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Abstract—We consider Incremental Redundancy Hybrid Au-
tomatic Repeat reQuest (IR-HARQ) in which the code rate and
modulation of the initial transmission and all retransmissions are
adjusted based on average channel statistics. In the absence of in-
stantaneous channel state information at the transmitter (CSIT),
we present a method which computes, prior to transmission, the
optimum code rates and modulations and explicitly consider a
given maximum number of retransmissions. For the case that
additional feedback on CSI of previous transmission attempts is
available, we present two heuristic schemes which exploit this
knowledge and offer increased throughput at the cost of higher
computational complexity. We employ a rate-adaptive non-binary
LDPC coding scheme which makes use of non-binary repetitions.
While this coding scheme is particularly well-suited for adaptive
IR-HARQ, we note that the presented analysis can be applied to
any other channel code which employs soft decoding.

Index Terms—HARQ, incremental redundancy, non-binary
LDPC codes

I. INTRODUCTION

THE principle of adaptive transmissions is essential to
wireless and mobile communication systems from their

inception. Due to the time-varying nature of the radio channel
and of the data traffic, adaptation is present in modern wireless
systems at various levels: scheduling and resource allocation
at the MAC layer, and power control and link adaption at
the physical layer. The latter is a single-user procedure which
aims to optimize the transmitted signal in order to obtain
the best possible QoS parameters, typically given by data
rate and error probability. This procedure is realized as the
selection of a proper Modulation and Coding Scheme (MCS)
out of a predefined set. Accurate adaptation is difficult if no or
only outdated CSI is available at the transmitter, leading to a
significant rate reduction if the error probability cannot exceed
a given threshold. In this situation, transmission mechanisms
with fast link-layer retransmissions come into play: modern
HARQ protocols, implemented with Chase Combining (CC),
Incremental Redundancy (IR) or a combination of both, can
cope well with imperfect CSI at the Transmitter (CSIT) and
achieve a throughput close to the perfect CSIT case.

Adaptive Coding and Modulation (ACM) algorithms are
often specified without accounting for the effect of HARQ
which is seen as a safety net rather than an integral part of
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the link layer. However, what is relevant for higher protocol
layers are the throughput and the packet error probability
after the link-level HARQ, relegating the bit or packet error
rate at the initial transmission to be a secondary parameter.
This is recognized e.g. in WiMAX [1] which recommends
to optimize the link adaptation algorithm for the performance
after the HARQ process. Further improvements are possible
by adapting the code and modulation parameters for each
retransmission – a possibility which is foreseen in LTE [2]–[4]
and whose specific implementation is left to the manufacturers.

From the theoretical side, a throughput analysis of HARQ
protocols for the slotted multiple-access channel under ide-
alized but fairly general conditions was presented by Caire
and Tuninetti [5], which assured the usefulness of combined
coding and retransmissions for bursty packet transmissions.
This work laid the ground for the analytical throughput evalu-
ation of IR-HARQ with binary LDPC codes in the asymptotic
regime by Sesia et al. [6]. In [7], Negi and Cioffi developed an
optimum power allocation strategy for the delay-constrained
capacity of the block fading channel with causal feedback.
Considering type-I HARQ and constraints on the packet buffer,
Djonin et al. presented a control-theoretic framework for rate
and power adaptation [8]. On the other hand, Wu and Jindal
confirmed the benefits of HARQ in block fading channels and
showed that the throughput comes close to the ergodic capacity
even with few retransmissions [9]. While Wu and Jindal base
their analysis on outage probability and information-theoretic
tools, Lagrange [10] derives an approximate formula for the
throughput of CC-HARQ based on an analytical approxima-
tion of the packet error probability for a given MCS. An
extension to cooperative HARQ and correlated fading is given
by Harsini et al. [11], which employ a Markov model for the
temporal correlation of successive transmissions but apply the
same MCS in all retransmissions.

While these theoretical analyses focus on fixed retransmis-
sion parameters, assuming the same modulation and block
length for all transmissions, allowing for adaptive retrans-
mission parameters does not incur any major complication
to a system which already employs ACM. Several recent
works consider adaptive retransmissions, e.g. [12]–[17], and
obtain the common conclusion that adapting the retransmission
parameters is beneficial in terms of throughput and average
delay. A difficulty lies in the optimization of the transmission
parameters for truncated HARQ, i.e. for a limited – and
typically small – number of retransmissions, with practical
modulation and coding schemes. A fairly general framework
for the analysis of various HARQ protocols has been in-
troduced by Cheng [18], which proposes the ACcumulated
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Mutual Information (ACMI) instead of the average SNR as
a unified metric. In [13], the retransmission parameters are
adapted by a genetic algorithm for a turbo-coded system
while in [14], [15] the performance is described in terms
of outage probability and a numerical optimization of the
retransmission rates is carried out to maximize the throughput.
Both approaches reflect the difficulties in accurately describing
a realistic setting and obtaining a feasible adaptation algorithm.
Despite the assumption of an idealized coding scheme in
[14], [15], the results provide valuable guidance for practical
schemes employing good channel codes. Another approach for
adapting the size of the retransmission units has been presented
by Visotsky et al. [19]. That work presents an adaptive scheme
which relies on the CSI of previous transmissions and is valid
for convolutional coding and binary modulation.

In this work, we analyze the performance of variable-
rate truncated HARQ and propose allocation and adaptation
methods which maximize the throughput subject to a target
error rate for the block fading channel:

• Rate allocation precomputes the modulations and code
rates for the initial transmission and for L − 1 possible
retransmissions in an offline manner, based solely on the
statistics of the block fading channel. This scheme only
requires a one-bit feedback in form of an ACK/NACK
message after each transmission.

• Rate adaptation exploits feedback on previously failed
transmission attempts and finds in an online manner
the optimum code rate and modulation for the next
retransmission. For this adaptation, feedback on the re-
ceived mutual information of the previous transmission
is required. We present two heuristic approaches which
both achieve higher throughput than the rate allocation
scheme.

One of the main differences with previous work is that we
consider a practical coding scheme with finite block lengths,
for which the asymptotic approximation with outage prob-
abilities is inaccurate and we explicitely consider adjusting
the modulation for each retransmission. As a state-of-the-art
coding scheme, we employ a Non-Binary (NB) LDPC code
which features a non-binary repetition scheme that achieves a
coding gain without increasing the decoding complexity [20].
While this channel code is particularly well-suited to adaptive
HARQ, we note that other coding schemes which apply soft
decoding can be treated with the same methodology.

The rest of the paper is organized as follows: Section II
introduces the system model and the rate-adaptive coding and
modulation scheme, while Section III analyzes its performance
based on the notion of accumulated mutual information.
Secion IV describes the proposed adaptation strategies for
throughput maximization. In the Appendix, a possible exten-
sion towards partial CSIT is given.

II. SYSTEM MODEL AND NON-BINARY CODING SCHEME

A. Non-Binary Repetition Coding, Puncturing and Adaptive
Modulation

1) Non-Binary LDPC Codes and Decoder: An LDPC code
is defined as the set of all codewords c = [c1, c2, . . . , cN̄ ]

which satisfy the parity-check equation

HcT = 0, (1)

where H is a sparse M̄ × N̄ matrix. For non-binary LDPC
codes, the parity-check equation is defined over the Galois
field Fq = {α0, α1, . . . , αq−1}, where α0 = 0 and α1 = 1
denote the additive and multiplicative identity, respectively.
The field order q is typically a power of two and q = 2 includes
the particular binary case. For full-rank matrices, K = N̄−M
is the length of the information block to be encoded and the
code rate is given by Rm = K/N̄ . In this paper, we choose the
particular family of regular NB-LDPC codes with a constant
column weight of two. These codes are called ultra-sparse
or cycle NB-LDPC codes [21] and are known to have the
best performance at high SNR for a field order q ≥ 64 [22].
Moreover, these codes can be efficiently designed for finite
lengths and efficient encoding algorithms are available [23],
[24].

NB-LDPC codes are often proposed as an alternative to
their binary counterparts for small to moderate block lengths
or when the channel cannot be represented as a binary-
input memoryless channel, which is the case for higher-order
modulations and for multiple transmit antennas [25], [26]. The
performance improvement of NB-LDPC codes comes at the
price of an increased decoding complexity, but recently many
works have demonstrated that the performance gains of NB-
LDPC codes remain valid, even with low-complexity, sub-
optimal decoders [27]–[30].

For coded modulation, before transmission, the code sym-
bols cn ∈ Fq are mapped to QAM symbols, while at the
receiver side the received channel symbols yn ∈ CT are
demapped to a Log-Likelihood Ratio (LLR) vector per code
symbol. The received symbols yn might be scalar or vectorial,
i.e. T = 1, 2, . . ., depending on the modulation and the channel
model, as detailed in Subsection II-A3. The LLR vector cor-
responding to cn is given by Cn = [Cn,0, Cn,1, . . . , Cn,q−1]

T

with

Cn,g , ln
P [cn = αg | yn]

P [cn = α0 | yn]
for

n = 1, 2, . . . , N̄
g = 0, 1, . . . , q − 1

, (2)

where g ∈ {0, 1, . . . , q − 1} ⊂ N denotes an integer number
which serves as index to the GF element αg ∈ Fq . We note
that, although Cn,g according to (2) is actually the logarithm
of the ratio of a posteriori probabilities, we use the term LLR
as it is well established in the literature of soft and iterative
decoding. In the same direction, the division by P [cn = α0 |
yn] in (2) is introduced for consistency with literature (see
e.g. [31] for an introduction to Log-Likelihood algebra).

Let us now describe our protograph-based code design. First
introduced by [32], a binary protograph is defined as a small
bipartite graph from which a larger graph is obtained by the
so-called lifting technique. The protograph itself is generally
described by its adjacency or base matrix HB, where the coef-
ficients HB(m,n) represent the number of edges between the
m-th check node of the protograph and the n-th variable node
[33]. The base matrix HB is hence a small matrix containing
small integer values. The lifting operation expands the base
matrix by replacing each nonzero entry HB(m,n) > 0 by the
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same number of non-overlapping circulant matrices. Circulant
matrices are usually preferred for practical purposes since this
reduces the descriptional complexity (ie. storage) of the parity
check matrix in the hardware realizations of the LDPC encoder
and decoder. If Lc is the size of the circulant matrices, we
obtain after lifting a Tanner graph with Lc times more nodes
and edges than the protograph. The last step for non-binary
LDPC codes is then to assign nonzero values to the edges of
the lifted Tanner graph. For this step, we follow the procedure
described in [21].

In Fig. 1, we show the protograph which has been chosen
to define the mother code with code rate Rm = 1/2. The
structure of the protograph has been chosen so as to maximize
the number of one-step-recovery (1-SR) survivors [34], [35]
in order to improve the performance of punctured schemes, as
described in the next section.

1 2 3 4 5 6 7 8

9 10 11 12

1 SR symbols of the codeword

1 2 3 4 5 6

Figure 1. Detailed protograph optimized for puncturing. This protograph has
the property to maximize the number of symbols with the 1-SR property.

2) Puncturing and Non-Binary Repetition Coding: For
adaptive HARQ, we require a wide range of code rates which
are obtained by either puncturing a mother code or extending
the same mother code with additional symbols obtained from
non-binary multiplication coding. Puncturing is a well-known
technique for increasing the code rate of a given mother code
while non-binary multiplication coding is a novel scheme, well
adapted to NB-LDPC codes, and which allows to derive lower
rates from a given code.

In [34], the authors proposed a criterion for deriving
puncturing patterns from the knowledge of the Tanner graph
properties. They introduced the concept of a k-SR survivor
symbol, which is defined as a symbol which can be recovered
from the other symbols in its Tanner graph neighborhood after
k iterations of the message passing decoder, assuming that
the other symbols are correctly decoded. For this reason, 1-
SR survivor symbols are preferably punctured and with the
protograph in Fig. 1 we have four of these symbols, which is
the maximum possible number for code rate Rm = 1/2. For
more details on the design of the protograph, we refer to [36].

Recently, another important benefit of NB-LDPC codes
has been identified in [37]: the non-binary multiplication
coding can be seen as a flexible non-binary repetition scheme
with simple Galois field multiplications that can achieve a
significant coding gain over the usual binary repetition coding
while the decoding complexity is hardly increased. This gain
is particularly pronounced for higher field orders with q ≥ 64.
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Figure 2. Two representations of multiplicative repetition coding. In both
cases, the symbols c̃

(j)
n and dn, respectively, are obtained by multiplication

of one mother codeword symbol cn.

Starting from a mother codeword c = [c1, c2, . . . , cN̄ ] ∈
FN̄
q , additional symbols c̃

(j)
n can be generated in a fountain-

like fashion by a simple multiplication in Fq as

c̃(j)n = β̃(j)
n · cn for j = 1, . . . , r, (3)

where r denotes the maximum number of repeated symbols
and we set β̃(1)

n = 1 for the mother codeword. This process is
depicted in Fig. 2(a), where each edge in the graph corresponds
to a multiplier β̃

(j)
n . For β̃

(j)
n = 1 for j > 1, we obtain the

standard repetition coding, in which the codeword symbols cn
are repeated unaltered. In order to keep the encoder simple,
we focus on repetition schemes with a multiplier β̃(j) that
does not depend on the codeword symbol index n but only on
the repetition index j = 1, . . . , r. By proper optimization, this
limitation does not cause a performance loss [36].

Decoding for this non-binary repetition scheme is par-
ticularly simple and hardly more complex than for binary
repetitions: According to the definition of the LLR-vector
(2) and assuming an memoryless channel, i.e. p(y | c) =∏

n p
(
y
(j)
n | c̃(j)n

)
, in addition to equally probable values of

the codeword symbols, i.e. P [cn = αg] = 1/q, we obtain

Cn,g = ln

∏r
j=1 p

(
y
(j)
n | c̃(j)n = β̃

(j)
n αg

)
∏r

j=1 p
(
y
(j)
n | c̃(j)n = β̃

(j)
n α0

)
=

r∑
j=1

C̃
(j)

n,[β̃
(j)
n αg ]

,

(4)

where the product β̃(j)
n αg is performed in the Galois field Fq

and [αg] = g denotes the index of the GF element αg. The
LLR values of the repeated symbols are defined in the same
way as for the original code symbols, i.e.

C̃(j)
n,g , ln

P
[
c̃
(j)
n = αg | y(j)

n

]
P
[
c̃
(j)
n = α0 | y(j)

n

] (5)
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and y
(j)
n denotes the received channel symbol for c̃

(j)
n . Note

that β̃(j)
n ·α0 = α0 = 0. Decoding hence amounts to a simple

summation of the LLR vectors that are associated with each
code symbol. This operation is transparent to the decoder of
the mother NB-LDPC code, which therefore does not require
any modification.

While the generation of repetition symbols according to
this procedure conveys the basic idea of non-binary repetition
coding and the corresponding decoding, for the purpose of
HARQ, the description of multiplicative repetition and punc-
turing depicted in Fig. 2(b) is more convenient. We define a
long mother codeword d , [d1, d2, . . . , drN̄ ] ∈ FrN̄

q with

dn = βn · cπ(n), for n = 1, 2, . . . , rN̄ (6)

where π : {1, 2, . . . , rN̄} → {1, 2, . . . , N̄} is an index map-
ping defined by the repetition scheme above. This description
is an equivalent alternative to (3) which also specifies the
puncturing by defining the transmission order of the first N̄
symbols. The first N̄ symbols in d are the same as the ones
in c, but their order is given by the puncturing scheme.

At the receiver, first the LLR-vectors for the symbols dn
are computed according to

Dn,g = ln
P [dn = αg | yn]

P [dn = α0 | yn]
, n = 1, 2, . . . , rN̄ (7)

and then combined to

Cn,g =
∑

m:π(m)=n

Dm,[βm·αg ]
n = 1, 2, . . . , N̄

g = 0, 1, . . . , q − 1
, (8)

where βi · αg is again the multiplication in Fq and [αg] = g
denotes the index of αg ∈ Fq .

A simple method for implementing this summation is
described in Algorithm 1. This LLR-value combination is
of low complexity and becomes identical to maximum ratio
combining for binary repetition coding with BPSK or QPSK
modulation.

Algorithm 1 Combination of LLR-values
Cn,g = 0 ∀n, g
for n = 1, 2, . . . , rN̄ do

for g = 0, 1, . . . , q − 1 do
Cπ(n),g = Cπ(n),g +Dn,[βn·αg]

end for
end for

3) Adaptive Modulation for q-ary Channel Coding: While
with q-ary channel codes, we can in principle apply the usual
M -QAM constellations [38] in a similar way as for binary
codes, we can take advantage of the higher field order: For
q = MT , we can map one codeword symbol cn ∈ Fq to
T ∈ N channel uses. Let us define the mapping

µT : Fq → AT ⊂ CT , (9)

where AT = {a0,a1, . . . ,aq−1} ⊂ CT denotes a constellation
of q points in T complex dimensions and we define the
mapping straightforwardly as

µT (αg) = ag for g = 0, 1, . . . , q − 1. (10)

This QAM symbol is transmitted over a flat fading channel
and received as

yn = h · µT (dn) +wn, wn ∼ CN (0, N0IT ) . (11)

In the simplest case, multidimensional constellations AT

for T > 1 are obtained as the Cartesian product of the usual
QAM constellations. In the following, we will focus on a field
size of q = 256 in combination with 256-QAM and 16-QAM,
which correspond to T = 1 and T = 2, respectively. For other
values of T , multidimensional constellations can be derived
from 2T -dimensional sphere packings [39], as described e.g.
in [26].

The LLR-values for the flat fading channel (11) with perfect
CSI at the receiver follows directly from the definition (7) by
applying Bayes’ theorem and is given by

Dn,g = −|yn − hag|2

N0
+

|yn − ha0|2

N0
. (12)

This expression involves no marginalization and is therefore
of much lower complexity than in the case of binary LLR-
values with higher-order modulation. For T = 1, the involved
signals reduce to scalars.

This approach has two advantages compared to mappings
which involve several codeword symbols:

1) The Bayesian optimum soft demapper has low complex-
ity.

2) If the physical channel is memoryless, the equivalent
channel seen by the coding scheme remains memoryless.
This is a condition which is assumed by the BP decoder.

For binary coding with higher-order modulation, but also for
non-binary coding with MT ̸= q (see e.g. the case of M = 16,
q = 64 in [38]), these conditions are not satisfied.

B. HARQ Model and Channel Model
The information to be transmitted is represented by the

message u ∈ FK
q containing K symbols in the Galois field

Fq of order q, corresponding to Kbin = ldq · K bits, where
ldq = log2 q denotes the base-2 logarithm (“logarithmus
dualis”). This message is encoded to produce a codeword
of the mother NB-LDPC code, c = [c1, c2, . . . , cN̄ ] ∈ FN̄

q .
From this codeword, up to L codeblocks dℓ are formed by
multiplicative repetition and possibly by puncturing. These
blocks are modulated by possibly different modulations and
are transmitted in subsequent HARQ rounds, denoting d1 the
block of codeword symbols of the initial transmission.

For the description of the HARQ process, it is convenient
to assume that a long codeword d = [d1, . . . , drN̄ ] according
to (6) has been computed by the encoder. From this long
mother codeword d we can derive higher-rate code blocks
dℓ =

[
dÑℓ−1+1, dÑℓ−1+2, . . . , dÑℓ

]
of lengths Nℓ, where we

set Ñℓ ,
∑ℓ

i=0 Ni with N0 = 0 and it must hold ÑL ≤ rN̄ .
This corresponds to rate-compatible puncturing [40] of the
long codeword d and, by setting βn = 1 ∀n, it includes binary
repetition coding as a special case. As illustrated in Fig. 3,
the code blocks dℓ are modulated to the symbol sequences
xℓ ∈ CNℓTℓ which are given by

xℓ =
[
µTℓ

(
dÑℓ−1+1

)
, . . . ,µTℓ

(
dÑℓ

)]
(13)
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Figure 3. Transmitter and channel model for truncated HARQ with L
transmissions

and Tℓ denotes the number of channel uses per codeword sym-
bol at the ℓ-th transmission. These sequences are transmitted
in the ℓ-th transmission and are received as

yℓ = hℓ · xℓ +wℓ, ℓ = 1, 2, . . . , L, (14)

where the fading coefficient hℓ is i.i.d. Rayleigh distributed
and constant during one code block, i.e. hℓ ∼ CN (0, 1), while
the noise is white Gaussian, w ∼ CN (0, N0INℓ

). This model
is similar to the one applied in [18], with the difference that
we additionally allow to adapt the modulation per code block.

We denote by Eℓ the event that decoding fails in the ℓ-th
transmission, while Ēℓ denotes correct decoding in the ℓ-th
transmission. We assume that all decoding errors are detected,
which is a light idealization of the inherent error detection
capability of an LDPC code or an additional CRC code for
error detection. We define as in [13], [14]

sℓ , P [E1, E2, . . . , Eℓ−1, Ēℓ] success in slot ℓ (15)
fℓ , P [E1, E2, . . . , Eℓ−1, Eℓ] ℓ failures. (16)

It holds sℓ = fℓ−1 − fℓ and we set f0 = 1. The throughput
and the average number of transmissions are given by [6]

η =
Kbin (1− fL)∑L
ℓ=1 fℓ−1NℓTℓ

(17)

τ =

∑L−1
ℓ=0 fℓ

1− fL
(18)

Here, the throughput is measured as the average number
of bits per channel use, which corresponds to the spectral
efficiency in bit/s

Hz .
The variable lengths of the codewords leads to implications

at the system level which have to be considered in the desgin
of the complete communication system. For multiple-access
systems, e.g. OFDMA, an informed scheduler might assign
exactly the required resources and avoid, as far as possible,
unused time-frequency slots. On the other hand, it is also
possible to combine the transmission of multiple (partial)
codewords in the same time slot and thus avoid unused
resources. The most appropriate strategy to deal with these
variable-length codewords depends on the link layer and the
multiple-access scheme and is outside the scope of this paper.
See also the brief discussion on this topic in [15].

III. NUMERICAL ANALYSIS

For all numerical results in this paper, we use a non-binary
LDPC code of rate Rm = 1/2, field order q = 256 and
message length K = 90. The message or packet length in bits
is thus Kbin = ldq ·K = 720 bits and the codeword length is

Nm = 180 symbols. From this mother code, higher and lower
rates are derived by puncturing and non-binary repetition with
rmax = 7. In the following, we will apply the word lengths

N ∈ Nc = {100, 108, 120, 135, 150, 180, 220,
270, 360, 450, . . . , 1080, 1170, 1260}. (19)

This means that with puncturing, the commonly used code
rates 3

5 ,
2
3 ,

3
4 ,

5
6 ,

9
10 are obtained, while multiplicative repetition

yields the code rates 9
22 ,

1
3 ,

1
4 , . . . ,

1
14 .

A. Performance of the Coding Scheme as a Function of the
Accumulated Mutual Information

We apply the modulations 256-QAM and 16-QAM, which
correspond to T = 1 and T = 2 channel uses per codeword
symbol. For 256-QAM over an AWGN channel, we obtain the
set of Packet Error Rate (PER) curves plotted in Fig. 4, where
we can observe that with the same modulation and adaptation
of the code rate alone we can cover an SNR range of more
than 25 dB.
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Figure 4. PER as a function of the SNR for all codeword lengths N ∈ Nc and
for 256-QAM (T = 1) over the AWGN channel. The bold curve corresponds
to the mother code.

In order to show the gain of the non-binary repetition
scheme compared to binary repetition, we can plot the SNR-
rate points for a fixed target PER, as shown in Fig. 5, where
the rate is defined as R = Kbin

TN . In addition, the values for
binary repetition of the mother codeword are plotted: let γm
denote the required SNR to achieve the target PER for the
mother code of rate Rm = 1/2; then the required SNR for an
r-fold repetition is given by γm/r. We can observe that the
required SNR using the multiplicative NB-repetition coding is
significantly superior and comes close to the capacity curve.

In order to characterize the PER in an HARQ scheme
with incremental redundancy, we need to relate the SNR of
the channel to the accumulated mutual information (ACMI)
experienced by the coding scheme [18].

The mutual information per codeword symbol is given by
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Figure 5. Rate-SNR pairs at PER = 0.01 for all N ∈ Nc

the Coded Modulation (CM) capacity [41]

Ic(γ) = I (c;y) = ldq − 1

q

q−1∑
i=0

Ey

ld
q−1∑
j=0

p (y | aj)

p (y | ai)

 . (20)

Although there exists no closed-form expression, this mutual
information can be computed easily by Monte-Carlo integra-
tion.

According to the block fading model, the channel in the ℓ-
th transmission appears as an AWGN channel with a constant
SNR γℓ and the corresponding mutual information Iℓ =
Ic (γℓ). The ACMI after ℓ transmissions is hence given by
Iw =

∑ℓ
i=1 IiNi.

It has been observed by many authors that the PER of
an LDPC code is approximately determined by the mutual
information of the channel between the encoder and decoder
[42]. This observation has been applied for the definition
of link-to-system interfaces in simulators [43] and can also
be applied here to define the function pw (Iw, N), which
relates the ACMI Iw and the codeword length N to the PER,
independently of the modulation index T . This function can
be evaluated numerically on the basis of a look-up-table of
the simulation results and is plotted in Fig. 6. Note that since
the packet (message) length is fixed to K = 90 symbols, the
codeword length N determines the code rate as K/N , whereas
the mutual information per codeword symbol is Ic = Iw/N .

B. Error Probabilities in HARQ

According to the channel model defined by (14), the instan-
taneous SNR at the ℓ-th transmission is given by

γℓ =
|hℓ|2ES

N0
= |hℓ|2γ̄, (21)

where γ̄ = ES/N0 denotes the average SNR. For the
Rayleigh fading channel, the instantaneous SNR is expo-
nentially distributed with probability density function (pdf)
fγ(x) = 1

γ̄ exp
(
−x

γ̄

)
for x ≥ 0. We denote the pdf of

the mutual information per codeword symbol by fI(x), with
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Figure 6. PER as a function of the mutual information per codeword symbol
for N ∈ Nc. The bold curve corresponds to the mother code.

x ∈ [0, ldq]. This function cannot be expressed in closed-
form as there is no closed-form relation between the SNR
and the mutual information (20). On the other hand, if (20) is
given numerically, it is straightforward to generate samples of
a random variable with the desired pdf fI(x).

With the function pw

(∑ℓ
i=1 IiNi,

∑ℓ
i=1 Ni

)
denoting the

probability of error at the ℓ-th transmission, the probability of
ℓ consecutive failures, defined by (16), can be expressed as

fℓ =

∫ ldq

0

· · ·
∫ ldq

0

∫ ldq

0

pw (I1N1, N1)

· pw (I1N1 + I2N2, N1 +N2) · · · pw

(
ℓ∑

i=1

IiNi,
ℓ∑

i=1

Ni

)
· fI(I1)fI(I2) · · · fI(Iℓ) dI1dI2 · · ·dIℓ

= EI1···Iℓ

[
pw (I1N1, N1) · pw (I1N1 + I2N2, N1 +N2)

· · · pw

(
ℓ∑

i=1

IiNi,
ℓ∑

i=1

Ni

)]

= EI1···Iℓ

 ℓ∏
j=1

pw

(
j∑

i=1

IiNi,

j∑
i=1

Ni

) .

(22)

From the last expression, we see that the probabilities fℓ
can be evaluated numerically by Monte-Carlo integration. For
small values of ℓ, this allows for a relatively simple numerical
evalution. On the other hand, for large ℓ, the Gaussian ap-
proximation as applied in [6] is more convenient. Note that the
numerical calculation is not limited to a certain coding scheme
or fading model, but can be applied in the same manner to any
fading distribution and coding scheme which is characterized
by a function pw (Iw, N).

For an information-theoretic evaluation, instead of a look-
up table for a specific coding scheme, one could take a
more general, semianalytical approach by applying a bound
on the error rate in the finite block length regime according to
Polyanskiy et al. [44]. While we do not follow this research
line in this paper, we note that this approach might lead to
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valuable results for finite block lengths.

IV. ADAPTIVE HARQ

In adaptive HARQ, we can adapt in each of the up to L
transmissions the length Nℓ of the code block as well as
the modulation index Tℓ. The initial code rate is given by
K/N1 and it is feasible to select different block lengths and
modulations for the retransmissions. In a system which already
employs adaptive coding and modulation, the introduction of
adaptive retransmission units hardly increases the complexity.

A. Optimization Criteria

An obvious optimization criterion is throughput maximiza-
tion, while the delay is limited by the maximum number of
retransmissions L. Due to the finite delay, it is not possible to
achieve error-free communication and it is reasonable to target
a residual word error probability fL > 0. We can therefore
formulate the optimization problem as

max
N1,··· ,NL;T1,...,TL

η (23a)

s.t. fL ≤ PERmax (23b)

where the throughput is defined by (17) and (16), (22), while
the constraint on the number of transmissions is implicit in
(17). We set the constraint on the PER in the following
to PERmax = 0.01, noting that we obtain unconstrained
throughput optimization by setting PERmax = 1. The problem
(23) is a discrete optimization problem which can be solved
numerically for small L by an exhaustive search over all
Nℓ ∈ Nc, Tℓ ∈ {1, 2}.

B. Capacity Bounds

The achievable throughput is upper bounded by the ergodic
capacity of the Rayleigh fading channel, which is given by

CR =
1

ln 2
exp

(
1

γ̄

)
E1

(
1

γ̄

)
, (24)

where E1(x) ,
∫∞
x

e−t/t dt is the exponential integral. While
this expression assumes no constraints on the transmit signal
other than a power constraint, we obtain a tighter bound by
considering the modulation. In analogy to (20), the ergodic
CM capacity is given by

CCM = ldq − 1

q

q−1∑
i=0

Ey,h

ld
q−1∑
j=0

p (y | aj , h)

p (y | ai, h)

 , (25)

where q = 256 and the symbols ai are taken out of a 256-
QAM constellation.

C. Reference Schemes: No Retransmission, Chase Combining
and Incremental Redundancy

As a simple reference, we first consider a scheme without
retransmissions, which is equivalent to the optimization prob-
lem (23) with L = 1. Without retransmissions and knowledge
of only the average SNR γ̄ at the transmitter, the constraint
(23b) leads to a significant throughput reduction compared
to the case where perfect CSIT is available [45], as can be
observed in Fig. 7. For all throughput-SNR points in Fig. 7, at
least 5 · 104 codewords have been simulated1, hence the lack
of smoothness of some curves is not due to an insufficient
number of simulated codewords, but is rather caused by the
limited number of possible code rates according to (19).

The best known reference scheme for HARQ is probably
Chase combining: For the first transmission, one of the code
rates Rc = K

N1
∈
{

1
2 ,

3
5 ,

2
3 ,

3
4 ,

5
6 ,

9
10

}
is selected while

for the retransmissions the same codeblock, with the same
modulation, is repeated. The receiver applies maximum ratio
combining of the received symbols. The obtained rates with
this scheme for a maximum number of L = 3 transmissions
are given in Fig. 7, where we can observe a significant perfor-
mance gain compared to the scheme without retransmissions.
It also interesting to note that the throughput obtained with
the NB-LDPC code here comes close to the results derived
in [46, Fig. 1] for a capacity-achieving code and for L = 5
transmissions.

The simplest scheme which exploits non-binary repetition
coding is based on Incremental Redundancy (IR) with constant
blocklengths and the same modulation for all transmissions.
This scheme can therefore be compared directly to CC. Fixing
again the maximum number of transmisssions to L = 3, the
values for N1 and T1 are obtained by solving the simplified
optimization problem (23) with the additional constraints

N1 = N2 = N3 ∈ {100, 108, 120, 135, 150, 180}
T1 = T2 = T3 ∈ {1, 2} .

(26)

For a fair comparison with CC, we restricted the codeword
length to values which correspond to the same set of code rate
as for CC. The gain of IR with respect to CC is moderate as
can be observed in Fig. 7, despite the significant advantage of
non-binary repetition compared to binary repetition, which is
equivalent to CC, in Fig. 5. However, this is not a contradiction
since the gains for the AWGN channel are generally not
reproduced in the block fading case and, more importantly,
both schemes are identical in the initial transmission for code
rates Rc ≥ 1/2.

D. Rate Allocation: Offline Computation of Optimum Block
Lengths and Modulations

Without the limitation of constant blocklengths, we can
obtain the optimum values for the initial transmission and all
retransmissions by solving the discrete optimization problem
(23). This is feasible by limiting the combined codeblock

1The MATLAB scripts and functions for reproducing the results of this paper
are available at http://systems.cttc.es/publications/
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Figure 7. Achieved throughput with various HARQ schemes for a maximum number of L = 3 transmissions

lengths to the values given by (19), i.e.

ℓ∑
i=1

Ni ∈ Nc, Tℓ ∈ {1, 2} . (27)

For a maximum of three transmissions, we obtain the values
given in Table I. It is interesting to observe that there seems to
be no simple trend for the blocklengths and modulations as a
function of the average SNR γ̄. This is in line with the findings
of Szczecinski et al. [14] who based their analysis on outage
probabilities and found a complicated non-convex function for
the throughput which could not be solved analytically.

The numerical approach presented here is feasible for a
moderate number of retransmissions and code rates and de-
livers the optimum block lengths and modulations for a given
average SNR. These values can be computed offline and stored
in a table indexed by the average SNR γ̄. Note that, aside
from numerical approximations, this approach is exact and is
not based on idealized assumptions.

In Fig. 7 we can observe that this adaptation of the block
lengths results in significant gains with respect to CC or IR
with constant block lengths.

E. Rate Adaptation: Online Computation of Block Lengths
and Modulations

The offline optimization of the throughput η involves av-
eraging over the mutual informations I1, . . . , IL according to

Table I
OPTIMUM BLOCK LENGTHS AND MODULATIONS FOR L = 3 AND

Pmax = 0.01

γ̄ 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB
N1 270 135 180 120 108 100 100
N2 450 225 90 60 42 20 20
N3 360 270 90 90 70 60 30
T1 2 2 1 1 1 1 1
T2 1 1 1 1 1 1 1
T3 2 1 2 1 1 1 1
R 0.9 1.7 2.8 4.2 5.4 6.5 7.0

f1[%] 44.1 50.9 51.2 63.7 42.3 23.1 8.0
f2[%] 10.5 9.6 15.3 15.2 8.6 8.3 2.5
f3[%] 1.0 0.85 0.6 0.82 0.32 0.32 0.48

(22) and is based on the knowledge of the fading distribution.
After a transmission has failed, however, the transmitter has
additional knowledge about the previously failed transmis-
sions. Let us assume that the ℓ-th transmission has failed
and that the feedback contains in addition to the ACK/NACK
message the mutual informations I1, . . . , Iℓ of the previous
transmissions (this is often called multibit NACK or intelligent
NACK). These mutual informations can be easily obtained at
the receiver since the instantenous SNRs have to be computed
by the channel estimator anyway. In addition, the previous
blocklengths N1, . . . , Nℓ and modulation indices T1, . . . , Tℓ

are known and can be used to simplify the discrete opti-
mization problem (23). The throughput optimization is then
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carried out over the smaller set of variables Nℓ+1, . . . , NL,
Tℓ+1, . . . , TL. This approach, based on the throughput ex-
pression (17), is heuristic since for the optimum solution we
would have to consider that the lengths Nℓ and modulation
indices Tℓ are actually functions of the mutual informations
I1, . . . , Iℓ−1. For K → ∞, this problem has been solved by
dynamic programming [15]. While for K → ∞, the value
of the ACMI determines the error event Eℓ, for finite block
lengths, it only determines its probability. Hence, the approach
based on outage probabilities in the asymptotic regime does
not apply directly to the implementation-oriented approach we
consider in this paper.

For an ad-hoc solution, we simplify the problem by con-
sidering knowledge of decoding failures instead of the full
knowledge of the CSI and define the conditional probabilities
for ℓ < k ≤ L as

fk|ℓ , P [Eℓ+1 · · · Ek | E1 · · · Eℓ] =
fk
fℓ

, (28)

which can be computed in analogy to (22) by

fk|ℓ = EIℓ+1···Ik

 k∏
j=ℓ+1

pw

(
j∑

i=1

IiNi,

j∑
i=1

Ni

) . (29)

The throughput is computed with (17) by setting f1 = · · · =
fℓ = 1 and replacing fℓ+1, . . . , fL by fℓ+1|ℓ, . . . , fL|ℓ. While
this is straightforward, for the constraint (23b), we cannot
simply replace fL by its conditional counterpart since this
would effectively reduce the target PER. Instead, the constraint
becomes

fL|ℓ <
Pmax

fℓ
(30)

where for fℓ we can use an estimation based on previous
packets or apply the values which are obtained by the offline
optimization described above in Subsection IV-D and listed in
Table I.

With this approach, the transmitter learns from the outcome
of previously failed transmissions. While under the block
fading assumption, the transmitter cannot obtain any further
knowledge about the channel apart from the average SNR, it
can gain knowledge on the amount of the received information
in previous transmission attempts. Note that this “learning”
only refers to previous transmissions of the same packet and
not to an update of a rate adaptation policy in the sense of [47].
After each failed retransmission, the discrete optimization
problem (23b) is solved for the parameters Nℓ+1, . . . , NL,
Tℓ+1, . . . , , TL and the additional constraint (27).

The obvious drawback of this approach is that for the
computation of the blocklength and modulation for the next
retransmission, all blocklengths and modulations until the
maximum number of transmissions have to be calculated. In
other words, if after the ℓ-th transmission a NACK message
is received, the parameters Nℓ+1, . . . , NL, Tℓ+1, . . . , TL are
computed via (29) and (17), although only Nℓ+1 and Tℓ+1 are
required. A method for avoiding this computational overhead
is presented in the following.

F. Rate Adaptation: Simplified Online Computation

A simple way to exploit knowledge of I1, . . . , Iℓ for the
calculation of Nℓ+1, Tℓ+1 can be obtained via (29), which
simplifies to

fℓ+1|ℓ = EIℓ+1

[
pw

(
ℓ+1∑
i=1

IiNi,
ℓ+1∑
i=1

Ni

)]
=

fℓ+1

fℓ
. (31)

Instead of carrying out the complete optimization according
to (23), a suboptimum but less complex method is to compute
Nℓ+1, Tℓ+1 such that (31) is approximately fulfilled while the
expected throughput is maximized:

max
Nℓ+1,Tℓ+1

η (32a)

s.t. fℓ+1|ℓ ≤
fℓ+1

fℓ
. (32b)

using the precomputed values for fℓ according to Subsec-
tion IV-D. This method can therefore be seen as a simpler
heuristic approximation of the throughput maximization prob-
lem. Since only the distribution of the mutual information for
the next transmission attempt is required, this method can
also exploit partial CSIT. The Appendix outlines a channel
model with partial CSIT, which additionally exploits SNR
estimates from the previous transmission. Another simple
heuristic scheme, which does not consider explicitely a max-
imum number of retransmissions and is therefore not directly
comparable, can be found in [17].

G. Simulation Results and Discussion

Summarizing, we can identify three mechanisms for im-
proving an HARQ scheme based on Chase combining:

1) Incremental Redundancy, for which non-binary repeti-
tion coding is particurly well suited.

2) Rate allocation with variable-rate retransmissions. The
block lengths and modulation indices can be precom-
puted if the fading distribution is known.

3) Rate adaptation based on feedback from previously
failed transmission.

The first advance alone leads to moderate performance gains
without an impact on the system complexity: the LLR-
value combining (8) is comparable to maximum-ratio com-
bining. On the other hand, allowing variable block lengths
and modulations of the retransmitted blocks increases the
performance significantly, in particular for high SNR. Rate
allocation precomputes the block lengths and modulations
while a further performance improvement is obtained by rate
adaptation which computes the block length and modulation
based on the channel states of the failed transmissions. The
improvements with rate adaptation are remarkable since the
two schemes we evaluated are based on simplifications of
the optimization problem. Nevertheless, both rate adaptation
methods are able to exploit knowledge from previously failed
transmissions, at the price of increased complexity and with
additional feedback.

Fig. 8 shows the PERs obtained by simulation of the
described schemes for a target PER of Pmax = 0.01. Nearly
all schemes satisfy the constraint and achieve an error rate
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slightly below the limit. In particular, for only one transmission
(L = 1), the PER obtained by simulation of 105 packets is
very close to the target PER. For L = 3, the variations of
the PER are higher but the constraint (23b) is missed only
for some few points and to a small extent. This variation is
caused by numerical inaccuracies and the fact that the function
pw (Iw, N), which relates PER and mutual information, is an
approximation.
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Figure 8. Residual packet error rates after L=3 transmissions

V. CONCLUSIONS

We have presented an adaptive HARQ scheme, in which the
block lengths and the modulation of the initial transmission
and all retransmissions are adapted in order to maximize the
throughput while satisfying a constraint on the maximum
residual error rate. This optimization can be based either
on the channel statistics alone or can additionally consider
the channel state of previous transmissions. For the latter
approach, two pragmatic schemes have been presented which
exploit additional feedback on previously failed transmissions
and achieve higher rates than the former rate allocation scheme
which is based solely on the channel statistics. We applied a
state-of-the-art non-binary LDPC code featuring a repetition
scheme which achieves a coding gain without increasing the
complexity of the decoder. While this coding scheme is a
perfect fit for adaptive HARQ, any channel code for which
soft decoding is available can be treated within the same
framework.
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APPENDIX: PARTIAL CSIT

While above we have shown that adaptive HARQ can be
successfully appied to the block fading channel, in which
the transmitter only knows the average SNR γ̄, in many
situations more knowledge on the channel state might be
available. A widely accepted model assumes that the receiver
performs channel estimation and prediction and sends the
predicted channel coefficients via en error-free feedback link
to the transmitter [48]–[51]. The channel coefficients at the
transmitter are modelled as

ĥ = (1− β)h+ v ·
√

β (1− β), with v ∼ CN (0, 1) , (33)

where β ∈ [0, 1) is the normalized prediction error, which
depends mainly on the average SNR and the user mobility in
a wireless system. The unbiased SNR estimate is then

γ̂ = |ĥ|2γ̄ + βγ̄. (34)

This leads to the conditional pdf

fγ|γ̂ (γ | γ̂) = 1

γ̄β
exp

(
−γ + γ̂ − γ̄β

γ̄β

)
× I0

(
2

γ̄β

√
γ (γ̂ − γ̄β)

)
,

where I0(·) denotes the modified Bessel function of the
first kind. With the SNR estimate γ̂, the average SNR γ̄
and the normalized estimation error β, the transmitter can
apply the online computation of blocklengths described in
Section IV-E. To that end, samples with the distribution fγ|γ̂
can be generated by γ = X2

1 +X2
2 where

X1, X2 ∼ N

(√
γ̂ − γ̄β

2
,
γ̄β

2

)
. (35)

From this, samples for the mutual information can be gener-
ated and applied to equations (29), (31).
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