Journal article Open Access

Predictive Analysis of Higher-Education Graduation and Retention in Saudi Arabia using Multinomial Logistic Regression

Ahmed Bagabir; Mohammad Zaino; Ahmed Abutaleb; Ahmed Fagehi


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Admission policy, cohort analysis, education, logistic regression, statistics, university outcome.</subfield>
  </datafield>
  <controlfield tag="005">20211118134850.0</controlfield>
  <controlfield tag="001">5709208</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia</subfield>
    <subfield code="a">Mohammad Zaino</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">College of Engineering, Jazan University, Jazan, Saudi Arabia</subfield>
    <subfield code="a">Ahmed Abutaleb</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">College of Education, Jazan University, Jazan, Saudi Arabia</subfield>
    <subfield code="a">Ahmed Fagehi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering &amp; Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">663027</subfield>
    <subfield code="z">md5:8d8ea42aa85119fcbb366c591714768f</subfield>
    <subfield code="u">https://zenodo.org/record/5709208/files/F0466113621.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-11-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5709208</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-8</subfield>
    <subfield code="n">6</subfield>
    <subfield code="p">International Journal of Basic Sciences and Applied Computing (IJBSAC)</subfield>
    <subfield code="v">3</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">College of Engineering, Jazan University, Jazan, Saudi Arabia</subfield>
    <subfield code="a">Ahmed Bagabir</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Predictive Analysis of Higher-Education Graduation and Retention in Saudi Arabia using Multinomial Logistic Regression</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2394-367X</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijbsac.F0466113621</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;It is suggested that this study contributes by establishing a robust methodology for analyzing the longitudinal outcomes of higher education. The current research uses multinomial logistic regression. To the knowledge of the authors, this is the first logistic regression analysis performed at Saudi higher education institutions. The study can help decisionmakers take action to improve the academic performance of atrisk students. The analyses are based on enrollment and completion data of 5,203 undergraduate students in the colleges of engineering and medicine. The observation period was extended for ten academic years from 2010 to 2020. Four outcomes were identified for students: (i) degree completion on time, (ii) degree completion with delay, (iii) dropout, and (iv) still enrolled in programs. The objectives are twofold: (i) to study the present situation by measuring graduation and retention rates with benchmarking, and (ii) to determine the effect of twelve continuous and dummy predictors (covariates) on outcomes. The present results show that the pre-admission covariates slightly affect performance in higher education programs. The results indicate that the most important indicator of graduation is the student&amp;#39;s achievement in the first year of the program. Finally, it is highly suggested that initiatives be taken to increase graduation and retention rates and to review the admissions policy currently in place.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2394-367X</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijbsac.F0466.113621</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
44
20
views
downloads
Views 44
Downloads 20
Data volume 13.3 MB
Unique views 44
Unique downloads 20

Share

Cite as