {δ(k, t − 1) ⋅ [κ + κ′ − t] ⋅ (t(2t − 1))−
1
2 + δ(k, t + 1) ⋅ [κ + κ′ + t + 1] ⋅ ((t + 1)(2t + 3))−

1
2}

(20.7)

The following recursion formula is a direct result of the above:

⟨1
2 lj ∥ (σ(1)C(t+1))(t) ∥ 1

2 l
′j′⟩ = [κ + κ′ − t]

[κ + κ′ + t + 1]
⋅ ( t(2t − 1)

(t + 1)(2t + 3)
)

1
2

⋅ ⟨1
2 lj ∥ (σ(1)C(t−1))(t) ∥ 1

2 l
′j′⟩

(20.8)
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To substitute equation (20.7) into equation (20.6), use is made of κ = −κ and −(−1)l =
(−1)l. The following abbreviation is introduced:

∫
∞

0
(F1G2 ± F2G1) ⋅ f(r)dr = E±

f (20.9)

The two RHS terms of equation (20.6) are redistributed to express ⟨j ∥ f(r) (αC(k))(t) ∥ j′⟩
in terms of these integrals:

a ⋅∫
∞

0
F1G2 ⋅ f(r)dr + b ⋅∫

∞

0
G1F2 ⋅ f(r)dr = 1

2(a + b) ⋅E
+
f + 1

2(a − b) ⋅E
−
f

For the case k = t→ a = b, and only E+
f is retained. E±

k is used for f(r) = rk.
The three options k = t, t ± 1 are listed separately below.

(1
2 lj ∥ f(r)(αC

(t−1))(t) ∥ 1
2 l
′j′) = i [j, j′]

1
2 ⋅ (t(2t − 1))−

1
2

⋅ (−1)j′−
1
2+t ⋅ ( j j′ t

−1
2

1
2 0

) ⋅ [(κ − κ′)E+
f − t ⋅E−

f ] (20.10a)

(1
2 lj ∥ f(r)(αC

(t))(t) ∥ 1
2 l
′j′) = i [j, j′]

1
2 ⋅ (−1)l ⋅ ( j j′ t

−1
2 −1

2 1
) ⋅E+

f (20.10b)

(1
2 lj ∥ f(r)(αC

(t+1))(t) ∥ 1
2 l
′j′) = i [j, j′]

1
2 ⋅ ((t + 1)(2t + 3))−

1
2

⋅ (−1)j′−
1
2+t ⋅ ( j j′ t

−1
2

1
2 0

) ⋅ [(κ − κ′)E+
f + (t + 1)E−

f ] (20.10c)

Examples of frequent interest are found for {1kt} = {101}, {110} and {111}.
The case {1kt} = {101} and f(r) = r0 = 1 yields V̂ (t) = α and turns out to be closely
related to the velocity transition operator or the linear momentum operator:

(1
2 lj ∥ α ∥

1
2 l
′j′) = i [j, j′]

1
2 ⋅ (−1)j′+

1
2 ⋅ ( j j′ 1

−1
2

1
2 0

) ⋅ [(κ − κ′)E+
0 −E−

0 ] (20.11)

For the important case f(r) = rk, it is often imperative to work out the non-
relativistic approximation of the integrals E±

f ≡ E±
k .

Substitution of the Pauli limit Gj → 1
2α (F ′ + κ ⋅ F /r) yields after integration by

parts 1:

E+
k → 1

2α ⋅ (κ1 + κ2 − k) ⋅ ∫
∞

0
F1F2 ⋅ rk−1 dr (20.12a)

E−
k → −1

2α ⋅ (κ1 − κ2 − k) ⋅ ∫
∞

0
F1F2 ⋅ rk−1 dr + α ⋅ ∫

∞

0
F1F

′
2 ⋅ rk dr (20.12b)

1For E+
−2 and l = l′ = 0, the boundary term at r = 0 does not vanish; the non-relativistic limit

becomes: E+
−2 → − 1

2
α ⟨δ(r)/r2⟩ as derived in the below equation (22.23).
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It will be interesting to use equations (20.11), (20.12a) and (20.12b) plus the relation
κ(κ + 1) = l(l + 1) to find the non-relativistic limit of (1

2 l1j1 ∥ α ∥ 1
2 l2j2):

(1
2 lj ∥ α ∥

1
2 l
′j′) ≈ −iα ⋅ [j, j′]

1
2 (−1)j′+

1
2 ⋅ ( j j′ 1

−1
2

1
2 0

) ∫
∞

0
Pnl [

d

dr
− l(l + 1) − l′(l′ + 1)

2r
]Pn′l′ dr

(20.13)

On the other hand, the linear momentum reduced matrix element is,
from equations (3.51b), (7.47) and (C.52), given by:

⟨1
2 lj ∥ p ∥

1
2 l
′j′⟩ = i ⋅ (−1)

1
2+l

′+j ⋅ [j, j′]
1
2 ⋅ {j 1 j′

l′ 1
2 l

} ⋅ ⟨l ∥ C(1) ∥ l′⟩

⋅ ∫
∞

0
Pnl [ d

dr
− l(l + 1) − l′(l′ + 1)

2r
] Pn′l′ dr

= i ⋅ [j, j′]
1
2 (−1)j′+

1
2 ⋅ ( j j′ 1

−1
2

1
2 0

) ∫
∞

0
Pnl [ d

dr
− l(l + 1) − l′(l′ + 1)

2r
] Pn′l′ dr (20.14)

Comparison of equations (20.13) and (20.14) yields the important non-relativistic
limit of the Dirac matrix operator2:

(1
2 lj ∥ α ∥

1
2 l
′j′) → −α ⟨1

2 lj ∥ p ∥
1
2 l
′j′⟩ (20.15)

The substitution αi → −αpi in equation (19.5) yields the orbit-orbit term (5.122).

For the case {1kt} = {111}, the angular part may by means of equation (3.49)
and identity (C.55) due to [Brink and Satchler, 1968], be reduced to:

⟨1
2 lj ∥ (σ(1)C(1))(1) ∥ 1

2 l
′j′⟩ = ⟨1

2 ∥ σ
(1) ∥ 1

2
⟩ ⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅ [j,1, j′]

1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

l l′ 1
j j′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= (−1)l ⋅ [j, j′]
1
2 ⋅ ( j j′ 1

−1
2 −1

2 1
) (20.16)

As before with k = 0, equation (20.16) is a straightforward special case of equation
(20.7) for k = 1.

20.3 Continuity equation

The standard form of the continuity equation reads:

∂ρ

∂t
+∇ ⋅ (ρv) = 0 (20.17)

The continuity equation for the local conservation of the Dirac charge-current
operator jµ = ecψ†γ0γµψ = {cρ, j} is given by:

∂µj
µ = ∂ρ

∂t
+∇ ⋅ j = 0 (20.18)

2The minus sign is the consequence of the now widely adopted sign convention of the small
component Gnj .
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According to (19.6), ψ = (Φ
χ
) is a four-component spinor consisting of a large com-

ponent Φ and a small component χ.
Furthermore, ρ = ψ†ψ = ∣ψ∣2 is the charge density and j = cψ†γ0γiψ = ψ†cαψ the
current density. Apparently, cα may be regarded as a relativistic velocity operator.
After multiplication with α = c−1, it follows:

α ⋅ ∂ (ψ†ψ)
∂t

+∇ ⋅ (ψ†αψ) = 0 (20.19)

If the bra and ket involve different wavefunctions ψi and ψf , the continuity equation
still applies, but now w.r.t. the transition current density:

α ⋅
∂ (ψ†

iψf)
∂t

+∇ ⋅ (ψ†
iαψf) = 0 (20.20)

∂/∂t is a diagonal operator that explicitly factors out the harmonic time dependence
exp(−iEt) of the wavefunctions. Given that ⟨κ1m1∣κ2m2⟩ = ⟨κ1m1∣κ2m2⟩, this
yields the following result:

α ⋅
∂ (ψ†

1ψ2)
∂t

= iα ⋅ (E1 −E2) ⋅
F1F2 +G1G2

r2
= − i

r2
⋅ k (F1F2 +G1G2) ⋅ ⟨κ1m1∣κ2m2⟩

(20.21a)

As ∇ ⋅α is an anti-diagonal operator, one obtains:

∇ ⋅ (ψ†
1αψ2) = ∇ ⋅ (Φ†

1σχ2 + χ†
1σΦ2)

= (σ ⋅ ∇Φ†
1) χ2 + (σ ⋅ ∇χ†

1)Φ2 +Φ†
1 (σ ⋅ ∇χ2) + χ†

1 (σ ⋅ ∇Φ2)

= i

r2
[(G1F2 − F1G2)′ +

κ2 − κ1

r
(F1G2 +G1F2)] ⋅ ⟨κ1m1∣κ2m2⟩

(20.21b)

where equation (19.13b) is applied fourfold to the second line.
Adding the terms 20.21a and 20.21b and dividing by −i/r2 ⋅ ⟨κ1m1∣κ2m2⟩ gives the
continuity equation for the transition current density in terms of the pertinent radial
integrals:

d

dr
(F1G2 −G1F2) +

κ1 − κ2

r
⋅ (F1G2 +G1F2) + k ⋅ (F1F2 +G1G2) = 0 (20.22)

Equation (20.22) can e.g. be employed to translate transition amplitudes in the
Coulomb gauge to the Babushkin gauge and demonstrate their theoretical
equivalence.



Chapter 21

Transformation

Given that, according to equation (5.27):

(p (1
2 lj) ∥ (a†b)(κk)t ∥ q (1

2 l
′j′)) = − [κ, k]

1
2 ⋅ [j, j′, t]

1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l′ k
j j′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(21.1)

and the result corresponding to equation (5.20):

(p ∥ (p†q)(t) ∥ q) = −[t]
1
2 (21.2)

plus the elementary SL→ jj recoupling following equation (2.37), one finds:

(a†b)(κk)t = ∑
j,j′

[j, j′, κ, k]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l′ k
j j′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(p†q)(t) (21.3)

where primed quantum numbers refer to the ket state and κ + k + t is even for
reasons of Hermiticity.
Obviously, combination of two out of the above three equations yields the third.

The operator (a†b)(κk)t may thus be interpreted as a sum over j-dependent creation-
annihilation operators p†/q that operate on the (2j + 1) eigenstates ψ = ∣nljm) of
a (central field) Dirac electron. Neglecting coupling of the small components, it
follows that p† is a tensor operator with ranks (sl)j.

In analogy to its non-relativistic counterpart in equation (5.53), each relativistic
j-dependent one-electron operator may be written in terms of second quantization
as:

F̂ (t) = −[t]−
1
2 (p ∥ F̂ (t) ∥ q) (p†q)(t) = −Ŝ(p, q) (p†q)(t) (21.4)

From equations (5.68) and (5.69), it follows that a every ’complete’ one-particle
operator is given by:

F (κk)t = −[κ, k]−
1
2 ⟨a ∥ F (κk) ∥ b⟩ (a†b)(κk)t = −S(a, b) (a†b)(κk)t (21.5)

240



241

implicitly defining the radial part as:

S(a, b) = [κ, k]−
1
2 ⟨a ∥ F (κk) ∥ b⟩ = ∫

∞

0
a(r)R(r)b(r) dr (21.6)

To find the relativistic expression for S(a, b) as a sum over j-dependent relativistic
radial terms Ŝ(p, q), one multiplies both sides of equation (21.1) with:

−S(a, b)∑
j,j′

[j, j′]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l′ k
j j′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

and applies the orthogonality of 9j-symbols, equation (2.19), yielding

S(a, b) = ∑j,j′ [j, j′, κ, k]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l′ k
j j′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ŝ(p, q) to finally arrive at:

S(a, b) = [t]−
1
2 ∑
j,j′

[j, j′, κ, k]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l′ k
j j′ t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(p ∥ F̂ (t) ∥ q) (21.7)

Comparing equations (21.3) and (21.7), one concludes that both the spin-angular
and the radial part are transformed in the same way in terms of the underlying
j-dependent, relativistic quantities. To include full relativity, however, it suffices to
replace just the radial parts by means of equation (21.7).



Chapter 22

Electromagnetic fields

Consider an atom exposed to an electromagnetic field, described by Maxwell’s
equations B = ∇ × A and E = −∇Φ − ∂A/∂t where Φ and A denote the usual
scalar and vector potential, respectively: Aµ = (Φ,−cA). The Hamiltonian for the
interaction of an electron with the corresponding vector potential A reads in au:

H = −(α)−1∑
i

αi ⋅A(ri) (22.1)

The Zeeman effect is produced by a constant external magnetic field, whereas hy-
perfine structure is produced by the nuclear magnetic point dipole. The expressions
for these effects turn out to be quite similar. To derive relativistic formulae from
equation (21.7), the Hamiltonian is to be converted into tensor operator form first.
The Hamiltonians of both the hyperfine structure and the Zeeman effect are split
into an electronic and a nuclear (or external magnetic) part. According to equation
(21.5), the electronic part is written as:

T
(t)
e = ∑

κk

F (κk)t = − ∑
κk,nl

Sκknl ⋅ (a†a)(κk)t (22.2)

For the magnetic dipole hyperfine structure and the Zeeman effect, t = 1.
For the electric quadrupole hyperfine interaction, described by the quadrupole term
in the expansion of the electrostatic potential, t = 2.

22.1 Hyperfine structure(2)

This is the relativistic sequel of section 3.8. The below derivation of the magnetic
dipole and electric quadrupole interactions is based on their relativistic Hamiltonian
expressions, transformed to second quantized form by equation (21.7) and equation
(20.1b) or (20.1a), respectively.

22.1.1 Magnetic dipole

Using the expression for the potential of a nuclear magnetic point dipole gives:

A(r) = α2 (∇ × µI
r

) = α
2

r3
⋅ (µI × r)
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and µI = (µI/I) ⋅ I one arrives at:

AM1 =
µI
I
⋅ α

2

r3
⋅ (I × r) (22.3)

Again using a ⋅(b×c) = −(a×c) ⋅b with ri = riC(1)i and equation (3.17) for the cross
product, one obtains the magnetic dipole interaction in spherical tensor form, in au:

HD = −i
√

2 ⋅ µI
I
⋅ α ∑

i

⎛
⎜⎜
⎝

(α(1)i C
(1)
i )

(1)

r2
i

⋅ I(1)
⎞
⎟⎟
⎠

(22.4)

In accordance with [Andersson and Jönsson, 2008, Li et al., 2020], the electronic
part is now taken to be:

T (1) = −i
√

2 ⋅ α∑
i

(α(1)i C
(1)
i )

(1)

r2
i

(22.5)

Again, equation (20.1b) is used for this anti-diagonal operator:

(p ∥ T (1) ∥ q) = −i
√

2 ⋅ α ⋅ (1
2 lj ∥ (α(1)C(1))(1) ⋅ r−2 ∥ 1

2 lj
′)

=
√

2 ⋅ α(⟨1
2 lj ∥ (σ(1)C(1))(1) ∥ 1

2 l̄j
′⟩∫

∞

0
r−2FjGj′ dr − ⟨1

2 l̄j ∥ (σ(1)C(1))(1) ∥ 1
2 lj

′⟩∫
∞

0
r−2GjFj′ dr)

(22.6)

The (anti-diagonal) radial integrals Pjj′ are defined by:

Pjj′ = ∫
∞

0

FnljGnlj′ +Gnlj Fnlj′

r2
dr = E+

−2 (22.7)

Finally, equation (20.16) with (−1)l̄ = −(−1)l is used to find:

(p ∥ T (1) ∥ q) =
√

2 ⋅ α ⋅ [j, j′]
1
2 ⋅ (−1)l ⋅ ( j j′ 1

−1
2 −1

2 1
) ⋅ Pjj′ (22.8)

In second quantized form, the electronic magnetic dipole operator is given by:

T (1) = −∑
κk

Sκknl (a†a)(κk)1 with κ + k odd (22.9)

After application of equation (21.7), one arrives for the magnetic dipole case at:

Sκknl = 1
3

√
6 ⋅ α ∑

jj′
[j, j′] ⋅ [κ, k]

1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l k
j j′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l ⋅ ( j j′ 1

−1
2 −1

2 1
) ⋅ Pjj′ (22.10)

Using equations (5.66) to put HD into second quantized form, the magnetic dipole
hyperfine Hamiltonian is effectively written as:

HD = µI
I

(T (1) ⋅ I(1)) = −µI
I
∑
κk

Sκknl (a†a)(κk)1 ⋅ I(1)

= ∑
i

(a01
nl l
(1)
i − (10)

1
2 ⋅ a12

nl (siC
(2)
i )

(1)
+ a10

nl s
(1)
i ) ⋅ I (22.11)

with µI in nuclear magnetons and aκknl in cm−1, the parameters are defined in equation

(3.87): aκknl = 3.1825571 × 10−3 ⋅ µI/I ⋅ ⟨r−3⟩κknl .
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22.1.2 Electric quadrupole

The electronic part of the electric quadrupole interaction is the diagonal operator:

T (2) = −∑
i

C
(2)
i r−3

i (22.12)

A direct application of equations (20.2) and (20.3) now yields:

(p ∥ Û (t) ∥ q) = (1
2 lj ∥ −C

(2) ⋅ r−3 ∥ 1
2 lj

′)

= (−1)j+
1
2 ⋅ [j, j′]

1
2 ⋅ ( j 2 j′

−1
2 0 1

2

) ⋅ Tjj′ (22.13)

Here, the (diagonal) radial integrals Tjj′ are defined by:

Tjj′ = ∫
∞

0

Fnlj Fnlj′ +GnljGnlj′

r3
dr = U−3 (22.14)

In second quantized form, the electric quadrupole operator is given by:

T (2) = −∑
κk

Sκknl (a†a)(κk)2 with κ + k even (22.15)

In combination with equation (21.7), this gives for the electric quadrupole case:

Sκknl =
1√
5
⋅ ∑
jj′

[j, j′] ⋅ [κ, k]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l k
j j′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)j′−

1
2 ⋅ ( j j′ 2

−1
2

1
2 0

) ⋅ Tjj′ (22.16)

22.1.3 S integrals

The quantities Sκknl may be identified from equations (22.9) and (22.15), and com-
pared to equation (5.66) for the dipole part and equation (5.58) for the quadrupole

part, to extract the required relativistic expressions for ⟨r−3⟩κknl from the proportion-
ality factors.
Below, the contributions of the six parameters to the radial electronic part are
written using the explicit expressions from appendices C.1, C.2 and C.3.
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As usual, the signs + and − refer to the cases j = l + 1
2 and j = l − 1

2 , respectively.

S01
nl = −

2

3

√
3 ⋅ [2l(l + 1)(2l + 1)]

1
2 ⋅ α

(2l + 1)2
⋅ [(l + 1)P++ − P+− − lP−−]

= α2 ⋅ [2l(l + 1)(2l + 1)
3

]
1
2

⋅ ⟨r−3⟩01

nl
(22.17a)

S12
nl =

2

3
⋅ [ l(l + 1)(2l + 1)

(2l − 1)(2l + 3)
]

1
2

⋅ α

(2l + 1)2
⋅ [2(l + 1)(2l − 1)P++ − (2l − 1)(2l + 3)P+− + 2l(2l + 3)P−−]

= α2 ⋅ [ l(l + 1)(2l + 1)
(2l − 1)(2l + 3)

]
1
2

⋅ ⟨r−3⟩12

nl
(22.17b)

S10
nl = −

2

3
⋅ [2(2l + 1)]

1
2 ⋅ α

(2l + 1)2
⋅ [(l + 1)2P++ + 2l(l + 1)P+− + l2P−−]

= α2 ⋅ [2l + 1

2
]

1
2
⋅ ⟨r−3⟩10

nl
(22.17c)

S02
nl = [2 l(l + 1)(2l + 1)

5(2l − 1)(2l + 3)
]

1
2

⋅ 1

(2l + 1)2
⋅ [(l + 2)(2l − 1)T++ + 6T+− + (l − 1)(2l + 3)T−−]

= −
√

2

5
⋅ ⟨l ∥ C(2) ∥ l⟩ ⋅ ⟨r−3⟩02

nl
= [2 l(l + 1)(2l + 1)

5(2l − 1)(2l + 3)
]

1
2

⋅ ⟨r−3⟩02

nl
(22.17d)

S11
nl =

2

5
⋅ [l(l + 1)(2l + 1)]

1
2 ⋅ 1

(2l + 1)2
⋅ [(l + 2)T++ − 3T+− − (l − 1)T−−]

= 1√
30

⋅ ⟨r−3⟩11

nl
(22.17e)

S13
nl = −

1

5
[6(l − 1)l(l + 1)(l + 2)(2l + 1)

(2l − 1)(2l + 3)
]

1
2

⋅ 1

(2l + 1)2
⋅ [(2l − 1)T++ + 4T+− − (2l + 3)T−−]

= 1√
70

⋅ ⟨r−3⟩13

nl
(22.17f)

The hfs operators are now fully defined by equations (21.5) and (22.17), but the

partitioning of S11
nl and S13

nl into a prefactor and ⟨r−3⟩κknl is somewhat arbitrary,
as they both vanish in the non-relativistic limit. Here, we follow the convention of
[Lindgren and Rosén, 1974], later adopted by [Büttgenbach, 1982], to multiply these

operators, next to the existing factor [κ, k]−
1
2 due to relation 5.57 between the U

(κk)t
i

and the w
(κk)t
i operators, with an additional factor of (3/10)

1
2 . The partitioning of

[Feneuille and Armstrong, 1973] seems in fact more elegant, but has not commonly
been used.

22.1.4 The hfs parameter ⟨r−3⟩
Based on a formalism of equivalent operators rather than on the more transparent
framework of second quantization, [Sandars and Beck, 1965] derived explicit expres-
sions for the effective radial parameters aκknl and bκknl appearing in equations (3.87)
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and (3.102), in terms of relativistic expressions for ⟨r−3⟩κknl .
In 1982, the work of Sandars and Beck was summarized by [Büttgenbach, 1982].
Although unfortunately not explicitly formulated, both Sandars and Beck and Büttgenbach
defined Pjj′ (or Gnlj) with an opposite sign. Therefore, all their magnetic dipole ex-
pressions differ from ours by an overall minus sign; other than that, their results
agree with the results of section 22.1.3, derived within the overarching structure of
second quantization.
In our notation, the Fjj′ integrals of Sandars and Beck are given as:

Fjj′ =
2

α(κ + κ′ + 2)
⋅ Pjj′ (22.18)

The expressions for ⟨r−3⟩κknl are readily recognizable in the above results directly
derived by second quantization.

for l ≠ 0 ∶

⟨r−3⟩01

nl
= − 2

α
⋅ 1

(2l + 1)2
⋅ [(l + 1)P++ − P+− − lP−−] (22.19a)

⟨r−3⟩12

nl
= 1

3
⋅ 2

α
⋅ 1

(2l + 1)2
[2(l + 1)(2l − 1)P++ − (2l − 1)(2l + 3)P+− + 2l(2l + 3)P−−]

(22.19b)

⟨r−3⟩10

nl
= 2

3
⋅ − 2

α
⋅ 1

(2l + 1)2
[(l + 1)2P++ + 2l(l + 1)P+− + l2P−−] (22.19c)

⟨r−3⟩02

nl
= 1

(2l + 1)2
[(l + 2)(2l − 1)T++ + 6T+− + (2l + 3)(l − 1)T−−] (22.19d)

⟨r−3⟩11

nl
= 2

(2l + 1)
[6 l(l + 1)

5(2l + 1)
]

1
2

[(l + 2)T++ − 3T+− − (l − 1)T−−] (22.19e)

⟨r−3⟩13

nl
= − 2

(2l + 1)
[ 21(l + 2)(l − 1)l(l + 1)

5(2l + 3)(2l + 1)(2l − 1)
]

1
2

[(2l − 1)T++ + 4T+− − (2l + 3)T−−]

for l = 0 ∶ (22.19f)

⟨r−3⟩01

ns
= ⟨r−3⟩12

ns
= 0 (22.19g)

⟨r−3⟩10

ns
= − 2

α
⋅ 2

3
P++ = −

8

3α ∫
FnsGns

r2
dr → N-R ∶ 2

3
⟨δ(r)
r2

⟩
ns

(22.19h)

Likewise, the off-diagonal contact term appearing in spin polarization, is given by:

⟨n1s ∣(r−3)10∣ n2s⟩ = −
4

3α ∫
∞

0

F1G2 + F2G1

r2
dr → N-R ∶ 2

3
⟨n1s ∣δ(r)

r2
∣ n2s⟩ (22.20)

Non-relativistic limits

The non-relativistic limit of the magnetic dipole terms is either found from equation
(20.12a) or directly by inserting the P -integrals reduced to their Pauli limit, using
Gj → 1

2α (F ′ + κ ⋅ F /r). Considering the function f = F /r, it follows:

1
2

[f 2]∞
0
= ∫

∞

0
f f ′ dr with f ′ = (F

′

r
− F
r2

) and therefore:

1
2 [F

2

r2
]
∞

0

= ∫
∞

0

F

r
(F

′

r
− F
r2

) dr = ∫
∞

0
(F F

′

r2
− F

2

r3
) dr = 1

2 (0 − lim
r→0

F (r)2

r2
) = −1

2 ⟨δ(r)
r2

⟩ .
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For l ≠ 0, ⟨δ(r)/r2⟩ = 0 and therefore ∫
∞

0 FF
′ ⋅ r−2 dr = ∫

∞
0 F

2 ⋅ r−3 dr = ⟨r−3⟩:

P++ → 1
2α∫

∞

0

2 ⋅ F (F ′ − (l + 1) ⋅ F /r)
r2

dr = −α ⋅ l ⋅ ⟨r−3⟩ (22.21a)

P+− → 1
2α∫

∞

0

F (2 ⋅ F ′ − F /r)
r2

dr = 1
2α ⋅ ⟨r

−3⟩ (22.21b)

P−− → 1
2α∫

∞

0

2 ⋅ F (F ′ + l ⋅ F /r)
r2

dr = α ⋅ (l + 1) ⋅ ⟨r−3⟩ (22.21c)

According to equation (20.12a) the expressions (22.21) for l ≠ 0 all correspond to:

Pjj′ = E+
−2 → 1

2α ⋅ (κ + κ
′ + 2) ⋅ ⟨r−3⟩ (22.22)

From equations (22.18) and (22.22), it is now readily verified that all Fjj′ integrals
used by [Sandars and Beck, 1965] indeed tend to ⟨r−3⟩ in the non-relativistic limit.

Substitution into the (κk) = (01) orbital term (22.19a) gives: ⟨r−3⟩01
nl → ⟨r−3⟩ .

The similar substitution into the (κk) = (12) spin-dipole term (22.19b) yields again:
⟨r−3⟩12

nl → ⟨r−3⟩.
For the contact term (κk) = (10), the result is: −4

3(∫
∞

0 FF
′/r2 dr − ∫

∞
0 F

2/r3 dr),
which becomes zero for l ≠ 0.

For l = 0, it can directly be seen from equations (22.17) that both the orbital and
the spin-dipole term vanish .
The non-relativistic reduction of the contact term in the last step in equation
(22.19h), may be derived using G+ = Gns = 1

2α (F ′ − F /r):

⟨r−3⟩10

ns
≈ −4

3 ∫
∞

0

Fns (F ′
ns − Fns/r)
r2

dr = −4

3 ∫
∞

0
(F F

′

r2
− F

2

r3
) dr = 2

3
⟨δ(r)
r2

⟩ (22.23)

The non-relativistic limit of the off-diagonal contact term (22.20) is found in a similar
way:

⟨n1s ∣(r−3)10∣ n2s⟩ ≈
2

3 ∫
∞

0
(2F1F2

r3
− (F1F2)′

r2
) dr = −2

3
[F1F2

r2
]
∞

0

= 2

3
⟨n1s ∣δ(r)

r2
∣ n2s⟩

(22.24)

For the electric quadrupole terms, non-relativistic limits are obtained from:
T++ = T+− = T−− = ⟨r−3⟩.
Using this, it is straightforward to find from equation (22.19d): ⟨r−3⟩02

nl → ⟨r−3⟩.
In the remaining two parameters, the non-relativistic contributions of Tjj′ cancel:

⟨r−3⟩11
nl → 0 and ⟨r−3⟩13

nl → 0.

In summary, for the non-relativistic case one finds for l ≠ 0:

⟨r−3⟩01

nl
= ⟨r−3⟩12

nl
= ⟨r−3⟩02

nl
= ⟨r−3⟩

nl
and

⟨r−3⟩10

nl
= ⟨r−3⟩11

nl
= ⟨r−3⟩13

nl
= 0. (22.25)



248 CHAPTER 22. ELECTROMAGNETIC FIELDS

22.1.5 Extended nucleus

For contact interactions that take place inside the nucleus, the point nucleus model
may easily be oversimplified.

Nuclear size effects are determined by the RMS nuclear radius ⟨r2⟩
1
2 , where:

⟨r2⟩ = 1

Z ∫
ρ(r) ⋅ r2 d3r (22.26)

Instead of the point nuclear model, extended nuclear descriptions can be used, the
most important being the homogeneous and the two-parameter Fermi charge distri-
bution:

ρ(r) = ρ0

1 + e(r−c)/a
= ρ0

1 + exp [4 ln 3 ⋅ ( r−ct )]
(22.27)

In the Fermi distribution model, t = a⋅4 ln 3 is the surface thickness; typically, t ≈ 2.30
fm for all nuclei with A > 9. In addition, c is the half-density radius: the distance
to the r−value at which the nuclear charge density is one-half of its maximum.

c2 = 5

3
⋅ ⟨r2⟩ − 7

3
⋅ a2π2 → ⟨r2⟩ = 3

5
⋅ c2 + 7

5
a2π2 (22.28)

ρ0 =
3

4πc3
(1 + a

2π2

c2
)
−1

(22.29)

For nuclei with A > 9, the following empirical (in the unit fm) is commonly used:

⟨r2⟩
1
2 = 0.836 ⋅M

1
3

nucl + 0.570 where Mnucl = A −Z ⋅me. (22.30)

The homogeneous case is retrieved for t = a = 0→ R = c.
Then, ρ0 represents the homogeneous charge density of the nucleus:

ρ0 =
Z

4
3πR

3
(22.31)

Inside the nucleus, the potential Vout(r) = −Z/r will as a result be replaced by:

Vin(r) =
Z

2R
( r

2

R2
− 3) (22.32)
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Thus, in the homogeneous model one obtains ⟨r2⟩ = 3R2/5→ c =
√

5/3 ⋅ ⟨r2⟩
1
2 .

In table 22.1, the dominant radial hfs parameter a10
6s calculated from equations

(22.19h) and (3.87) is much closer to experiment with an extended nucleus:

Table 22.1: The hfs parameter a106s in cm−1 for Bi VI and Tl IV compared with experiment.

MCDFa MCDFb Expt

Bi VI 3.13 2.75 2.87(3)
Pb V 3.29 2.92 -
Tl IV 7.17 6.40 6.43(5)
a MCDF, point nucleus model
b MCDF, two-parameter Fermi nuclear charge distribution

22.2 Zeeman effect(2)

For a constant magnetic field B0, one may choose the vector potential:
A(r) = 1

2 (B0 × r). This choice may simply be verified for B0 = B0 k with the
Maxwell equation B = ∇ ×A:

A(r) = 1
2

RRRRRRRRRRRRRR

i j k
0 0 B0

x y x

RRRRRRRRRRRRRR
= −(1

2yB0) i + (1
2xB0) j→

B = ∇ ×A =
RRRRRRRRRRRRRR

i j k
∂/∂x ∂/∂y ∂/∂z
−1

2yB0
1
2xB0 0

RRRRRRRRRRRRRR
= (1

2B0 + 1
2B0) k = B0 k

This leads to the following relativistic Hamiltonian for the Zeeman effect:

HZ = −1
2(α)

−1∑
i

αi ⋅ (B0 × ri) = −1
2 ⋅
i
√

2

α
⋅ ∑
i

(ri (α(1)i C
(1)
i )

(1)
⋅B
(1)
0 ) (22.33)

where in the last step, use is made from a ⋅ (b × c) = −(a × c) ⋅b with r⃗i = riC(1)i and
equation (3.17) for the cross product and HZ , like HD in equation (22.4), is given
in au.
Again in accordance with [Andersson and Jönsson, 2008, Li et al., 2020], the (anti-
diagonal) electronic part is defined as:

(p ∥ N (1) ∥ q) = −1
2 ⋅
i
√

2

α
⋅ (1

2 lj ∥ r (α
(1)C(1))(1) ∥ 1

2 lj
′) (22.34)

The radial integrals that arise are defined as:

Djj′ = 1
2 ∫

∞

0
r (FnljGnlj′ +Gnlj Fnlj′) dr = 1

2 ⋅E
+
1 (22.35)
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Equation (20.1b) gives:

(1
2 lj ∥ r (α

(1)C(1))(1) ∥ 1
2 lj

′)

= i ⟨1
2 lj ∥ (σ(1)C(1))(1) ∥ 1

2 l̄j
′⟩∫

∞

0
rFjGj′ dr − i ⟨1

2 l̄j ∥ (σ(1)C(1))(1) ∥ 1
2 lj

′⟩∫
∞

0
rGjFj′ dr

(22.36)

Equation (20.16) with (−1)l̄ = −(−1)l is used to find:

(p ∥ N (1) ∥ q) =
√

2

α
⋅ [j, j′]

1
2 ⋅ (−1)l ⋅ ( j j′ 1

−1
2 −1

2 1
) ⋅Djj′ (22.37)

Radial factors Sκk associated with a relativistic tensor operator F (κk)t are defined
by equation (21.5):

F (κk)t = −Sκk (a†b)(κk)t

After application of equation (21.7), one arrives at:

SZ,κknl =
√

6

3α
⋅ ∑
jj′

[j, j′] ⋅ [κ, k]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l k
j j′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l ⋅ ( j j′ 1

−1
2 −1

2 1
) ⋅Djj′ (22.38)

Here, the three allowed values are κk = 01,10 and 12. As the non-relativistic atomic
magnetic moment is given by µ⃗ = −µBM (1) = −1

2 ⋅ (L(01)1 + gsS(10)1),
it is immediately clear that the spin-dipole term κk = 12 is purely relativistic.
Obviously, equation (22.38) bears a striking resemblance to equation (22.10), and
the three radial factors may be written accordingly:

S01
nl = −

2

3α

√
3 ⋅ [2l(l + 1)(2l + 1)]

1
2 ⋅ 1

(2l + 1)2
⋅ [(l + 1)D++ −D+− − lD−−]

= [ l(l + 1)(2l + 1)
6

]
1
2

⋅ a01 (22.39a)

S10
nl = −

2

3α
⋅ [2(2l + 1)]

1
2 ⋅ 1

(2l + 1)2
⋅ [(l + 1)2D++ + 2l(l + 1)D+− + l2D−−]

= [2l + 1

2
]

1
2
⋅ a10 (22.39b)

S12
nl =

2

3α
⋅ [ l(l + 1)(2l + 1)

(2l − 1)(2l + 3)
]

1
2

⋅ 1

(2l + 1)2
⋅ [2(l + 1)(2l − 1)D++ − (2l − 1)(2l + 3)D+− + 2l(2l + 3)D−−]

= [ l(l + 1)(2l + 1)
(2l − 1)(2l + 3)

]
1
2

⋅ a12 (22.39c)

Equations (22.17) transform into (22.39) by the substitution α2 ⟨r−3⟩κknl ⋅ Pjj′ →
1
2a

κk ⋅Djj′ , bearing in mind that the Zeeman operators for κk = (10) and (12) carry
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an additional factor of two.
Summarizing, the relativistic expression in tensor operator form is written:

HZ = B0 ⋅∑
κ,k

F (κk)1 = −B0 ⋅∑
κ,k

Sκknl (a†a)(κk)1

= −B0 ⋅ {S01
nl (a†a)(01)1 + S10

nl (a†a)(10)1 + S12
nl (a†a)(12)1}(22.40)

HZ = −µ⃗ ⋅ B⃗0 = B0 ⋅
1
2M

(1) may be rewritten to facilitate comparison with its non-
relativistic counterpart:

HZ = B0 ⋅
1
2 (a01L(01)1 + [2a10 + (gs − 2)]S(10)1 − 2(10)

1
2a12∑

i

(sC(2))(1)
i

) (22.41)

where the aκk coefficients are related to the Sκknl factors through equations (5.66):

a01 = − 4

α
⋅ 1

(2l + 1)2
⋅ [(l + 1)D++ −D+− − lD−−] (22.42a)

a10 = − 4

3α
⋅ 1

(2l + 1)2
⋅ [(l + 1)2D++ + 2l(l + 1)D+− + l2D−−] (22.42b)

a12 = 2

3α
⋅ 1

(2l + 1)2
⋅ [2(l + 1)(2l − 1)D++ − (2l − 1)(2l + 3)D+− + 2l(2l + 3)D−−]

(22.42c)

The Landé g-factor is defined as: gJ = [J(J + 1)(2J + 1)]−
1
2 ⋅ ⟨αJ ∥M (1) ∥ αJ⟩.

To find a relativistic expression for the g-factor, it suffices to replace the
non-relativistic form M

(1)
NR = (L(01)1 + gs ⋅ S(10)1) with its relativistic equivalent:

M
(1)
R = (a01L(01)1 + [2a10 + (gs − 2)]S(10)1 − 2(10)

1
2a12∑i (sC(2))

(1)
i ).

22.2.1 Non-relativistic limit

The non-relativistic limit of the Zeeman terms is found from equation (20.12a) with
k = 1:

Djj′ = 1
4α ⋅ (κ + κ

′ − 1) (22.43)

This leads to the radially independent expressions:

D++ = 1
4α∫

∞

0
2 ⋅ r [F (F ′ − (l + 1) ⋅ F /r)]dr = −1

4α ⋅ (2l + 3) (22.44a)

D+− = 1
4α∫

∞

0
r [F (2 ⋅ F ′ − F /r)] dr = −1

2α (22.44b)

D−− = 1
4α∫

∞

0
2 ⋅ r [F (F ′ + l ⋅ F /r)] dr = 1

4α ⋅ (2l − 1) (22.44c)

Inserting the above non-relativistic expressions into equations (22.39) and (22.42)
yields:

S01
nl = [ l(l + 1)(2l + 1)

6
]

1
2

→ a01 = 1 (22.45a)

S10
nl = [2l + 1

2
]

1
2

→ a10 = 1 (22.45b)

S12
nl = 0 → a12 = 0 (22.45c)
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These results may have also directly been retrieved by comparing equation (22.40)
with the second quantized form of the non-relativistic expression for HZ using equa-
tions (5.66) and dropping the QED1 correction 1

2(gs − 2)σ(1) = (gs − 2)S(1) for the
moment so that gs → 2:

HZ = −µ⃗ ⋅ B⃗0 = B0 ⋅
1
2M

(1)

= −B0 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ l(l + 1)(2l + 1)

6
]

1
2
(a†a)(01)1 + [2l + 1

2
]

1
2
(a†a)(10)1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(22.46)

To compare all of the above with [Armstrong and Feneuille, 1974], one should be
aware that they define both κ and Gnlj with the opposite sign; they use Gaussian
CGS units in which the Bohr magneton µ0 corresponds µB/c = 1

2α in atomic units.

1The operator 1
2
(gs − 2)(σ 0

0 −σ) in question is sometimes called Schwinger’s QED correction.



Chapter 23

Transition probabilities(2)

The transition operator T for the transition between two electron states is once again
given by the interaction of the electron in question and the field of free photons given
by the scalar potential Φ and the vector potential A:

T = [−(α)−1∑
i

αi ⋅A(ri) +Φ(ri)] ⋅ exp (−iωt) (23.1)

Recall that Aµ = (Φ,−cA), satisfying ◻Aµ = [(∂/∂ct)2 −∇2]Aµ = 0.
In the following, the harmonic time dependence is factored out and only spatial
components are considered. According to equation (8.22), the vector potential for a
photon (ω,k) with a polarization vector e (equations (3.10)) is given in the Coulomb
(transverse) gauge by the plane wave description:

A(r, ω) = e ⋅ exp(i k ⋅ r) (23.2)

while the scalar potential Φ(r, ω) vanishes. Thereby:

T = −(α)−1∑
i

(αi ⋅ e) exp(i ki ⋅ ri) (23.3)

Next, the vector potential A may be expanded in terms of Vector Spherical Har-
monics (VSH, equation (3.8)), separating radial and angular dependence.
First, the plane wave expansion is used:

exp(i k ⋅ r) = ∑
λ

iλ ⋅ [4π(2λ + 1)]
1
2 ⋅ jλ(kr) ⋅ Yλ0

= ∑
λ

iλ ⋅ [λ] ⋅ jλ(kr) ⋅C(λ)0 (23.4)

The radial transition operator may therefore be expressed in terms of spherical
Bessel functions of the first kind jλ(kr) = jλ(ωr/c) = jλ(αωr).
They are related to the ordinary Bessel functions by: jλ(kr) =

√
π/2kr ⋅ J

λ+1
2
(kr).

They satisfy the recurrence relations:

( d

dr
+ λ + 1

r
) jλ(kr) = k ⋅ jλ−1(kr) (23.5a)

(− d

dr
+ λ
r
) jλ(kr) = k ⋅ jλ+1(kr) (23.5b)
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It follows directly from the above:

jλ−1(kr) + jλ+1(kr) = 2λ + 1

kr
⋅ jλ(kr) (23.6a)

λjλ−1(kr) − (λ + 1)jλ+1(kr) = 2λ + 1

k
⋅ d jλ(kr)

dr
(23.6b)

In the long wavelength approximation kr ≪ 1, they reduce to the below first term
of the Taylor expansion:

jλ(kr) ≈
(kr)λ

(2λ + 1)!!
→ j1(kr) ≈

kr

3
and j2(kr) ≈

(kr)2

15
(23.7)

Multiplication with e
(1)
q and use of equations (3.9) and (3.8) now yields the required

expansion of a plane wave in terms of VSH:

e
(1)
q exp(i k ⋅ r) = ∑

λ

iλ ⋅ [4π(2λ + 1)]
1
2 ⋅ jλ(kr) ⋅ Yλ0 ⋅ e(1)q

= ∑
K,λ

iλ ⋅ [4π(2λ + 1)]
1
2 ⋅ jλ(kr) ⋅ (λ0 1q∣Kq)YKλq (23.8)

Here also, [Brink and Satchler, 1968, Grant, 1970] and [Feneuille, 1971] put equa-

tion (3.9) to use, with the pertinent 3j−symbols (λ 1 K
0 q −q) in appendix C.4:

α
(1)
q C

(λ)
0 = ∑

K

(1q λ0∣Kq) ⋅ (α(1)C(λ))(K)
q

= ∑
K

(−1)K+q ⋅ [K]
1
2 ⋅ (λ 1 K

0 q −q) ⋅ (α(1)C(λ))(K)
q

(23.9)

23.1 Vector multipole fields

However, the required result can be found in a more direct way by application of
the three vector field operators ∇, (∇×L) and L to the below spherical tensor form
of the scalar potential field [Edmonds, 1957]:

ΦLM = iL ⋅ [L] ⋅ jL(kr) ⋅C(L)M (23.10)

This operation yields three mutually orthogonal multipole fields directly associated
with the longitudinal, electric and magnetic vector field, respectively:
Al
LM ,A

e
LM and Am

LM . Both ΦLM and the three vector potentials Ak satisfy the
Helmholtz wave equation with wave number k:

∇2Φk + k2Φk = 0

∇2Ak + k2Ak= 0 (23.11)

With the same normalization as ΦLM , one obtains 1:

cAl
LM = (ik)−1

∇ΦLM (23.12a)

cAe
LM = [k

√
L(L + 1]

−1
(∇ ×L)ΦLM (23.12b)

cAm
LM = [

√
L(L + 1]

−1
LΦLM (23.12c)

1The vector potentials cA rather than A are used here for agreement with [Grant, 2007].
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From equation (23.11), it follows that they are interrelated as:

Ae
LM = k−1 (∇ ×Am

LM) (23.13a)

Am
LM = k−1 (∇ ×Ae

LM) (23.13b)

The properties of (V)SH, listed e.g. in equations 5.9.14-23 of [Edmonds, 1957], are
now utilized to find the effect of the three operators ∇, (∇×L) and L on jL(kr)YLM :

∇ jL(kr)YLM = k√
2L + 1

[
√
L ⋅ jL−1(kr)YLL−1M +

√
L + 1 ⋅ jL+1(kr)YLL+1M]

(23.14a)

(∇ ×L) jL(kr)YLM = ik

√
L(L + 1)
2L + 1

[
√
L + 1 ⋅ jL−1(kr)YLL−1M −

√
L ⋅ jL+1(kr)YLL+1M]

(23.14b)

L jL(kr)YLM = [L(L + 1)]
1
2 ⋅ jL(kr)YLLM (23.14c)

Below, the VSH below are written in a slightly adapted version [Grant, 1974]:

(e(1)C(k))(L)
M

= (−1)1+k−L ⋅ ( 4π

2k + 1
)

1
2
⋅ (Y (k)e(1))(L)

M
= (−1)1+k−L ⋅ ( 4π

2k + 1
)

1
2
⋅YLkM

(23.15)

Alternatively, [Bhalla, 1970] uses TML,k = (−1)1+k−L⋅YLkM and [Lindgren and Rosén, 1974]

CLk
M = (4π/2k + 1)

1
2 ⋅YLkM = (C(k)e(1))(L)M .

Combining equations 23.12 and 23.14, the vector multipole fields are finally 2:

cAl
LM = iL−1[L(2L − 1)]

1
2 jL−1(kr) (e(1)C(L−1))(L)

M

−iL+1[(L + 1)(2L + 3)]
1
2 jL+1(kr) (e(1)C(L+1))(L)

M
(23.16a)

cAe
LM = −iL−1[(L + 1)(2L − 1)]

1
2 jL−1(kr) (e(1)C(L−1))(L)

M

−iL+1[L(2L + 3)]
1
2 jL+1(kr) (e(1)C(L+1))(L)

M
(23.16b)

cAm
LM = −iL(2L + 1)jL(kr) (e(1)C(L))

(L)
M

(23.16c)

Al
LM and Ae

LM have parity (−1)L+1, while ΦLM and Am
LM have parity (−1)L.

Ae
LM and Am

LM are transverse as ∇ ⋅Ae
LM = ∇ ⋅Am

LM = 0, which can directly be seen
from equations (23.12).
Similarly, Al

LM turns out to be longitudinal: ∇ ⋅ cAl
LM = ik ⋅ΦLM and ∇×Al

LM = 0.
As a result, both Al

LM and ΦLM do not contribute in the Coulomb gauge ∇ ⋅A = 0.
In the Coulomb gauge, with the gauge parameter GL = 0 [Grant, 1974], the
expansion of a plane wave traveling in the z−direction becomes [Brink and Satchler, 1968],
equation (4.47):

e
(1)
q exp(ikz) = − 1√

2
∑
L

(qAm
Lq +Ae

Lq) (23.17)

2Expressions 23.16 all agree with [Grant, 1974, Grant, 2007] except for two misprints in the
longitudinal potential in the last reference.
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However, the potential Aµ = (Φ,−cA) is not uniquely defined, as gauge transforma-
tions Aµ → Aµ + ∂µΛ, with ◻Λ = 0, leave the Maxwell equations unchanged.
In terms of spherical tensors: ΛL = GL ⋅ΦLM exp (−iωt).
The potentials in any gauge then become:

ΦLM → ΦLM + ∂ΛL

∂t
= (1 − ikGL)ΦLM

Ae
LM →Ae

LM −∇ΛL = Ae
LM +GLAl

LM (23.18)

23.2 Multipole radiation matrix elements

The multipole expansion of the transition operator T = Φ − cα ⋅A is written as:

T = ∑
L

T (L)l + T (L)e + T (L)m = ∑
L

(ΦLM −α ⋅ cAl
LM) −α ⋅ (cAe

LM + cAm
LM) (23.19)

Electric multipoles can be found in any gauge of choice by adding GL ⋅T (L)l to T (L)e.
Judging from equations (23.16), T may always be reduced to operators of the type

jλ(kr) (α ⋅ (e(1)C(λ))(L)M ) = jλ(kr) (αC(λ))
(L)
M with λ = L,L ± 1. The corresponding

matrix elements may therefore directly be evaluated with equations (20.10).
The occurring radial integrals are defined as in [Bhalla, 1970]:

I±λ(k) = ∫
∞

0
(F1G2 ±G1F2) jλ(kr)dr ≈

kλ

(2λ + 1)!!
⋅E±

λ (23.20a)

and for the matrix elements involving the scalar potential to be included in T (L)l:

Jλ(k) = ∫
∞

0
(F1F2 +G1G2) jλ(kr)dr ≈

kλ

(2λ + 1)!!
⋅Uλ (23.20b)

Combining equations (20.2) and (23.10), one obtains:

(1
2 lj ∥ ΦL ∥ 1

2 l
′j′) = −iL[j, j′]

1
2 (−1)j′−

1
2+L( j j′ L

−1
2

1
2 0

) [L] ⋅ JL(k) (23.21)

Inserting (23.16) into (23.19) and application of equation (20.10) yields the following
reduced transition operator matrix elements:

(1
2 lj ∥ T

(L)l ∥ 1
2 l
′j′) = −iL[j, j′]

1
2 (−1)j′−

1
2+L( j j′ L

−1
2

1
2 0

)

[(κ − κ′)(I+L−1 + I+L+1) −LI−L−1 + (L + 1)I−L+1 + (2L + 1)JL] (23.22a)

(1
2 lj ∥ T

(L)e
C ∥ 1

2 l
′j′) = −iL[j, j′]

1
2 (−1)j′−

1
2+L( j j′ L

−1
2

1
2 0

)

[−(L + 1

L
)

1
2
[(κ − κ′)I+L−1 −LI−L−1] + ( L

L + 1
)

1
2
[(κ − κ′)I+L+1 + (L + 1)I−L+1]] (23.22b)
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(1
2 lj ∥ T

(L)m ∥ 1
2 l
′j′) = iL+1 ⋅ [L] ⋅ [j, j′]

1
2 (−1)l( j j′ L

−1
2 −1

2 1
) ⋅ I+L

= −iL+1 ⋅ 2L + 1√
L(L + 1)

⋅ [j, j′]
1
2 (−1)j′−

1
2+L( j j′ L

−1
2

1
2 0

) (κ + κ′) ⋅ I+L (23.22c)

where in the very last line, equation (C.9a) has been used to comply with Grant’s

radial factor M
(L)
jj′ [Grant, 2007] in all three cases 3:

(1
2 lj ∥ T

(L) ∥ 1
2 l
′j′) = [j, j′]

1
2 (−1)j′−

1
2+L( j j′ L

−1
2

1
2 0

) ⋅M (L)
jj′ (23.23)

For reasons of parity, l + l′ + L is even for electric multipole radiation and odd for
magnetic multipole radiation.
One is now in the position to apply equation (21.7) and find the radial factors S(L)

associated with relativistic tensor operators T (κk)L = −S(L) (a†b)(κk)L:

S(L) = [L]−
1
2 ∑
jj′

[j, j′, κ, k]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ

l l′ k
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(1

2 lj ∥ T
(L) ∥ 1

2 l
′j′) (23.24)

The full matrix element of the transition operator is written (1
2 ljm ∣T (L)M ∣ 1

2 l
′j′m′).

Fermi’s golden rule then gives:

g2 ⋅A21 = ∑
m1m2

2k ⋅ ∣(j1m1∣T (L)M ∣j2m2)∣
2
= 2k ⋅ [L]−1 ⋅ ∣(j1 ∥ T (L) ∥ j2)∣

2
(23.25)

In the non-relativistic formulation, the usual transition operator T
(L)
NR is purely the

electronic part whereas relativistically, the EM field factor ce,mL is already automat-
ically included. The relativistic transition operator T (L) appearing in equations
(23.22) is related to its non-relativistic analogue T

(L)
NR by this factor ce,mL as:

T (L) → ce,mL ⋅ T (L)NR or equivalently for the radial factors: S(L) → ce,mL ⋅ S(L)NR (23.26)

Using ∀x, y ∈ N ∶ ∣(−1)x ⋅ iy ∣2 = 1, comparison of equation (23.25) with equations
(7.72) and (7.80) yields in the long wavelength approximation:

ceL =
iL ⋅ kL

(2L − 1)!!
⋅ [L + 1

L
]

1
2

and: cmL = 1
2α ⋅

iL+1 ⋅ kL
(2L − 1)!!

⋅ [L + 1

L
]

1
2

(23.27)

23.3 Electric multipole radiation(2)

To conserve the freedom of choice for any given gauge transformation T (L)e →
T (L)e +GL ⋅ T (L)l, the matrix element (1

2 lj ∥ T (L)l ∥
1
2 l
′j′) should vanish identically.

[Grant, 1974] proved this with explicit radial integrals for the first time.
The recurrence relations (23.6) may be used to avoid mixed ranks in jλ(kr) and
express (1

2 lj ∥ T (L)l ∥
1
2 l
′j′) in terms of jL(kr) only:

I+L−1 + I+L+1 =
2L + 1

k
⋅ ∫

∞

0

(F1G2 +G1F2)
r

⋅ jL(kr)dr (23.28a)

3The quantity M
(L)

jj′ originally introduced by [Grant, 1974] differs from M
(L)
jj′ by a minus sign.
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−LI−L−1 + (L + 1)I−L+1 = −
2L + 1

k
⋅ ∫

∞

0
(F1G2 −G1F2) ⋅

d

dr
jL(kr)dr

= 2L + 1

k
⋅ ∫

∞

0

d

dr
(F1G2 −G1F2) ⋅ jL(kr)dr (23.28b)

Using the above in equation (23.22a), the matrix element of the longitudinal
transition operator is rewritten as:

(1
2 lj ∥ T

(L)l ∥ 1
2 l
′j′) = −iL[j, j′]

1
2 (−1)j′−

1
2+L( j j′ L

−1
2

1
2 0

) ⋅ 2L + 1

k
⋅

∫
∞

0
[ d

dr
(F1G2 −G1F2) +

κ1 − κ2

r
⋅ (F1G2 +G1F2) + k ⋅ (F1F2 +G1G2)] ⋅ jL(kr)dr

(23.29)

The expression in square brackets equals zero as it matches exactly the LHS of the
continuity equation for radial integrals (20.22): (1

2 lj ∥ T (L)l ∥
1
2 l
′j′) vanishes indeed!

The gauge parameter GL can assume the values GL =
√
L + 1/L for the Babushkin

(B) or length gauge and GL = 0 for the Coulomb (C) or transverse gauge, leading
to the length and the velocity formulation, respectively.
In the Babushkin gauge, the contributions of I±L−1 (important in the Coulomb gauge)

are eliminated and (1
2 lj ∥ T

(L)e
C ∥ 1

2 l
′j′) is replaced by:

(1
2 lj ∥ T

(L)e
B ∥ 1

2 l
′j′) = − iL ⋅ 2L + 1√

L(L + 1)
⋅ [j, j′]

1
2 (−1)j′−

1
2+L( j j′ L

−1
2

1
2 0

)

⋅ [(κ − κ′)I+L+1 + (L + 1)(I−L+1 + JL)] (23.30)

The radial factors S(L)e associated with T (L)e = −S(L)e (a†b)(κk)L are subsequently
found by application of equation (21.7) for (κk)L = (0L)L:

S(L)e = [1
2 , L]

−1
2 ∑
jj′

[j, j′]
1
2 ⋅ (−1)j+l′+

1
2+L ⋅ {j j′ L

l′ l 1
2

} (1
2 lj ∥ T

(L)e ∥ 1
2 l
′j′) (23.31)

23.3.1 Babushkin gauge

Using equations (20.3) and (23.23) plus the fact that l + l′ +L + 1 is always odd,
S(L)e reduces in the Babushkin gauge to:

S
(L)e
B = iL [ 2L + 1

2L(L + 1)
]

1
2

⟨l ∥ C(L) ∥ l′⟩∑
jj′

[j, j′] ⋅ {j j′ L
l′ l 1

2

}
2

[(κ − κ′)I+L+1 + (L + 1)(I−L+1 + JL)]

≈ (ik)L
(2L − 1)!!

[ L + 1

2L(2L + 1)
]

1
2

⟨l ∥ C(L) ∥ l′⟩∑
jj′

[j, j′] ⋅ {j j′ L
l′ l 1

2

}
2

⋅UL (23.32)

In the above last line, the long wavelength limit is used plus the fact that JL makes
the dominant contribution.
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This then yields the following result, to be compared with equation (7.70):

T
(L)e
B,NR = − (ik)L

(2L − 1)!!
[ 2(L + 1)
L(2L + 1)

]
1
2

⟨l ∥ C(L) ∥ l′⟩∫
∞

0
P1P2 ⋅ rLdr ⋅ (a†b)(0L)L

= (ik)L
(2L − 1)!!

[L + 1

L
]

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⋅ − [ 2

(2L + 1)
]

1
2

⟨l ∥ C(L) ∥ l′⟩L(L)NR ⋅ (a†b)(0L)L

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= ceL ⋅ T

(L)
NR (23.33)

The first LHS factor of the last line satisfies equation (23.27) exactly.
By Fermi’s golden rule (23.25), the electric multipole transition probability thus
becomes in a.u.:

g2 ⋅A21 = ( 2(L + 1) ⋅ (2π)2L+1

L(2L + 1)(2L − 1)!!(2L − 1)!!
) ⋅ σ2L+1 ⋅ ∣(j1 ∥ T (L) ∥ j2)∣

2
(23.34)

Here, T (L) can either be the non-relativistic transition operator T
(L)
NR or the

corresponding relativistic expression given below. In the non-relativistic limit, the
G1G2 ⋅ rL term in UL may be discarded and the summation over j, j′ in equation

(23.32) can therefore be carried out independently: ∑jj′ [j, j′] ⋅ {
j j′ L
l′ l 1

2

}
2

= 2.

The correct relativistic analogue L(L) that replaces the length formulation of the
multipole transition integral L

(L)
NR in an SL−coupled framework is thus found from

equation (23.32):

L(L) = 1
2 ⋅ ∑

jj′
[j, j′] ⋅ {j j′ L

l′ l 1
2

}
2

⋅ ∫
∞

0
(F1F2 +G1G2) ⋅ rL dr

= 1
2 ⋅ ∑

jj′
[j, j′] ⋅ {j j′ L

l′ l 1
2

}
2

⋅UL (23.35)

L(L) is an inherently ’long wavelength’ quantity; letting go of this approximation
but still neglecting I±L+1, the expression for the multipole transition integral will be
given by:

L(L) = (2L + 1)!!
kL

⋅ 1
2 ⋅ ∑

jj′
[j, j′] ⋅ {j j′ L

l′ l 1
2

}
2

⋅ JL (23.36)

with the obvious non-relativistic limit:

L
(L)
NR = ∫

∞

0
P1P2 ⋅ rLdr (23.37)
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23.3.2 Coulomb gauge

In the Coulomb gauge, the radial factor S(L)e becomes:

S
(L)e
C = iL [ 1

2(2L + 1)
]

1
2

⟨l ∥ C(L) ∥ l′⟩∑
jj′

[j, j′] ⋅ {j j′ L
l′ l 1

2

}
2

⋅ [−(L + 1

L
)

1
2
[(κ − κ′)I+L−1 −LI−L−1] + ( L

L + 1
)

1
2
[(κ − κ′)I+L+1 + (L + 1)I−L+1]]

≈ k−1(ik)L
(2L − 1)!!

[ L + 1

2L(2L + 1)
]

1
2

⟨l ∥ C(L) ∥ l′⟩∑
jj′

[j, j′] ⋅ {j j′ L
l′ l 1

2

}
2

⋅ [LE−
L−1 − (κ − κ′)E+

L−1]

(23.38)

The long wavelength limit is again used in the last line. Comparison of equations
(23.32) and (23.38) reveals the relation between the relativistic transition integrals
of the two gauges:

UL↔ k−1 ⋅ [LE−
L−1 − (κ − κ′)E+

L−1] (23.39)

The UL and E±
L integrals are defined in equations (20.4) and (20.9), respectively.

The relativistic replacement in the velocity formulation of the multipole transition
integral V

(L)
NR in an SL−framework becomes:

V (L) = 1
2k

−1 ⋅ ∑
jj′

[j, j′] ⋅ {j j′ L
l′ l 1

2

}
2

⋅ [LE−
L−1 − (κ − κ′)E+

L−1] (23.40)

In the non-relativistic limit, the Coulomb transition integral becomes after
application of equations (20.12a) and (20.12b) with k = αω = α(ε2 − ε1) > 0:

V
(L)
NR = ω−1 ⋅ [L∫

∞

0
P1P

′
2 ⋅ rL−1dr − 1

2 [l(l + 1) − l′(l′ + 1) −L(L − 1)]∫
∞

0
P1P2 ⋅ rL−2dr]

(23.41)

23.4 Electric dipole radiation(2)

For the electric dipole radiation L = 1, the expression in the Babushkin or length
gauge becomes:

(1
2 lj ∥ T

(1)e
B ∥ 1

2 l
′j′) = −i ⋅ 3√

2
⋅ [j, j′]

1
2 ⋅ (−1)j′+

1
2 ⋅ ( j j′ 1

−1
2

1
2 0

) [(κ − κ′)I+2 + 2(I−2 + J1)]

(23.42)

where in the long wavelength limit I±2 = 4π2/15λ2 ⋅E±
2 are relatively small.

The radial quantity S
(1)e
B in T

(1)e
B = −S(1)eB (a†b)(01)1

is found from equation (23.32):

S
(1)e
B = 1

2i
√

3 ⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅∑
jj′

[j, j′] ⋅ {j j′ 1
l′ l 1

2

}
2

⋅ [(κ − κ′)I+2 + 2(I−2 + J1)]

≈ 2i
√

3 ⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅ (l + 2)(2l + 1)J1++ + J1+− + l(2l + 3)J1−−
(2l + 1)(2l + 3)

≈ 2
3i
√

3 ⋅ k ⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅ (l + 2)(2l + 1)U1++ +U1+− + l(2l + 3)U1−−
(2l + 1)(2l + 3)

(23.43)
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Without loss of generality, l′ = l + 1 is taken here in above last lines.

23.4.1 Non-relativistic limit

The non-relativistic limit S
(1)e
B,NR is directly obtained by equating the fraction in

equation (23.43) to L
(1)
NR = ∫ P1P2 rdr:

S
(1)e
B,NR = 2

3i
√

3 ⋅ k ⋅ ⟨l ∥ C(1) ∥ l′⟩ ⋅L(1)NR (23.44)

In the Coulomb gauge, equation (23.41) gives for L = 1 the known velocity form

(7.36), to be compared with L
(1)
NR:

V
(1)
NR = ω−1∫

∞

0
Pnl [

d

dr
− l(l + 1) − l′(l′ + 1)

2r
]Pn′l′ dr = ω−1∫

∞

0
Pnl [

d

dr
+ l>
r
]Pn′l′ dr(23.45)

Substituting L = 1 in equation (23.34), the non-relativistic electric dipole transition
probability becomes in a.u.:

g2 ⋅A21 = 4
3 ⋅ (2π)

3 ⋅ σ3 ⋅ ∣(j1 ∥ T (1)NR ∥ j2)∣
2

(23.46)

This corresponds exactly to the original non-relativistic expression (7.7), except for
the conversion from a.u. to SI by the factor fe2/h̵ ⋅ a2

0 ⋅ 106.

The substitution T
(1)
NR → T

(1)
R using equation (23.35) or (23.40) for the transition

integral yields the completely relativistic form.

23.5 Electric quadrupole radiation(2)

In the Babushkin gauge, one finds for the radial electric quadrupole factor:

S
(2)e
B = i2 [ 5

12
]

1
2
⟨l ∥ C(2) ∥ l′⟩∑

jj′
[j, j′] ⋅ {j j′ 2

l′ l 1
2

}
2

[(κ − κ′)I+3 + 3(I−3 + J2)]

≈ (ik)2

2
[ 1

15
]

1
2
⟨l ∥ C(2) ∥ l′⟩∑

jj′
[j, j′] ⋅ {j j′ 2

l′ l 1
2

}
2

⋅U2 (23.47)

Given the triangular condition {ll′2} and the parity condition of even l + l′ + 2,
l′ is restricted to: l′ = l(≠ 0), l ± 2.

23.5.1 Non-relativistic limit

The non-relativistic limit S
(2)e
B,NR is obtained after the summation over j and j′ under

the assumption the L
(2)
NR = ∫ P1P2 r2 dr is j−independent:

S
(2)e
B,NR = (ik)2

√
15

⟨l ∥ C(2) ∥ l′⟩ ⋅L(2)NR (23.48)

The velocity form corresponding to the length form L
(2)
NR is directly obtained from

equation (23.41):

V
(2)
NR = ω−1 ⋅ [2∫

∞

0
P1P

′
2 ⋅ r dr − 1

2 {l(l + 1) − l′(l′ + 1) − 2} ⋅ ∫
∞

0
P1P2 dr] (23.49)
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For P1 ≠ P2, this reduces to:

V
(2)
NR (l′ = l) = 2

ω
⋅ ∫

∞

0
P1 (r

d

dr
+ 1

2
)P2 dr

V
(2)
NR (l′ = l + 2) = 2

ω
⋅ ∫

∞

0
P1 (r

d

dr
+ l + 2)P2 dr

V
(2)
NR (l′ = l − 2) = 2

ω
⋅ ∫

∞

0
P1 (r

d

dr
− l + 1)P2 dr (23.50)

while for P1 = P2, the non-relativistic velocity formulation yields an indeterminate
result as: V

(2)
NR = ω−1 ⋅ [∫

∞
0 (P 2)′ ⋅ r dr + 1] ≈ 0/0. Derived from the off-diagonal hy-

pervirial theorem, equations (23.50) were already given by [Godefroid, 1978].

Substituting L = 2 in equation (23.34), the non-relativistic electric quadrupole tran-
sition probability becomes in a.u.:

g2 ⋅A21 =
1

15
⋅ (2π)5 ⋅ σ5 ⋅ ∣(j1 ∥ T (2)NR ∥ j2)∣

2
(23.51)

This corresponds exactly to the original non-relativistic expression (7.77), except for
the conversion from a.u. to SI by the factor fe2/h̵ ⋅ a4

0 ⋅ 1010.

The substitution T
(2)
NR → T

(2)
R using equation (23.35) or (23.40) for the transition

integral yields the completely relativistic form again.

23.6 Magnetic multipole radiation(2)

The magnetic multipole transition operator T (L)m is given in equation (23.22c);
parity requires that l + l′ +L is odd.

The radial factors S(L)m associated with T (L)m = −S(L)m (a†b)(νk)L are found by
application of equation (21.7):

S(L)m = [L]−
1
2 ∑
jj′

[j, j′, ν, k]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 ν

l l′ k
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(1

2 lj ∥ T
(L)m ∥ 1

2 l
′j′)

= iL+1[L]
1
2 ∑
jj′

[j, j′] ⋅ [ν, k]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 ν

l l′ k
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ L

−1
2 −1

2 1
) ⋅ I+L

≈ iL+1 ⋅ kL
(2L − 1)!!

⋅ [ν, k]
1
2 ⋅ [L]−

1
2 ∑
jj′

[j, j′] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 ν

l l′ k
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ L

−1
2 −1

2 1
) ⋅E+

L

(23.52)

In the last line, the long wavelength limit I+L = kL/(2L + 1)!! ⋅E+
L is used.

Here and in the following, tensor ranks (νk)L with ν = 0,1 instead of the usual
(κk)L are used to avoid confusion with the quantum numbers κ.
Allowed values are: (νk)L = (0L)L, (1L − 1)L and (1L + 1)L. Non-relativistically,
only the orbital term (νk)L = (0L)L and the spin term (1L − 1)L remain, as can
be seen from equations (7.82).
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23.6.1 Non-relativistic limit

In the non-relativistic limit, equation (20.12a) gives:
E+
L →

1
2α ⋅ (κ + κ′ − L) ⋅ ∫

∞
0 F1F2 rL−1dr. This implies that the summations over j, j′

can be carried out explicitly for all allowed values of (νk):

∑
jj′

[j, j′] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 0

l l′ L
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ L

−1
2 −1

2 1
) ⋅ (κ + κ′ −L)

= −2 [2l′(l′ + 1)(2l′ + 1)(2L − 1)
L + 1

]
1
2

⋅ { l l′ L
1 L − 1 l′

} ⋅ ⟨l ∥ C(L−1) ∥ l′⟩ (23.53a)

∑
jj′

[j, j′] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

l l′ L − 1
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ L

−1
2 −1

2 1
) ⋅ (κ + κ′ −L)

= [2(L + 1)(2L + 1)
3(2L − 1)

]
1
2

⋅ ⟨l ∥ C(L−1) ∥ l′⟩ (23.53b)

∑
jj′

[j, j′] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

l l′ L + 1
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ L

−1
2 −1

2 1
) ⋅ (κ + κ′ −L) = 0 (23.53c)

As expected, the (νk)L = (1L + 1)L case vanishes in the non-relativistic limit.
The above summations are less standard but may be verified with any dedicated
computer algebra package.
Combining all of the foregoing, one obtains for the non-relativistic orbital term:

T
(L)m
orb,NR = 1

2α ⋅
iL+1 ⋅ kL
(2L − 1)!!

⋅ 2 [2l′(l′ + 1)(2l′ + 1)(2L − 1)
L + 1

]
1
2

⋅ { l l′ L
1 L − 1 l′

}

⋅ ⟨l ∥ C(L−1) ∥ l′⟩ ⋅ (a†b)(0L)L ⋅ ∫
∞

0
F1F2 r

L−1dr

= 1
2α ⋅

iL+1 ⋅ kL
(2L − 1)!!

⋅ [L + 1

L
]

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⋅ 2

L + 1
⋅ [L(2L − 1)]

1
2 ∑

i

rL−1
i (C(L−1)

i li)
(L)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= cmL ⋅M (L)

orb (23.54)

where in the last lines, use is made of equations (7.81), (7.82a) and (23.27).
A similar derivation now with equation (7.82b) follows for the spin term:

T
(L)m
spin,NR = 1

2α ⋅
iL+1 ⋅ kL
(2L − 1)!!

⋅ − [3(2L − 1)
2L + 1

]
1
2

⋅ [2(L + 1)(2L + 1)
3(2L − 1)

]
1
2

⋅ ⟨l ∥ C(L−1) ∥ l′⟩ ⋅ (a†b)(1L−1)L ⋅ ∫
∞

0
F1F2 r

L−1dr

= 1
2α ⋅

iL+1 ⋅ kL
(2L − 1)!!

⋅ [L + 1

L
]

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⋅ 2

L + 1
⋅ [L(2L − 1)]

1
2 ∑

i

rL−1
i (L + 1) (C(L−1)

i si)
(L)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= cmL ⋅M (L)

spin (23.55)
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As expected, T
(L)m
NR = cmL ⋅M

(L)
NR with M

(L)
NR identical to the non-relativistic magnetic

multipole operator given in equation (7.81).
The relativistic analogue of the magnetic multipole operator is now given by:

M (L) = − 2

α
∑
ν k

[L(2ν + 1)(2k + 1)
(L + 1)(2L + 1)

]
1
2

∑
jj′

[j, j′]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 ν

l l′ k
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l( j j′ L

−1
2 −1

2 1
) E+

L ⋅ (a†b)(νk)L

(23.56)

Note that this expression contains, next to the orbital and the spin term, an expect-
edly small, pure relativistic contribution for (νk)L = (1L + 1)L.
The relativistic replacement of the radial integral ∫

∞
0 F1F2 rL−1dr is somewhat more

subtle to find than in the electric multipole case.
For the orbital case, comparison learns:

1
2α ⋅ −2 [2l′(l′ + 1)(2l′ + 1)(2L − 1)

L + 1
]

1
2

⋅ { l l′ L
1 L − 1 l′

} ⋅ ⟨l ∥ C(L−1) ∥ l′⟩ ⋅ ∫
∞

0
F1F2 r

L−1dr

→∑
jj′

[j, j′] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 0

l l′ L
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ L

−1
2 −1

2 1
) ⋅E+

L (23.57a)

Given the relativistic integrals E+
L, only an elementary computer program is needed

here to calculate the replacement of ∫
∞

0 F1F2 rL−1dr.
Similarly for the spin case:

1
2α ⋅ [

2(L + 1)(2L + 1)
3(2L − 1)

]
1
2

⋅ ⟨l ∥ C(L−1) ∥ l′⟩ ⋅ ∫
∞

0
F1F2 r

L−1dr

→∑
jj′

[j, j′] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

l l′ L − 1
j j′ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ L

−1
2 −1

2 1
) ⋅E+

L (23.57b)

With the equations (23.53), it is straightforward to check that the LHS and the RHS
of both the above replacements are equal in the non-relativistic limit.
Note that if the j−dependency of E+

L is not negligible, the relativistic analogues of

∫
∞

0 F1F2 rL−1dr will differ between the orbital and the spin term as a result of the
different j−dependent weighting factors in the two cases.

23.7 Magnetic dipole radiation(2)

For magnetic dipole radiation, substitution of L = 1 in equation (23.52) yields:

S(1)m = −
√

3∑
jj′

[j, j′] ⋅ [ν, k]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 ν

l l k
j j′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l ⋅ ( j j′ 1

−1
2 −1

2 1
) I+1 (23.58)

Equation (23.58) closely resembles equation (22.10) or (22.38), again with the three
allowed values νk = 01,10 and 12. Both the magnetic dipole radiation and the
Zeeman effect originate from the same magnetic dipole operator, and are therefore
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strongly interrelated. As the non-relativistic atomic magnetic moment is given by
µ⃗ = −µB ⋅M (1)

NR = −1
2 ⋅ [L(01)1 + gsS(10)1], the spin-dipole term νk = 12 turns out to be

is purely relativistic again.
Comparing equations (23.20a) and (22.35), it follows that in the long wavelength
approximation:

I+1 = 1
3k ⋅E

+
1 = 2

3k ⋅Djj′ (23.59)

Comparison of the S−integrals (22.38) and (23.58) yields therefore:

S(1)m = −
√

2 ⋅ αk ⋅ SZ,κk ,written below for each combination of κk ∶ (23.60)

S
(01)m
nl = −

√
2 ⋅ αk ⋅ [ l(l + 1)(2l + 1)

6
]

1
2

⋅ a01 (23.61a)

S
(10)m
nl = −

√
2 ⋅ αk ⋅ [2l + 1

2
]

1
2
⋅ a10 (23.61b)

S
(12)m
nl = −

√
2 ⋅ αk ⋅ [ l(l + 1)(2l + 1)

(2l − 1)(2l + 3)
]

1
2

⋅ a12 (23.61c)

where the aκk coefficients are the same as in equations (22.42):

a01 = − 6

αk
⋅ 1

(2l + 1)2
⋅ [(l + 1)I+1,++ − I+1,+− − lI+1,−−] (23.62a)

a10 = − 2

αk
⋅ 1

(2l + 1)2
⋅ [(l + 1)2I+1,++ + 2l(l + 1)I+1,+− + l2I+1,−−] (23.62b)

a12 = 1

αk
⋅ 1

(2l + 1)2
⋅ [2(l + 1)(2l − 1)I+1,++ − (2l − 1)(2l + 3)I+1,+− + 2l(2l + 3)I+1,−−]

(23.62c)

To find the relativistic expression for the transition probability, one applies Fermi’s
golden rule (23.25) with:

T (1)m = −∑
κk

Sκk,m (a†a)(κk)1 = −1
2

√
2 ⋅ αk ⋅M (1)

R (23.63)

giving:

g2 ⋅A21 = 1
3α

2 ⋅ k3 ⋅ ∣⟨j ∥M (1)
R ∥ j′⟩∣

2
= 1

3α
2 ⋅ (2π)3 ⋅ σ3 ⋅ ∣⟨j ∥M (1)

R ∥ j′⟩∣
2

(23.64)

where M
(1)
R = (a01L(01)1 + [2a10 + (gs − 2)]S(10)1 − 2(10)

1
2a12∑i (sC(2))

(1)
i ).

23.7.1 Non-relativistic limit

As to be expected from the earlier non-relativistic treatment resulting in equation
(7.85), I+1 is radially independent in the non-relativistic limit:

I+1 = 1

6
⋅ αk ⋅ (κ + κ′ − 1) → (23.65)
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I+1++ = −
1

6
⋅ αk ⋅ (2l + 3) (23.66a)

I+1+− = −
1

3
⋅ αk (23.66b)

I+1−− =
1

6
⋅ αk ⋅ (2l − 1) (23.66c)

And similarly for the S−integrals:

S01,m = −
√

2 ⋅ αk ⋅ [ l(l + 1)(2l + 1)
6

]
1
2

→ a01 = 1 (23.67a)

S10,m
nl = −

√
2 ⋅ αk ⋅ [2l + 1

2
]

1
2

→ a10 = 1 (23.67b)

S12,m
nl = 0 → a12 = 0 (23.67c)

and therefore, as M (1) = −2∑κk S
Z,κk (a†a)(κk)1, the magnetic dipole transition

operator T (1)m becomes in the non-relativistic limit:

T (1)m = −∑
κk

Sκk,m (a†a)(κk)1 = −1
2

√
2 ⋅ αk ⋅M (1)

NR (23.68)

and by Fermi’s golden rule (23.25):

g2 ⋅A21 = 1
3α

2 ⋅ k3 ⋅ ∣⟨j ∥M (1)
NR ∥ j′⟩∣

2
= 1

3α
2 ⋅ (2π)3 ⋅ σ3 ⋅ ∣⟨j ∥M (1)

NR ∥ j′⟩∣
2

(23.69)

This corresponds exactly to the original non-relativistic expression (7.84), except for
the conversion from a.u. to SI by the factor fe2/h̵ ⋅ a2

0 ⋅ 106.

With l′ = l ≠ 0, the radial overlap integral ∫
∞

0 P1P2 dr may be replaced by its separate
relativistic analogues:

∫
∞

0
P1P2 dr(orb)→ δ(l, l′) ⋅ (α)−1 [ 3

l(l + 1)(2l + 1)
]

1
2

∑
jj′

[j, j′]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 0

l l 1
j j′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l( j j′ 1

−1
2 −1

2 1
) E+

1

(23.70a)

∫
∞

0
P1P2 dr(spin)→ δ(l, l′) ⋅ (α)−1 [ 1

(2l + 1)
]

1
2

∑
jj′

[j, j′]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

l l 0
j j′ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l( j j′ 1

−1
2 −1

2 1
) E+

1

(23.70b)

23.8 Magnetic quadrupole radiation(2)

For magnetic quadrupole radiation, substitution of L = 2 in equation (23.52) yields:

S(2)m = i(ik)
2

3
√

5
⋅ [ν, k]

1
2 ∑
jj′

[j, j′] ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 ν

l l′ k
j j′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)l ⋅ ( j j′ 2

−1
2 −1

2 1
) ⋅E+

2 (23.71)
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The three allowed values are (νk)2 = (02)2, (11)2 and (13)2; only (02)2 and (11)2
appear non-relativistically, as can be seen from comparison with equation (7.98).
To find the relativistic expression for the transition probability, one applies Fermi’s
golden rule (23.25) in a.u.:

g2 ⋅A21 =
2k

5
⋅ ∣(j ∥ T (2)m ∥ j′)∣2 = (α

2
)

2

⋅ (2π)
5

15
⋅ σ5 ⋅ ∣⟨j ∥M (2) ∥ j′⟩∣2 (23.72)

where M (2) is given by equation (23.56) with L = 2. This matches exactly the non-
relativistic expression (7.97), when the prefactor fe2/h̵ ⋅ a4

0 ⋅ 1010 is added to ensure
that A21 is in s−1 and σ in cm−1.

23.8.1 Non-relativistic limit

The non-relativistic transition probability is found by the substitution M
(2)
NR →M (2)

where M
(2)
NR is given by equation (7.98).

Assuming without loss of generality that l′ = l + 1, the radial integral ∫
∞

0 P1P2 r dr
may however straightforwardly be replaced by its relativistic analogue:

∫
∞

0
F1F2 r dr(orb)→ −(α)−1 [ 5

l(l + 1)(l + 2)
]

1
2

∑
jj′

[j, j′]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 0

l l + 1 2
j j′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l( j j′ 2

−1
2 −1

2 1
) E+

2

(23.73a)

∫
∞

0
F1F2 r dr(spin)→ −(α)−1 [ 6

5(l + 1)
]

1
2

∑
jj′

[j, j′]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

l l + 1 1
j j′ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(−1)l( j j′ 2

−1
2 −1

2 1
) E+

2

(23.73b)
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Fine structure

We consider below the relativistic form of one of the common (orthogonal) param-
eters, namely the spin-orbit coupling constant ζ(a, b) given by equation (5.89):

HSO = ∑
i

si ⋅ li ζ(a, b) = δ(l, l′) (l(l + 1)(2l + 1)/2)
1
2 (a†b)(11)0

ζ(a, b)

In order to find the contribution of the nuclear attraction to ζ(a, b), we use equation
(21.7) with (κ, k, t) = (1,1,0), and calculate the reduced matrix element of the (even)
operator −Z/r:

(pj ∥ −Z/r ∥ qj′) = δ(j, j′)[j]
1
2 (pj ∣ −Z/r∣qj′) = δ(j, j′)[j]

1
2 ∫

∞

0
−(FpFq +GpGq)

Z

r
dr

The final result thus becomes immediately:

ζ(a, b) = δ(l, l′)∑
j

δ(j, j′)[j]
l(l + 1) + 3

4 − j(j + 1)
l(l + 1)(2l + 1) ∫

∞

0
(FpFq +GpGq)

Z

r
dr (24.1)

Only j-dependent terms in the integral survive summation over j.
In the Pauli limit, this means only Gj ≈ 1

2α (F ′ + κ ⋅ F /r) contributes.
After integration by parts, the well known non-relativistic limit appears, now derived
without any explicit reference to magnetic effects:

ζ(a, b) = 1
2α

2Z ∫
∞

0
a(r) r−3 b(r) dr

Equation (14.33) being the most important part of ∆ζ, it may be interesting to
trace its relativistic origin. The contribution comes from the spin-own-orbit part of
MSO, and thus the relativistic Coulomb interaction; the result is found to be:

∆ζ(a) = −∑
b

( M

4l′ + 2
)∑
j,j′

[j, j′]
l(l + 1) + 3

4 − j(j + 1)
l(l + 1)(2l + 1)

× ∫
∞

0
∫

∞

0
(F 2

j +G2
j)1 (r>)−1(F 2

j′ +G2
j′)2 dr1dr2 (24.2)

In the Pauli limit, again only Gj depends on j and therefore the integral

∫
∞

0 ∫
∞

0 (G2
j)1 (r>)−1(F 2

j′)2 dr1dr2 is the leading term surviving the summation over j.
Integrating by parts to remove dF /dr and carrying out the summations over j and
j′, one obtains exactly expression (14.33) as the Pauli limit of equation (24.2).
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Chapter 25

Deltafunctions

As a second example, we consider the expectation value ∣Ψ(0)∣2 of the operator δ(r),
that frequently appears in contact interactions. As:

δ(r⃗) = − 1

4π
⋅ ∇2 (1

r
) (25.1)

N.B. r ≠ 0 ∶ ∇2
r (1

r
) = ( ∂2

∂r2 +
2
r
∂
∂r)

1
r = 0

∫ δ(r⃗) dV = 4π ∫ δ(r⃗) ⋅ r2dr = 1 = ∫ δ(r)dr

δ(r⃗) = δ(r) = 1

4π

δ(r)
r2

with: ⟨δ(r)⟩ = ∣Ψ(0)∣2 and: ⟨n̄s∣δ(r)∣n′s⟩ = Ψn̄s(0) ⋅Ψn′s(0)

so, for the non-relativistic Coulomb limit (κk) = (00):

δ(r) = −δ(ll′) ⋅ (a†b)(00) 1

4π ∫
∞

0
a
δ(r)
r2

b dr (25.2)

with the relativistic expectation value:

⟨δ(r)⟩ = ∑
j

[j] ⋅ [1
2 , l]

−1 1

4π ∫
∞

0
(F 2

j +G2
j)
δ(r)
r2

dr (25.3)

In fully relativistic calculations, one should take the finite extent of the nucleus into
account and replace δ(r)/4πr2 by a nuclear charge distribution ρ(r) e.g.:

⟨δ(r)⟩ = ∑
j

[j] ⋅ [1
2 , l]

−1∫
∞

0
(F 2

j +G2
j) ⋅ ρ(r) dr (25.4)

In the field of HFS, the contact operator (κk) = (10) is, in analogy with the other
HFS contributions and conform to equation (22.19h), frequently written as :

⟨r−3⟩
c
= − 8

3α ∫
FnsGns

r2
dr ≈ 8π

3
⟨δ(r)⟩c =

2

3
⟨δ(r)
r2

⟩
c

(25.5)

From hydrogenic considerations, one has:

lim
r→0

(Pns(r)
r

)
2

= lim
r→0

(dPns(r)
dr

)
2

= 4Z3

n3 a3
0

↔ ∣Ψ(0)∣2 = π−1 ⋅ ( Z

na0

)
3

(25.6)
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Chapter 26

Two-particle operators

For two-particle operators, a similar expression is found:

S(ab, cd) = [t]−
1
2 [k]

1
2 [κ1, k1, κ2, k2]

1
2 ∑
ja.jb.jc.jd

[ja, jb, jc, jd]
1
2

× (−1)κ2+k1+k+t{κ1 κ2 k
k2 k1 t

}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ1

la lc k1

ja jc t

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 κ2

lb ld k2

jb jd t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
× (jajb ∥ {A(t)B(t)}(0) ∥ jcjd) (26.1)

As long as l1 + k + l2 is even, the reduced matrix element of the C(t) tensor depends
explicitly only on j1 and j2 as shown in equation (20.3). Using this and the fact that
the instantaneous Coulomb interaction is an even operator, we obtain the relativistic
form of the Slater integral from equation (26.1):

Rk(ab, cd) = 1
4 ∑
ja,jb,jc,jd

[ja, jb, jc, jd] {
ja k jc
lc

1
2 la

}
2

{jb k jd
ld

1
2 lb

}
2

× ∫
∞

0
∫

∞

0
dr1dr2 (FaFc +GaGc)1 r

k
</rk+1

> (FbFd +GbGd)2 (26.2)

So in the most general case, the familiar Rk integral turns out to be a weighted
sum over 16 relativistic integrals, each of which has the same non-relativistic limit.
If these integrals were independent of j (which in the Pauli approximation means
neglecting the Gj’s) the prefacing factor can be calculated explicitly yielding unity.
With the above relativistic definition, the two-body Darwin term will be included
in the ”cross-terms” FaFcGbGd and GaGcFbFd in the above integral.
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Chapter 27

Relativistic core for B-spline
excitations

A desirable extension of the basic B-spline program is to improve the quality of its
results in more relativistic cases by including the capability of reading core orbitals
generated by the MCDF package.
The MCDF package generates multi-configuration core orbitals using the Dirac-
Fock equations. The Dirac-Fock equations are based upon the same principles as the
Hartree-Fock equations, but instead of using classical quantum mechanics, the Dirac
theory is used to build the equations. For the central force problem it is convenient
to write down all equations in a two-component form. This leaves us with two-
component eigenfunctions, referred to as large and small components that can be
retrieved from the output of the MCDF program. Actually, our (non-relativistic) B-
spline program is not designed to produce them directly. Using MCDF core orbitals
as input and including the most important relativistic corrections for the series will
however yield an equivalent improvement. It is therefore necessary to redefine the
Hartree Yk functions as they occur in the Hartree-Fock equations (10.3).

27.1 Knot-points and interpolation of MCDF or-

bitals

The points ri on which the MCDF orbitals are calculated, are given by:

r(i) = 1

Z
(e− 65

16
+ i

16 − e− 65
16) (27.1)

Here, Z (NZ in the program) is the atomic charge: for high charge, it is important
to have sufficient points close to the origin. The sequence is not very different
from the sequence used in MCHF. The main difference is that the MCDF sequence
has points much closer to r = 0 than MCHF has. For a proper interpolation of
the MCDF orbitals, we can use the current routine that generates the knotpoint
sequence. Important though is to change the parameter PREFIST to a much smaller

value: (e− 65
16
+ 1

16 − e− 65
16) ≈ 1.1 × 10−3.
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27.2 Redefinition of the Rk and Yk integrals

The MCDF core orbitals are composed from a large component F (r) and a small
component G(r). From this, the relativistic definition of the Hartree function Y R

k

of the traditional Yk integral, see equation (10.3), is given by:

1

r
Y R
k (ab, r) = 1

2 ∑
ja,jb

[ja, jb] {
ja k jb
lb

1
2 la

}
2

∫
∞

0

rk<
rk+1
>

(Fa(s)Fb(s) +Ga(s)Gb(s)) ds

(27.2)

As an example, the expression for the direct interaction for s-electrons ∣b⟩ from the
core reduces to:

1

r
Y R
k (bb, r) = δ(k,0)∫

∞

0

rk<
rk+1
>

(Fb(s)2 +Gb(s)2) ds (27.3)

These redefinitions are to be applied to the B-spline expression (11.11), with the use
of Bentley’s method [Bentley, 1994] without off-diagonal Lagrange multipliers:

Hij = ⟨Bi∣HBN ∣Bj⟩ +∑
b

qb ⟨Bi ∣
1

r
Y0(bb, r)∣Bj⟩ −

1

2
∑
k

⟨la ∥ C(k) ∥ lb⟩
2

(2la + 1)(2lb + 1)
⟨Bi∣Yk(Bjb, r)∣b⟩

(27.4)

One concludes that the core itself is determined by the second term in the above;
equation (27.2) for equivalent electrons is inserted.
If a is associated with the channel electron and b with the core electrons, one uses
the expansion:

Y R
k (ab, r) = ∑

i

ciY
R
k (Bib, r) (27.5)

For the third term, one needs to calculate Y R
k (Bjb, r) with Bj a B-spline. Given that

small components of B-spline functions are not (yet) defined and therefore neglected,
expression (27.2) now reduces to:

1

r
Y R
k (Bjb, r) = 1

2 ∑
ja,jb

[ja, jb] {
ja k jb
lb

1
2 la

}
2

∫
∞

0

rk<
rk+1
>

Bj(s)Fb(s) ds (27.6)

There is no ja-value associated with the channel (with {∣Bj⟩} as basis), so the sum
over ja can be carried out directly by means of equation (2.11), and the above is
reduced to:

1

r
Y R
k (Bjb, r) = 1

2 ∑
jb

[jb] ⋅ [lb]−1∫
∞

0

rk<
rk+1
>

Bj(s)Fb(s) ds (27.7)

For core s-electrons ∣b⟩ this simply reduces to:

1

r
Y R
k (Bjb, r) =

1

r
Yk(Bjb, r) (27.8)
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In accordance with equation (26.2), the relativistic Rk-integral is given by:

⟨c(r) ∣1
r
Y R
k (ab, r)∣d(r)⟩ = 1

2 ∑
jc,jd

[jc, jd] {
jc k jd
ld

1
2 lc

}
2

⋅ ∫
∞

0

1

r
Y R
k (ab, r) (Fc(r)Fd(r) +Gc(r)Gd(r)) dr (27.9)

In the program Basis, only ⟨Bi(r) ∣1rY R
k (ab, r)∣ b(r)⟩ is needed. Again neglecting

small omponents and averaging over possible values of ja, this reduces to:

⟨Bi(r) ∣
1

r
Y R
k (ab, r)∣ b(r)⟩ = 1

2 ∑
jb

[jb] ⋅ [lb]−1∫
∞

0

1

r
Y R
k (ab, r)Bi(r)Fb(r) ds (27.10)

Again, for core s-electrons, the RHS factor prefacing the integral equals 1.
A similar expression is valid for all core electrons ∣b⟩:

⟨Bi(r) ∣
1

r
Y R
k (bb, r)∣a(r)⟩ = ∫

∞

0

1

r
Y R
k (bb, r)Bi(r)Fa(r) ds (27.11)
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Appendix A

Other useful Coulomb matrix
elements

A.1 lN ↔ lN−2l′2

⟨lN(SL) ∣C ∣ lN−2 (S1L1), l′2(S2L2) (S′L′)⟩ =
√

1
2N(N − 1) ⋅ δ(SS′) ⋅ δ(LL′)

⋅∑
k

(−1)k ⟨l ∥ C(k) ∥ l′⟩2 ⋅Rk(l2, l′2) ⋅∑
S̃L̃

⋅[L̃,L2, S̃, S2]
1
2 ⋅ (−1)L+L2+L1 ⋅ (−1)1+S1+S

⋅{S2
1
2

1
2

S̃ S S1
} { L̃ L l

L2 l L1
} { l L2 l

l′ k l′
} (lN SL{∣lN−1S̃L̃) (lN−1 S̃L̃{∣lN−2S1L1)

(A.1)

A.2 l′ 2lN ↔ lN l′′ 2

⟨l′2(S1L1)lN(S2L2)SL ∣C ∣ lN(S2L2)l′′2(S1L1)SL⟩ = (−1)S1+S2−S ⋅ (−1)L1+L2−L

⋅∑
k

(−1)k ⟨l′ ∥ C(k) ∥ l′′⟩2 ⋅Rk(l′2, l′′2) ⋅ (−1)L1 ⋅ { k l′ l′′

L1 l′′ l′
} (A.2)

A.3 lN ↔ lN−2l′l′′

⟨lN(SL) ∣C ∣ (lN−2
S1L1 , l

′)S12L12 l
′′(S′L′)⟩ =

√
N(N − 1) ⋅ δ(SS′) ⋅ δ(LL′)

⋅∑
k

⟨l ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⋅Rk(l2, l′l′′) ⋅ (−1)L1+L12+L ⋅ ∑
S2L2

δ(S2, S12) ⋅ [L2, L12]
1
2

⋅(−1)L2{k L12 L2

L l l′′
} ⋅ { k L12 L2

L1 l l′
} ⋅ (lN SL{∣lN−1S2L2) (lN−1 S2L2{∣lN−2S1L1)

(A.3)
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A.4 lN l′↔ lN−1l′′2

⟨lN(S1L1) l′ SL ∣C ∣ lN−1(S′1L′1) l′′2(S2L2)S′L′⟩ =
√

2N ⋅ δ(SS′) ⋅ δ(LL′)

∑
k

(−1)k ⟨l ∥ C(k) ∥ l′′⟩ ⟨l′ ∥ C(k) ∥ l′′⟩ ⋅Rk(ll′, l′′2) ⋅ [L1, S1, L2, S2]
1
2 (lN S1L1{∣lN−1S′1L

′
1)

⋅(−1)1+S′1+S{S2
1
2

1
2

S1 S S′1
} (−1)L+L2+L′1{L1 L l′

L2 l L′1
} { l L2 l′

l′′ k l′′
}

(A.4)

A.5 lN l′↔ lN−1sl′′

⟨lN(S1L1) l′(SL) ∣C ∣ lN−1(S2L2) s(S′1L2) l′′(S′L′)⟩ =
√
N ⋅ δ(SS′) ⋅ δ(LL′) ⋅ δ(S1, S

′
1)

⋅ ⟨l ∥ C(l) ∥ s⟩ ⟨l′ ∥ C(l) ∥ l′′⟩ ⋅Rl(ll′, sl′′) ⋅ (−1)L2+l′′+L ⋅ [L1]
1
2 ⋅ [l]−

1
2

⋅(−1)l ⋅ (lN S1L1ν1{∣lN−1S2L2ν2) ⋅ {
L2 l L1

l′ L l′′
}

+
√
N ⋅ δ(SS′) ⋅ δ(LL′) ⋅ ⟨l ∥ C(l′) ∥ l′′⟩ ⟨l′ ∥ C(l′) ∥ s⟩ ⋅Rl′(ll′, l′′s) ⋅ (−1)L2+L ⋅ [L1]

1
2 ⋅ [l′]−

1
2

{ l
′′ l l′

L1 L L2
} (−1)l′+l′′ ⋅ [S1, S

′
1]

1
2 ⋅ (−1)S1+S′1 ⋅ {S2 S1

1
2

S S′1
1
2

} ⋅ (lN S1L1ν1{∣lN−1S2L2ν2)

(A.5)

A.6 lN l′↔ lN−1l′′l′′′

⟨lN(S1L1) l′ SL ∣C ∣ lN−1(S′1L′1) l′′(S2L2) l′′ S′L′⟩ =
√
N ⋅ δ(SS′) ⋅ δ(LL′) ⋅ δ(S1, S2)

⋅∑
k

(−1)k ⋅ ⟨l ∥ C(k) ∥ l′′⟩ ⟨l′ ∥ C(k) ∥ l′′′⟩ ⋅Rk(ll′, l′′l′′′) ⋅ [L1, L2]
1
2

⋅ (lN S1L1{∣lN−1S′1L
′
1) ⋅ (−1)l+L1+L′1 ⋅ { l k l′′

L2 L′1 L1
} ⋅ (−1)L2+l′′′+L ⋅ {k l′ l′′′

L L2 L1
}

+
√
N ⋅ δ(SS′) ⋅ δ(LL′) ⋅∑

k′
(−1)k′ ⋅ ⟨l ∥ C(k′) ∥ l′′′⟩ ⟨l′ ∥ C(k′) ∥ l′′⟩ ⋅Rk′(ll′, l′′′l′′)

⋅(−1)S1+S2 ⋅ {S1 S 1
2

S2 S′1
1
2

} ⋅ [S1, L1, S2, L2]
1
2 ⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l k′ l′′′

L1 l′ L
L′1 l′′ L2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(lN S1L1{∣lN−1S′1L

′
1)

(A.6)
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A.7 lN l′′ 2 ↔ lN l′l′′′, lN spectator

⟨lN(S1L1) l′′ 2(S2L2)SL∣C ∣ lN(S1L1) l′(S12L12) l′′′ S′L′⟩ =
√

2 ⋅ δ(SS′) ⋅ δ(LL′)

⋅∑
k

(−1)k ⋅ ⟨l′′ ∥ C(k) ∥ l′⟩ ⟨l′′ ∥ C(k) ∥ l′′′⟩ ⋅Rk(l′′ 2, l′l′′′) ⋅ [S12, L12, S2, L2]
1
2

⋅(−1)S1+1+S ⋅ {S1
1
2 S12

1
2 S S2

} ⋅ (−1)L+L1+L2 ⋅ {L1 l′ L12

l′′′ L L2
} ⋅ { k l′′ l′′′

L2 l′ l′′
} (A.7)

A.8 lN l′l′′↔ lN l′′2, l′′ spectator

⟨lN(S1L1) l′(S12L12) l′′SL∣C ∣ lN(S′1L′1) l′′2(S2L2)S′L′⟩ = N
√

2 ⋅ δ(SS′) ⋅ δ(LL′) ⋅ δ(S1, S
′
1)

⋅(−1)S′1+S+1 ⋅ [S12, S2]
1
2 ⋅ {

1
2 S′1 S12

S 1
2 S2

} ⋅∑
k

(−1)k ⋅ ⟨l ∥ C(k) ∥ l⟩ ⟨l′ ∥ C(k) ∥ l′′⟩ ⋅Rk(ll′, ll′′)

⋅[L1, L
′
1, L12, L2]

1
2 ⋅ {l

′′ L′1 L12

L l′′ L2
} ⋅ {L1 L′1 k

l′′ l′ L12
}

⋅∑
S̃L̃

(lN S1L1{∣lN−1S̃L̃) ⋅ (lN S′1L′1{∣lN−1S̃L̃) ⋅ (−1)L̃+L+L12+l+l′′+L1+k ⋅ {L1 L′1 k

l l L̃
}

−N
√

2 ⋅ δ(SS′) ⋅ δ(LL′) ⋅∑
k′

(−1)k′ ⋅ ⟨l ∥ C(k′) ∥ l′′⟩ ⟨l′ ∥ C(k′) ∥ l⟩ ⋅Rk′(ll′, l′′l)

⋅(−1)S1−S ⋅ [S1, S
′
1, S12, S2]

1
2 ⋅ {S12

1
2 S′1

S2 S 1
2

} ⋅ (−1)L+L′1 ⋅ [L1, L
′
1, L12, L2]

1
2 ⋅ {L

′
1 L12 l′′

l′′ L2 L
}

⋅∑
S̃L̃

(lN S1L1{∣lN−1S̃L̃) ⋅ (lN S′1L′1{∣lN−1S̃L̃) ⋅ {
1
2 S̃ S′1
1
2 S12 S1

} ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k′ l′ l
l′′ L12 L′1
l L1 L̃

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A.8)

A.9 l′4l
′+2lN−2l′′↔ l′4l

′+1lN

⟨l′4l′+2lN−2(S1L1) l′′ SL ∣C ∣ l′4l′+1lN(S′1L′1)S′L′⟩ = δ(SS′)δ(LL′)(−1)N
√
N(N − 1)

⋅[S′1, L′1]
1
2 ⋅ ∑

k

(−1)k ⟨l ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⋅Rk(l′l′′, ll)

⋅∑
S̃L̃

(−1)1+S̃+S ⋅ [S̃, L̃]
1
2 ⋅ {

1
2 S1 S
1
2 S′1 S̃

} ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1 l′′ L
l k l′

L̃ l L′1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅

⋅ (lN (S′1L′1){∣lN−1(S̃L̃)) (lN−1(S̃L̃){∣lN−2(S1L1))
(A.9)
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A.10 l′4l
′+2lN ↔ l′4l

′
lN+2

⟨l′4l′+2lN(SL) ∣C ∣ l′4l′(S1L1)lN+2(S2L2)S′L′⟩ = δ(SS′)δ(LL′)
√

(N + 2)(N + 1)
2

[S,L]−
1
2

⋅[S1, L1, S2, L2]
1
2 (−1)1+S+S2 ⋅ (−1)L+L1+L2∑

k

⟨l′ ∥ C(k) ∥ l⟩2 (−1)k{l
′ l′ L1

l l k
} ⋅Rk(l′l′, ll)

⋅∑
S̃L̃

[S̃, L̃]
1
2 ⋅ { l l L1

L2 L L̃
} {

1
2

1
2 S1

S2 S S̃
} ⋅ (lN+2 S2L2{∣lN+1S̃L̃) (lN+1S̃L̃{∣lNSL)

(A.10)

A.11 l′M+2lN ↔ l′M lN+2

⟨l′M+2(S3L3)lN(S0L0)SL ∣C ∣ l′M(S1L1)lN+2(S2L2)SL⟩ = 1
2

√
(M + 2)(M + 1)(N + 2)(N + 1)

⋅∑
S L

∑
S1 L1

(l′M+2 S3L3{∣l′M+1S L) (l′M+1S L{∣l′MS1L1) ⋅ (lN+2 S2L2{∣lN+1S1L1) (lN+1S1L1{∣lNS0L0)

⋅ (−1)S3+S0−S ⋅ [S,S3, S1, S2]
1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 S2 S
1
2 S1 S0

S 1
2 S3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (−1)L2+L1+L+L1 ⋅ [L,L3, L1, L2]

1
2

∑
k

⟨l′ ∥ C(k) ∥ l⟩2 ⋅Rk(l′l′, ll) ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L2 L1 l′ l

L L k L1

L0 L3 l′ l

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A.11)

Graphically:
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A.12 l′4l
′+2lN ↔ l′4l

′+1lN+1

Assuming that parity(l′)=parity(l):

⟨l′4l′+2 lN(SL) ∣C ∣ l′4l′+1 lN+1(S1L1)S′L′⟩ = δ(SS′)δ(LL′)(−1)N−1N
√

(4l′ + 2)(N + 1)

⋅[S1, L1]
1
2 ⋅ [1

2 , l
′]−

1
2 ⋅ ∑

k

⟨l′ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k) ∥ l⟩ ⋅Rk(l′l, ll) ⋅∑
S̃L̃

(lN+1 S1L1{∣lN S̃L̃) [S̃, L̃]
1
2

⋅ ∑
S2L2

(lN SL{∣lN−1S2L2) (lN S̃L̃{∣lN−1S2L2) (−1)1+S̃+S {S̃
1
2 S1

S 1
2 S2

}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L2 l L̃
l k l
L l′ L1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ δ(l, l′) ⋅ (−1)N(4l′ + 1)

√
(4l′ + 2)(N + 1) ⋅ [S1, L1]

1
2 ⋅ [1

2 , l
′]−

1
2 ⋅ [S,L]−

1
2 ⋅ (lN+1 S1L1{∣lNSL)

∑
k

(−1)k ⟨l′ ∥ C(k) ∥ l′⟩ ⟨l′ ∥ C(k) ∥ l⟩Rk(l′l′, l′l)∑
S̃L̃

[S̃, L̃] [(2l′ + 1)(4l′ + 1)]−1 (−1)l′+l+L̃ {k l′ l

L̃ l′ l′
}

(A.12)

A.13 l′4l
′+2lN ↔ l′4l

′+1lN l′′

Given the condition that parity(l′′) equals parity(l′), one obtains:

⟨l′4l′+2lN(SL) ∣C ∣ l′4l′+1lN(S3L3)S1L1 l
′′(S′L′)⟩ = δ(SS′)δ(LL′)(−1)N−1N

√
4l′ + 2

[∑
k

⟨l′ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⋅Rk(l′ l, ll′′) ⋅ [1
2 , l

′, S1]−
1
2 ⋅ [S3, L3, L1]

1
2 ⋅ (−1)k+L+L3

∑
S2L2

δ(S1, S2) (lN SL{∣lN−1S2L2) (lN S3L3{∣lN−1S2L2){
l k l′

L1 L3 L2
} {k l l′′

L L1 L2
}

−∑
k′

⟨l′ ∥ C(k′) ∥ l′′⟩ ⟨l ∥ C(k′) ∥ l⟩ ⋅Rk′(l′ l, l′′l) ⋅ [1
2 , l

′, S3]−
1
2 ⋅ [S1, L1, L3]

1
2 ⋅ δ(S,S3)

∑
S2L2

(lN SL{∣lN−1S2L2) (lN S3L3{∣lN−1S2L2) (−1)l+l′′+L1+L2{ l k′ l
L3 L2 L

} {k
′ l′′ l′

L1 L3 L
} ]

(A.13)

A.14 l′4l
′+1lN l′′↔ l′4l

′+2lN−2l′′ 2

⟨(l′4l′+1lNS2L2)S123L123 l
′′ SL∣C ∣ l′4l′+2lN−2S′2L

′
2 l

′′ 2S′3L
′
3 SL⟩ = (−1)N−1

√
2(4l′ + 2)N(N − 1)

⋅ [S2, L2, S123, L123, S
′
3, L

′
3]

1
2 ⋅ [1

2 , l
′]−

1
2 ⋅ ∑

k

(−1)k ⋅ ⟨l ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⋅Rk(l2, l′l′′)

⋅ {S
′
2

1
2 S123

1
2 S S′3

} ⋅ {L
′
2 l′′ L123

l′′ L L′3
} ⋅∑

S L

[S,L]
1
2 ⋅ (lN S2L2{∣lN−1S L) (lN−1S L{∣lN−2S′2L

′
2)

⋅ (−1)S123+S+S′2+S′3+1+S ⋅ {
1
2 S′2 S123
1
2 S2 S

} ⋅ (−1)L+L′2+L′3 ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L′2 l′′ L123

l k l′

L l L2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A.14)
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A.15 l′ lN l′′′↔ lN l′′ 2, lN spectator

The phase factor w.r.t. A.7 equals (−1)x = (−1)N ⋅ (−1)S2+
1
2−S12 ⋅ (−1)L2+l′−L12 .

⟨l′ lN(S2L2)S12L12 l
′′′ SL∣C ∣ lN(S2L2) l′′ 2(S′3L′3)SL⟩ = (−1)N

√
2 ⋅ [S12, L12, S

′
3, L

′
3]

1
2

⋅ (−1)S12+S+
1
2 ⋅ {S12 S 1

2

S′3
1
2 S2

} ⋅ (−1)L12+L+l′′′ ⋅ {L12 L l′′′

L′3 l′ L2
}

∑
k

(−1)k ⋅ ⟨l′ ∥ C(k) ∥ l′′⟩ ⟨l′′′ ∥ C(k) ∥ l′′⟩ ⋅Rk(l′l′′′, l′′ 2) ⋅ (−1)L′3 ⋅ { k l′′ l′′′

L′3 l′ l′′
}

(A.15)

A.16 l′ lN l′′↔ lN l′′ 2, l′′ spectator

The phase factor w.r.t. A.8 is the same (−1)x, see above.

⟨l′ lN(S2L2)S12L12 l
′′ SL∣C ∣ lN(S′2L′2) l′′ 2(S′3L′3)SL⟩ = (−1)N−1 ⋅N

√
2 ⋅ [S12, L12, S

′
3, L

′
3]

1
2

⋅ [S2, L2, S
′
2, L

′
2]

1
2 ⋅ ∑

k

(−1)k ⋅ ⟨l′ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⋅Rk(l′l, ll′′)

⋅ (−1)2S′2+
1
2−S12−S ⋅ (−1)L2+L′2+L12+l′+L ⋅ {S

′
2

1
2 S12

1
2 S S′3

} ⋅ {L
′
2 l′′ L12

l′′ L L′3
}

∑
S L

{
1
2 S2 S12
1
2 S′2 S

} ⋅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L2 l L
L12 l′′ L′2
l′ k l

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ (lN S2L2{∣lN−1S L) ⋅ (lN S′2L′2{∣lN−1S L)

− (−1)N−1 ⋅N
√

2 ⋅ δ(S2 S
′
2) ⋅ [S12, L12, S

′
3, L

′
3]

1
2 ⋅ [L2, L

′
2]

1
2 ⋅ (−1)S12+S+

1
2 ⋅ {S12 S′2

1
2

S′3
1
2 S

}

⋅ {L12 L′2 l′′

L′3 l′′ L
} ⋅∑

k′
(−1)k′ ⋅ ⟨l′ ∥ C(k′) ∥ l′′⟩ ⟨l ∥ C(k′) ∥ l⟩ ⋅Rk′(l′l, l′′l) ⋅ {L2 k′ L′2

l′′ L12 l′
}

∑
S L

(−1)L+l+L ⋅ {L l L′2
k′ L2 l

} ⋅ (lN S2L2{∣lN−1S L) ⋅ (lN S′2L′2{∣lN−1S L) (A.16)

A.17 s2lN−1l′↔ s lN l′′

The parity condition is: (−1)l+l′+l′′ = 1.

⟨s2lN−1(S2L2)l′(SL) ∣C ∣ (s lN(S1L1))S12L12 l
′′(S′L′)⟩ = δ(SS′)δ(LL′)(−1)N−1

√
2N

⋅ δ(L12, L1) ⋅ {
l l′ l′′

L L1 L2
} ⋅ (lNS1L1{∣lN−1S2L2)

⋅ [δ(S12, S2) ⋅ ⟨l′ ∥ C(l) ∥ l′′⟩ ⋅Rl(s l′, ll′′) ⋅ [1
2 , l]

−1
2 ⋅ [S1, L1]

1
2 ⋅ [S2]−

1
2 ⋅ (−1)l′+L2+L

−δ(S1, S) ⋅ ⟨l ∥ C(l
′′) ∥ l′⟩ ⋅Rl′′(s l′, l′′l) ⋅ [1

2 , l
′′]−

1
2 ⋅ [S12, L1]

1
2 ⋅ [S1]−

1
2 ⋅ (−1)l+L2+L]

(A.17)



Appendix B

Some perturbation operators

Matrix elements of effective (2+1)-electron operators in the configuration l2l′.
The orbital angular momenta l, l′, l̄ and l′′ are respectively associated with the or-
bitals a, b, c, and v (the latter two referring to closed and virtual shells).
For a two-particle excitation cb → a2, we thus obtain for the configuration l2l′ the
final equation:

⟨l2(SL)l′(S3L3) ∣T (cb→ a2)∣ l2(S′L′)l′(S3L3)⟩
= ∑
k,k′

2 ⟨l̄ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k′) ∥ l̄⟩ ⟨l′ ∥ C(k) ∥ l⟩ ⟨l ∥ C(k′) ∥ l′⟩

× [S,L,S′, L′]
1
2 (−1)S+S′+1{S

1
2

1
2

S′ S3
1
2

}

× {L l̄ l′

k′ l l
} {L

′ l̄ l′

k l l
} {L l̄ l′

L′ L3 l′
} Rk(cb;aa)Rk′(aa; bc)

EA −EB
(B.1)

All remaining three-particle operators arise from single electron excitations in the
second order of perturbation theory.
Equations (B.2) represent the a→ v excitation, equations (B.3) the b→ v excitation.
Below, the characters D and E indicate ’direct’ and ’exchange’ terms. Equations
corresponding to closed shell excitations c → a and c → b with l̄ = l′′ are obtained
from equations (B.2) and (B.3) by adding a minus sign and replacing v with c.

⟨l2(SL)l′(S3L3)∣T (DD +DD)∣l2(S′L′)l′(S3L3)⟩
= ∑
k,k′

2 ⟨l ∥ C(k) ∥ l′′⟩ ⟨l ∥ C(k′) ∥ l′′⟩ ⟨l′ ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k′) ∥ l⟩

× δ(S,S′) (−1)L+l′+L3 [L,L′]
1
2

× ({ l l L′

l′′ l k′
} { l l′′ L′

k L l
} + { l l L

l′′ l k′
} { l l′′ L

k L′ l
} )

× {L k L′

l′ L3 l′
} ⨋

a→v

Rk(ab; vb)Rk′(aa;av)
EA −EB

(B.2a)
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⟨l2(SL)l′(S3L3)∣T (ED +DE)∣l2(S′L′)l′(S3L3)⟩
= ∑
k,k′

2 ⟨l ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k′) ∥ l⟩ ⟨l′ ∥ C(k) ∥ l′′⟩ ⟨l ∥ C(k′) ∥ l′′⟩

× [S,L,S′, L′]
1
2 (−1)k{S3

1
2 S

1
2

1
2 S′

}

×
⎛
⎜
⎝
(−1)S{ k l l′′

L′ l l
}

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l′ L3 L′

l L l
k l′ l′′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ (−1)S′{k

′ l l′′

L l l
}

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l′ L3 L
l L′ l
k l′ l′′

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠

× ⨋
a→v

Rk(ab; bv)Rk′(aa;av)
EA −EB

(B.2b)

⟨l2(SL)l′(S3L3)∣U(DD)∣l2(S′L′)l′(S3L3)⟩
= ∑
k,k′

2 ⟨l ∥ C(k) ∥ l⟩ ⟨l ∥ C(k′) ∥ l⟩ ⟨l′ ∥ C(k) ∥ l′′⟩ ⟨l′ ∥ C(k′) ∥ l′′⟩

× δ(S,S′) (−1)S3+L3−(1/2+l′) (−1)S3+S−1/2 [L,L′]
1
2

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L3 L l k′

l′ l l l′

l′′ k l L′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⨋
b→v

Rk(ab;av)Rk′(ab;av)
EA −EB

(B.3a)

⟨l2(SL)l′(S3L3)∣U(DE +ED)∣l2(S′L′)l′(S3L3)⟩
= ∑
k,k′

2 ⟨l ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k′) ∥ l⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⟨l′ ∥ C(k′) ∥ l′′⟩

× [S,L,S′, L′]
1
2 (−1)S+S′{S

1
2

1
2

S′ 1
2 S3

}

×
⎛
⎜
⎝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l l k
k′ L l′ l

l′′ l′ L3 L′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l l l k
k′ L′ l′ l

l′′ l′ L3 L

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠

× ⨋
b→v

Rk(av; ba)Rk′(ab;av)
EA −EB

(B.3b)

⟨l2(SL)l′(S3L3)∣U(EE)∣l2(S′L′)l′(S3L3)⟩
= ∑
k,k′

2 ⟨l ∥ C(k) ∥ l′⟩ ⟨l ∥ C(k′) ∥ l′⟩ ⟨l ∥ C(k) ∥ l′′⟩ ⟨l ∥ C(k′) ∥ l′′⟩

× [S,L,S′, L′]
1
2 (−1)S ⋅ (−1)L3+L′+l′ ⋅ (1 − 1

2δ(k, k
′)) ⋅ {S

1
2

1
2

S′ 1
2 S3

}

×
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

k L l l′

l′′ l l L3

l k′ l′ L′

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

k′ L l l′

l′′ l l L3

l k l′ L′

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
⨋
b→v

Rk(ab; va)Rk′(av; ba)
EA −EB

(B.3c)
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⟨ll′(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)ab1/∆E ∥ ll′(S′L′)⟩a→b = ⟨a ∥ F (κk) ∥ b⟩ ⋅ [S,L,S′, L′]

1
2

⋅ {S κ S′
1
2

1
2

1
2

} ⋅ (−1)κ+k+S′+L′ ⋅ ∑
k′

⟨l ∥ C(k′) ∥ l′⟩ ⟨l′ ∥ C(k′) ∥ l′⟩ ⋅Rk′(ab, bb) ⋅∆E−1⋅

[(−1)S ⋅ {L l′ l′

k′ l′ l
} ⋅ {L k L′

l l′ l′
} + (−1)S′ ⋅ {L

′ l′ l′

k′ l′ l
} ⋅ {L

′ k L
l l′ l′

} ] (B.4a)

⟨ll′(SL) ∥ −(CABT (t)BA + T
(t)
ABCBA)ab2/∆E ∥ ll′(S′L′)⟩a→b = ⟨a ∥ F (κk) ∥ b⟩ ⋅ [S,L,S′, L′]

1
2

⋅ {S κ S′
1
2

1
2

1
2

} ⋅ (−1)κ+k ⋅ ∑
k′

⟨l ∥ C(k′) ∥ l′⟩ ⟨l′ ∥ C(k′) ∥ l′⟩ ⋅Rk′(ab, bb) ⋅∆E−1⋅

[(−1)S+L+S′+L′(−1)S ⋅ {L l′ l′

k′ l′ l
} ⋅ {L k L′

l l′ l′
} + (−1)S′ ⋅ {L

′ l′ l′

k′ l′ l
} ⋅ {L

′ k L
l l′ l′

} ]

(B.4b)



Appendix C

Special nj-symbols

C.1 3j-symbols

( j k j
−j 0 j

) = (2j)!

[(2j − k)!(2j + k + 1)!]
1
2

(C.1)

( j 1 j
−j 0 j

) = ( j

(j + 1)(2j + 1)
)

1
2

(C.2a)

( j 2 j
−j 0 j

) = ( j(2j − 1)
(j + 1)(2j + 1)(2j + 3)

)
1
2

(C.2b)

( j 0 j
−m 0 m

) = (−1)j−m[j]−
1
2 (C.3a)

( j 1 j
−m 0 m

) = (−1)j−m m√
j(j + 1)(2j + 1)

(C.3b)

( l 1 l + 1
0 0 0

) = (−1)l−1 [ l + 1

(2l + 1)(2l + 3)
]

1
2

(C.4a)

( l 1 l − 1
0 0 0

) = (−1)l [ l

(2l − 1)(2l + 1)
]

1
2

(C.4b)

( l 1 l
0 1 −1

) = (−1)l+1 [ 1

2(2l + 1)
]

1
2

(C.4c)
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( l 1 l − 1
0 1 −1

) = (−1)l [ l − 1

2(2l − 1)(2l + 1)
]

1
2

(C.4d)

( l 1 l + 1
0 1 −1

) = (−1)l [ l + 2

2(2l + 1)(2l + 3)
]

1
2

(C.4e)

(j +
1
2

1
2 j

m 1
2 −m − 1

2

) = (−1)j+m−
1
2 ⋅ [

j −m + 1
2

2(j + 1)(2j + 1)
]

1
2

(C.5)

(l −
1
2 l − 1

2 1
−1

2 −1
2 1

) = (−1)l ⋅ [ l

(2l − 1)(2l + 1)
]

1
2

(C.6a)

(l +
1
2 l − 1

2 1
−1

2 −1
2 1

) = (−1)l+1 ⋅ 1

2
⋅ [ 1

2l + 1
]

1
2

(C.6b)

(l +
1
2 l + 1

2 1
−1

2 −1
2 1

) = (−1)l+1 ⋅ [ l + 1

(2l + 1)(2l + 3)
]

1
2

(C.6c)

( j j 1
−1

2
1
2 0

) = (−1)j−
1
2 ⋅ 1

2
⋅ [ 1

j(j + 1)(2j + 1)
]

1
2

(C.7a)

( j j + 1 1
−1

2
1
2 0

) = (−1)j−
1
2 ⋅ 1

2
⋅ [ 1

(j + 1)
]

1
2

(C.7b)

( j j − 1 1
−1

2
1
2 0

) = (−1)j+
1
2 ⋅ 1

2
⋅ [1

j
]

1
2

(C.7c)

∑
t

[t] ⋅ ( j j′ t
−1

2
1
2 0

)
2

= 1
2 Γjtj′ = 2 ( j j′ t

−1
2

1
2 0

)
2

[Grant, 1961] (C.7d)

(l −
1
2 l − 1

2 2
−1

2
1
2 0

) = (−1)l+1 ⋅ [ (l − 1)(l + 1)
2l(2l − 1)(2l + 1)

]
1
2

(C.8a)

(l +
1
2 l − 1

2 2
−1

2
1
2 0

) = (−1)l ⋅ [ 3

2(2l − 1)(2l + 1)(2l + 3)
]

1
2

(C.8b)

(l +
1
2 l + 1

2 2
−1

2
1
2 0

) = (−1)l ⋅ [ l(l + 2)
2(l + 1)(2l + 1)(2l + 3)

]
1
2

(C.8c)

[Brink and Satchler, 1968], recursion formulae Appendix I:

( j j′ L
−1

2 −1
2 1

) = ( j j′ L
−1

2
1
2 0

) ⋅ −1
2 ⋅

(−1)j+j′+L[j] + [j′]

[L(L + 1)]
1
2

for odd l + l′ +L: = ( j j′ L
−1

2
1
2 0

) ⋅ (−1)j′−
1
2+l

′(κ + κ′)

[L(L + 1)]
1
2

(C.9a)
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For a + b + c even:

(a b c
1 −1 0

) = (a b c
0 0 0

) ⋅ c(c + 1) − a(a + 1) − b(b + 1)

2 [a(a + 1)b(b + 1)]
1
2

(C.9b)

C.2 6j-symbols

{1 1 1
1
2

1
2

1
2

} = −1
3 (C.10)

{a b c
1 c b

} = (−1)a+b+c [b, c]−
1
2 ⋅ a(a + 1) − b(b + 1) − c(c + 1)

2
√
b(b + 1) ⋅ c(c + 1)

= (−1)s ⋅
1
2C√

b(b + 1)(2b + 1) ⋅ c(c + 1)(2c + 1)
(C.11)

{a b c
2 c b

} = 2(−1)s ⋅
3
4C(C + 1) − b(b + 1)c(c + 1)

[b(b + 1)(2b + 1)(2b − 1)(2b + 3)c(c + 1)(2c + 1)(2c − 1)(2c + 3)]
1
2

(C.12)

{ l l 1
2 1 l

} = [ (2l − 1)(2l + 3)
30 ⋅ l(l + 1)(2l + 1)

]
1
2

(C.13)

{
1
2

1
2 S

1
2

1
2 1

} = (−1)S ⋅ 1
3 ⋅ (

3
2 − S(S + 1)) (C.14)

∑
S,S′

[S,S′] ⋅ {S S′ 1
1
2

1
2

1
2

}
2

= 2 (C.15a)

∑
S,S′

[S,S′] ⋅ (−1)S ⋅ {S S′ 1
1
2

1
2

1
2

}
2

= −1 (C.15b)

∑
S,S′

[S,S′] ⋅ (−1)S+S′ ⋅ {S S′ 1
1
2

1
2

1
2

}
2

= 0 (C.15c)

{l −
1
2 l 3

2

1 1
2 l

} = −1

2
[ 2l − 1

3 l(2l + 1)
]

1
2

(C.16)

{l +
1
2 l 5

2

3 1
2 l

} = −[ l − 1

14(l + 1)(2l + 1)
]

1
2

(C.17)



C.2. 6J-SYMBOLS 287

{l +
1
2 l 5

2
1
2 2 l + 1

2

} = −1

2
[ 2l − 1

5(l + 1)(2l + 1)
]

1
2

(C.18)

{l +
1
2 l + 1

2 1
l l 1

2

} = 1

2(2l + 1)(l + 1)
⋅ [2l(2l + 3)]

1
2 (C.19)

{l +
1
2 l − 1

2 1
l l 1

2

} = −1

2l + 1
⋅ [ 1

2l(l + 1)
]

1
2

(C.20)

{l −
1
2 l − 1

2 1
l l 1

2

} = −1

4l(l + 1
2)

⋅ [2(2l − 1)(l + 1)]
1
2 (C.21)

{l +
1
2 l + 1

2 2
l l 1

2

} = −1

(2l + 1)(l + 1)
⋅ [(l + 2)(2l − 1)

2
]

1
2

(C.22)

{l +
1
2 l − 1

2 2
l l 1

2

} = 1

2(2l + 1)
⋅ [ 6

l(l + 1)
]

1
2

(C.23)

{l −
1
2 l − 1

2 2
l l 1

2

} = 1

l(2l + 1)
⋅ [(2l + 3)(l − 1)

2
]

1
2

(C.24)
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{
1
2 2 3

2

l + 1
2 l l + 1

2

} = −[ l + 2

10(l + 1)(2l + 1)
]

1
2

(C.25)

{
1
2 2 3

2

l − 1
2 l l + 1

2

} = 1

2
[ 3(2l + 3)

10(l + 1)(2l + 1)
]

1
2

(C.26)

{
1
2 2 3

2

l − 1
2 l l − 1

2

} = −1

2
[ 2(l − 1)

5l(2l + 1)
]

1
2

(C.27)

{
1
2 2 5

2

l + 1
2 l l + 1

2

} = −1

2
[ 2l − 1

5 (l + 1)(2l + 1)
]

1
2

(C.28)

{
1
2 2 5

2

l + 1
2 l l − 1

2

} = −[ l + 2

15 l(2l + 1)
]

1
2

(C.29)

{
1
2 2 5

2

l − 1
2 l l + 1

2

} = [ l − 1

15(l + 1)(2l + 1)
]

1
2

(C.30)

{
1
2 2 5

2

l − 1
2 l l − 1

2

} = 1

2
[ 2l + 3

5 l(2l + 1)
]

1
2

(C.31)

{l +
1
2 l 5

2

3 1
2 l

} = −[ l − 1

14 (l + 1)(2l + 1)
]

1
2

(C.32)

{l −
1
2 l 5

2

3 1
2 l

} = −[ l + 2

14 l(2l + 1)
]

1
2

(C.33)

{
1
2 1 1

2

l + 1
2 l l + 1

2

} = 1

2
[ 2l + 3

3(l + 1)(2l + 1)
]

1
2

(C.34)

{
1
2 1 1

2

l + 1
2 l l − 1

2

} = (−1)2l+1 [ 1

3(2l + 1)
]

1
2

(C.35)

{
1
2 1 1

2

l − 1
2 l l − 1

2

} = 1

2
[ 2l − 1

3l(2l + 1)
]

1
2

(C.36)
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{
1
2 1 3

2

l + 1
2 l l + 1

2

} = [ l

6(l + 1)(2l + 1)
]

1
2

(C.37)

{
1
2 1 3

2

l − 1
2 l l + 1
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]
1
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C.3 9j-symbols

Using equation (2.14) for the below ’stretched’ cases:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 1

1
2

1
2 1

1 1 2
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= 1

9
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[Brink and Satchler, 1968], Appendix II, only for even l + l′ + t:

{j j′ t
l′ l 1

2

} ⋅ ⟨l ∥ C(t) ∥ l′⟩ = (−1)l+1 ⋅ (−1)j+j′+t ⋅ ( j j′ t
−1

2
1
2 0

) (C.52)
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[Brink and Satchler, 1968], Appendix III, p 144-145:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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g g 1
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1
2
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e d g

} (C.53)

For g = 1
2 and c + d + e even, this yields:

√
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assuming t = k in the operator (σ(1)C(k))(t), this gives:

√
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For the other cases t = k ± 1, two more relations (with c + d + e odd) are needed:
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Appendix D

Tables of electric dipole transition
integrals

Table D.1: Values for the electric dipole transition integrals in Cr II calculated by means of

MCDF including core polarization

Cr II 3d44p 3d34s4p 3d24s24p 3d45p 3d44f
3d5 1.05 - - .246 .345

3d44s -2.96 .828 - .032 -
3d34s2 - -2.740 .671 - -
3d44d -3.32 - - 6.30 -7.07
3d45s 2.23 - - -6.87 -
3d45d -1.06 - - -5.69 6.42
3d46s 0.607 - - 5.02 -
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Table D.2: Values for the electric dipole transition integrals in Mn II calculated by means of

MCDF including core polarization

Mn II 3d6 3d54s 3d44s2 3d54d 3d55s 3d55d 3d56s
3d54p .95 -2.81 - -3.36 2.08 -0.82 0.58

3d44s4p - 0.76 -2.62 - - - -
3d34s24p - - 0.62 - - - -

3d55p 0.239 0.025 - 6.37 -6.70 -5.48 4.97
3d54f 0.291 - - -6.38 - 6.80 -

Table D.3: Values for the electric dipole transition integrals in Fe II calculated by means of

MCDF including core polarization

Fe II 3d7 3d64s 3d54s2 3d64d 3d65s 3d65d 3d66s 3d54p2 3d54s4d 3d54s5d
3d64p .863 -2.713 - -3.283 2.048 -0.803 0.564 0.685 - -

3d54s4p - 0.703 -2.531 - - - - -2.480 -2.940 -0.764
3d44s24p - - 0.586 - - - - - - -

3d65p 0.221 0.038 - 4.938 -6.429 -6.119 4.780 - - -
3d64f 0.238 - - -5.695 - 7.180 - - - -

Table D.4: Values for the electric dipole transition integrals in Co II calculated by means of

MCDF including core polarization

Co II 3d8 3d74s 3d64s2 3d74d 3d75s 3d75d 3d76s
3d74p .79 -2.65 - -3.20 2.13 -0.79 0.57

3d64s4p - 0.65 -2.44 - - - -
3d54s24p - - 0.55 - - - -

3d75p 0.22 0.03 - 4.88 -6.41 -6.00 4.89
3d74f 0.19 - - -5.56 - 7.32 -

Table D.5: Values for the electric dipole transition integrals in Ni II calculated by means of

MCDF including core polarization

Ni II 3d9 3d84s 3d74s2 3d84d 3d85s 3d85d 3d86s
3d84p 0.734 -2.593 - -3.11 2.21 -0.78 0.58

3d74s4p - 0.608 -2.402 - - - -
3d64s24p - - 0.517 - - - -

3d85p 0.211 -0.001 - 4.82 -6.39 -5.88 4.95
3d84f 0.160 - - -5.43 - 7.42 -
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Table D.6: Values for the electric dipole transition integrals in Ti III calculated by means of

MCDF including core polarization

Ti III 3d4p 4s4p 3d5p 3d4f 3p53d3

3d2 .999 - .231 .617 -1.02
3d4s -2.880 .788 .150 - -
4s2 - -2.700 - - -

3d5s 1.710 - -5.830 - -
3d6s .501 - 3.550 - -
3d4d -3.270 - 3.790 -4.980 -
3d5d -.625 - -5.690 3.640 -
4p2 .780 -2.670 - - -

Table D.7: Values for the electric dipole transition integrals in Fe III calculated by means of

MCDF including core polarization

Fe III 3d6 3d54s 3d44s2

3d54p .681 -2.397 -

Table D.8: Values for the electric dipole transition integrals in V IV calculated by means of

MCDF including core polarization

V IV 3d4p 4s4p 3d5p 3d4f 3p53d3

3d2 .699 - .185 .577 -0.898
3d4s -2.464 .590 .204 - -
4s2 - -2.343 - - -

3d5s 1.326 - -4.835 - -
3d6s .398 - 2.764 - -
3d4d -2.892 - 2.589 -3.770 -
3d5d -.317 - -4.943 2.338 -
4p2 .587 -2.325 - - -

Table D.9: Values for the electric dipole transition integrals in Cu IV calculated by means of

MCDF including core polarization.

Cu IV 3d8 3d74s 3d64s2

3d74p .484 -1.967 -
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Table D.10: Values for the electric dipole transition integrals in Cr V calculated by means of

MCDF including core polarization

Cr V 3d4p 4s4p 3d5p 3d4f
3d2 .538 - .153 .533
3d4s -2.159 .469 .235 -
4s2 - -2.067 - -

3d5s 1.092 - -4.157 -
3d6s .340 - 2.128 -
3d4d -2.430 - 1.924 -3.051
3d5d -.128 - -4.334 1.842
4p2 .465 -2.056 - -

Table D.11: Values for the electric dipole transition integrals in Mn V calculated by means of

MCDF including core polarization

Mn V 3d3 3d24s 3d 4s2

3d24p .492 -2.020 -

Table D.12: Values for the electric dipole transition integrals in Fe V calculated by means of

MCDF including core polarization

Fe V 3d4 3d34s 3d24s2

3d34p .469 -1.966 -

Table D.13: Values for the electric dipole transition integrals in Co V calculated by means of

MCDF including core polarization

Co V 3d5 3d44s 3d34s2

3d44p .452 -1.901 -

Table D.14: Values for the electric dipole transition integrals in Ni V calculated by means of

MCDF including core polarization

Ni V 3d6 3d54s 3d44s2

3d54p .434 -1.841 -

Table D.15: Values for the electric dipole transition integrals in Cu V calculated by means of

MCDF including core polarization.

Cu V 3d7 3d64s 3d54s2

3d64p .419 -1.798 -
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Table D.16: Values for the electric dipole transition integrals in Mn VI calculated by means of

MCDF including core polarization

Mn VI 3d4p 4s4p 3d5p 3d4f
3d2 .436 - .129 .516
3d4s -1.942 0.386 0.243 -
4s2 - -1.872 - -

3d5s 0.916 - -3.664 -
3d6s .291 - 1.765 -
3d4d -2.155 - 1.501 -2.558
3d5d -.016 - -3.852 1.400
4p2 .385 -1.864 - -

Table D.17: Values for the electric dipole transition integrals in Fe VI calculated by means of

MCDF including core polarization

Fe VI 3d3 3d24s 3d 4s2

3d24p .402 -1.831 -

Table D.18: Values for the electric dipole transition integrals in Co VI calculated by means of

MCDF including core polarization

Co VI 3d4 3d34s 3d24s2

3d34p .389 -1.781 -

Table D.19: Values for the electric dipole transition integrals in Ni VI calculated by means of

MCDF including core polarization

Ni VI 3d5 3d44s 3d34s2

3d44p .375 -1.727 -

Table D.20: Values for the electric dipole transition integrals in Cu VI calculated by means of

MCDF including core polarization.

Cu VI 3d6 3d54s 3d44s2

3d54p .365 -1.672 -

Table D.21: Values for the electric dipole transition integrals in Fe VII calculated by means of

MCDF including core polarization, αd(3p) = 0.85(1.6) and αd(3d) = 1.01(2.0).

Fe VII 3d4p 3d4f 3p53d3

3d2 .348 .466 -.640
3d4s -1.717 - -
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Table D.22: Values for the electric dipole transition integrals in Cu VII calculated by means of

MCDF including core polarization, αd(3p) = 0.50(1.5) and αd(3d) = 0.72(1.7).

Cu VII 3d5 3d44s 3d34s2

3d44p .322 -1.580 -

Table D.23: Values for the electric dipole transition integrals in Ge VII calculated by means of

MCDF including core polarization, αd(3p) = 0.321(1.24) and αd(3d) = 0.543(1.45)

Ge VII 3d74p 3p53d9 3d74f
3d8 .297 -0.527 .298

3d74s -1.462 - -
3d64s2 - - -

Table D.24: Values for the electric dipole transition integrals in Fe IX calculated by means of

MCDF including core polarization, αd(3s) = 0.57(1.5) and αd(3p) = 0.78(1.5)

Fe IX 3p53d 3p54s 3p54d 3p55s 3p55d 3s3p64p
3p6 -0.623 0.252 0.181 0.090 0.106 0.162

3p54p 0.271 -1.484 -1.589 0.581 0.171 -0.629
3p54f 0.487 - -1.623 - 0.586 -
3p55p 0.080 0.240 0.804 -2.791 -2.941 -
3p55f 0.249 - 0.584 - -3.159 -

3s3p63d -0.640 - - - - 0.273

Table D.25: Values for the electric dipole transition integrals in Os IV calculated by means of

MCDF including core polarization

Os IV 5d46p 5d36s6p 5d26s26p
5d5 1.152 - -

5d46s -2.573 1.103 -
5d36s2 - -2.519 1.059

Table D.26: Values for the electric dipole transition integrals in Os V calculated by means of

MCDF including core polarization

Os V 5d36p 5d26s6p 5d 6s26p
5d4 1.061 - -

5d36s -2.422 1.022 -
5d26s2 - -2.38 0.99
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Table D.27: Values for the electric dipole transition integrals in Os VI calculated by means of

MCDF including core polarization

Os VI 5d26p
5d3 0.9854

5d26s -2.2989
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Tables of electric quadrupole
transition integrals
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Table E.1: Values for the electric quadrupole transition integrals in Co II calculated by means

of MCDF including core polarization. For 3d7nd, the upper row gives the 3d→3d and the lower

row the nd→nd transition integrals.

Co II 3d8 3d74s 3d64s2 3d74d 3d75s 3d75d 3d76s
3d8 1.60 -2.55 - -1.55 0.20 -0.66 0.09

3d74s -2.55 1.31 -1.95 9.48 - 2.89 -
3d64s2 - -1.95 1.12 - - - -
3d74d -1.55 9.48 - 1.26 -38.26 -24.55 18.97

- - - 35.53 - - -
3d75s 0.20 - - -38.26 1.27 34.47 -
3d75d -0.66 2.89 - -24.55 34.47 1.26 -141.78

- - - - - 139.25 -
3d76s 0.09 - - 18.97 - -141.78 1.26

Table E.2: Values for the electric quadrupole transition integrals in Ni II calculated by means of

MCDF including core polarization. For 3d8nd, the upper row gives the 3d→3d and the lower row

the nd→nd transition integrals.

Ni II 3d9 3d84s 3d74s2 3d84d 3d85s 3d85d 3d86s
3d9 1.42 -2.29 - -1.37 0.14 -0.60 0.07

3d84s -2.29 1.18 -1.76 8.96 - 2.79 -
3d74s2 - -1.76 1.02 - - - -
3d84d -1.37 8.96 - 1.14 -37.08 -24.07 19.98

- - - 34.54 - - -
3d85s 0.14 - - -37.08 1.15 32.86 -
3d85d -0.60 2.79 - -24.07 32.86 1.14 -138.55

- - - - - 136.58 -
3d86s 0.07 - - 19.98 - -138.55 1.14

Table E.3: Values for the electric quadrupole transition integrals in Mn III calculated by means

of MCDF including core polarization

Mn III 3d5 3d44s 3d34s2 3d44d 3d45s
3d5 1.58 -2.25 - -1.49 0.062

3d44s -2.25 1.34 1.24 8.57 -
3d34s2 - 1.24 1.64 - -
3d44d -1.49 8.57 - 1.30 -24.3
3d45s 0.062 - - -24.3 1.30
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Table E.4: Values for the electric quadrupole transition integrals in Fe III calculated by means

of MCDF including core polarization

Fe III 3d6 3d54s 3d44s2

3d6 1.43 -2.01 -
3d54s -2.01 1.23 -1.64
3d44s2 - -1.64 1.08

Table E.5: Values for the electric quadrupole transition integrals in Cr IV calculated by means

of MCDF including core polarization

Cr IV 3d3 3d24s
3d3 1.45 -1.88

3d24s -1.88 1.26

Table E.6: Values for the electric quadrupole transition integrals in Ni IV calculated by means

of MCDF including core polarization

Ni IV 3d7 3d64s 3d54s2

3d7 0.96 -1.27 -
3d64s -1.27 0.86 -1.08
3d54s2 - -1.08 0.78

Table E.7: Values for the electric quadrupole transition integrals in Cr V calculated by means

of MCDF including core polarization

Cr V 3d2 3d4s
3d2 1.23 -1.46
3d4s -1.46 1.09

Table E.8: Values for the electric quadrupole transition integrals in Mn V calculated by means

of MCDF including core polarization

Mn V 3d3 3d24s
3d3 1.11 -1.33

3d24s -1.33 0.98

Table E.9: Values for the electric quadrupole transition integrals in Mn VI calculated by means

of MCDF including core polarization

Mn VI 3d2 3d4s
3d2 0.97 -1.08
3d4s -1.08 0.87
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Table E.10: Values for the electric quadrupole transition integrals in Fe VI calculated by means

of MCDF including core polarization

Fe VI 3d3 3d24s 3d4s2

3d3 0.88 -0.99 -
3d24s -0.99 0.81 -0.87
3d4s2 - -0.87 0.74

Table E.11: Values for the electric quadrupole transition integrals in Fe VII calculated by means

of MCDF including core polarization

Fe VII 3d2 3d4s
3d2 0.80 -0.84
3d4s -0.84 0.72
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Complex Atoms
described by orthogonal operators

This textbook aims at explaining the basic ideas and concepts underlying the
theory of orthogonal operators and its application to atomic spectroscopy.
Embedded between two more general parts on angular momentum theory and
relativity, the main principles are presented in chapter 14 of part II. With orthogonal
operators, standard deviations of energy fits are frequently reduced by an order of
magnitude and only elementary linear algebra is needed to project ab initio results of
any provenance onto an orthogonal basis of operators. The framework of orthogonal
operators is surely fortified with the support of Hartree-Fock calculations combined
with perturbation theory; B-splines are a strong tool to calculate the occurring one-
and two-electron excited states. These ab initio aspects are covered as well in part
II for this reason. Second quantization in the coupled form as an elegant method
to handle a wide variety of angular momentum problems is used throughout the
book in all three parts. In part III, second quantization is also used to show how a
jj → SL transformation yields fully relativistic results in SL−coupling. Hyperfine
structure and electromagnetic radiation are treated in some detail to illustrate the
potential of this formalism.
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