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Magnetic turbulence suppression by a helical mode in a cylindrical geometry
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(Received 12 September 2012; accepted 13 November 2012; published online 7 December 2012)

To study processes involved in a helical structure formation in reversed field pinch devices, the

scaling of a turbulent boundary layer width associated with a vortex structure having large shears

of magnetic field and flow is obtained for reduced magnetohydrodynamics. The coherent vortex,

with its flow and magnetic shears, interacts with Alfv�en turbulence, forming a turbulent boundary

layer at the edge of the vortex. The layer arises from the balance between turbulence diffusion rates

and shearing rates and suppresses the turbulence in the structure. The suppression of turbulence

impedes relaxation of the coherent vortex profiles, leading to long coherence times. The scaling of

the boundary layer width reveals that both magnetic shear and flow shear can effectively suppress

magnetic turbulence. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769369]

I. INTRODUCTION

Recently an operating mode of the reversed field pinch

(RFP) known as the quasi single helicity state (QSH)1–3 has

attracted attention for its favorable confinement properties.2,4

It is characterized by a toroidal mode spectrum in which one

mode (typically corresponding to the innermost resonant

tearing mode of toroidal mode number n ¼ n0) has much

more energy than modes with n > n0. In contrast, under ordi-

nary multiple helicity operation the n0 mode and other modes

have comparable energy. When the spectrum is dominated

by a single mode, this mode becomes highly coherent, or

quasi-stationary, and imparts a helical character to the equi-

librium. The coherence indicates that nonlinear interactions

with other modes, which normally produce decorrelation in a

nonlinear timescale, are suppressed. Moreover, there is evi-

dence for a thermal transport barrier at the edge of the helical

core formed by the dominant helicity.2,4 The QSH state is

favored by large current. In RFX-mod5 the system oscillates

between QSH and multiple helicity states, spending more

time in QSH relative to the multiple helicity configuration if

the current is high.3

A Hamiltonian theory6 of the magnetic field has shown

that a large single helicity fluctuation relative to other helic-

ities results in a unitary helical equilibrium core without an

x-point, as observed in experiment. However the dominance

of a single helicity is imposed ad hoc in the theory, and there

is no treatment of the interactions that take place among tear-

ing modes. While numerical modeling7,8 of multiple tearing

modes has produced a situation in which the innermost helic-

ity becomes dominant, this only occurs at low Hartman num-

ber, through collisional stabilization of outer modes relative

to the less collisional innermost mode. However, the high

current conditions of QSH imply high Hartman number, not

the opposite, and would only provide stabilization at the

extreme edge. It is worthwhile exploring other mechanisms

for sustaining QSH that are valid for high magnetic Reynolds

number (or high current), that address transport-barrier-like

properties, and that have connections to limit cycle behavior.

This paper considers how shear associated with the

dominant helicity fluctuation affects the other fluctuations

with which it interacts, and what conditions might allow it to

become coherent by suppressing the other helicities. The

complexities of the phenomenon preclude a theory that treats

the RFP spectrum in realistic detail; consequently, we

explore basic workings. Tearing modes have flow,9 and that

flow is radially sheared. It is well known that equilibrium

shear flows suppress turbulence and transport driven by other

equilibrium gradients.10–13 Moreover, it has also been shown

that the shear flow of one vortical fluctuation in 2D Navier-

Stokes turbulence can suppress surrounding turbulence, pro-

vided its vorticity exceeds a threshold relative to the vorticity

of ambient fluctuations.14–16 The result is that the vortical

fluctuation becomes coherent, suffering virtually no decay

from interactions with the turbulence. This type of behavior

is consistent with the coherence of the dominant helicity in

the QSH state. However, tearing modes and the RFP global

fluctuation spectrum are more magnetic than electrostatic.

Consequently, analysis of the effect of shear on turbulent

interactions needs to include magnetic shear.17

The magnetic shear of a dominant filamentary current

fluctuation can in fact suppress interacting fluctuations and

has been shown to lead to the type of intermittency inferred

in interstellar turbulence from pulsar scintillation.18 The

effect was shown for kinetic Alfv�en wave (KAW) turbu-

lence, a type of electron-compressible magnetic turbulence

in which flow plays no dynamical role. Tearing modes, in

contrast, are modeled at the minimum with MHD, and flow

is essential to their dynamics. Therefore, in considering the

tearing mode fluctuations relevant to QSH, shear of both the

flow and the magnetic field must be treated in a system like

MHD.

Magnetic shear, when treated as a property of linear sta-

bility, is known to abet suppression by flow shear in internal

transport barriers.12,19 When the combination of magnetic

shear and flow shear influence nonlinear dynamics, the effect

is more complex. At a minimum, two inhomogeneities thata)Electronic mail: jkim282@wisc.edu.

1070-664X/2012/19(12)/122304/11/$30.00 VC 2012 American Institute of Physics19, 122304-1

PHYSICS OF PLASMAS 19, 122304 (2012)

Downloaded 07 Dec 2012 to 128.104.165.174. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4769369
http://dx.doi.org/10.1063/1.4769369
mailto:jkim282@wisc.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4769369&domain=pdf&date_stamp=2012-12-07


are not linked in some simple ways complicate the mode

structure of fluctuations.20 In a quasilinear turbulence closure

of MHD the nonlinear effect of magnetic shear is found to

oppose the suppressing effect of strong flow shear.21 On the

other hand, magnetic shear can suppress tokamak turbulence

nonlinearly.22 In light of these complexities we will empha-

size the interaction between flow shear and magnetic shear

and will employ an approach that is sufficiently general to

offer insight on the situation.

To produce as clear a view as possible of the nonlinear

effect of the magnetic shear and flow shear of a dominant

fluctuation on ambient MHD turbulence, we replace the

unstable tearing modes of the low-q RFP magnetic equilib-

rium with idealized magnetic fluctuations. The fluctuation of

the dominant helicity in the QSH state is represented by a

fluctuation labeled the current vortex. It has both a flow and

magnetic field whose radial variation is like that of an RFP

tearing mode. At the level of the interaction of turbulence

and shear, the helicity of the dominant mode is not an essen-

tial feature (that is not to say it would not have some effect).

Hence we treat the dominant mode as having azimuthal and

axial symmetry, i.e., with mode numbers n ¼ m ¼ 0. The

calculation is not embedded in the specifics of the RFP q
profile; hence, the current vortex should not be thought of as

a structure at the reversal surface. The other helicities of the

QSH state are represented as Alfv�enic fluctuations with n,

m > 0. For tractability, all fluctuations are treated under the

reduced MHD approximation. This is obviously an idealiza-

tion of the physics in the QSH state. Hence this work should

not be considered a model of QSH, but a basic study of how

magnetic and flow shears jointly operate for interactions that

can be expected in QSH.

There is also a geometrical difference between rotating

helical and vortex structures. While the rotating vortex

ðm ¼ n ¼ 0Þ presents a constant shear to the turbulence, the

helical structure presents oscillating shear to the turbulence,

such that the net effect should be averaged. However, this

oscillating shear effect will not be significant at the large

shear limit where the linear shearing occurs at a fraction of

the rotation period.

The ambient fluctuations live in the strongly inhomoge-

neous environments of the current vortex. Both their magni-

tudes and radial structures are dictated by the shears of the

current vortex. When the shears are large, the radial variation

of ambient structures is confined to a boundary layer. As-

ymptotic analysis provides a formal ordered set of approxi-

mations that enable analysis. This boundary layer analysis

has been employed in both the Navier-stokes15 and kinetic

Alfv�en wave turbulence18 problems mentioned earlier and is

used here in an analogous way. Some background on the

boundary layer analysis will be presented in Sec. II.

The main conclusion of this paper is that in the limit of

large magnetic shear and flow shear, the turbulent boundary

layer width Dr is inversely proportional to the 1/3 power of

an effective shear, ðX0

effÞ
�1=3

. The effective shear combines

the shears of the flow and magnetic field. Two limits concep-

tually characterize the combination. In one, the shears com-

bine linearly, so that one shear can either enhance the

suppression of the other or weaken it, depending on their rel-

ative directions and the turbulence characteristics. In the

other limit the shears combine quadratically, and one always

weakens the effect of the other, regardless of relative direc-

tion. When there is significant suppression, the current vor-

tex becomes coherent. The scaling of its lifetime normalized

to a tearing interaction time in the presence of shearing

effects strongly depends on the plasma current, making co-

herence stronger for larger current. This is consistent with

QSH observations and provides a possible explanation for

the favorability of QSH with high current operation.

This paper is organized as follows: a theoretical formula-

tion, the large shear approximation, the concept of boundary

layer formation, and eddy-damped quasi-normal Markovian

(EDQNM) closure are presented in Sec. II. The dimensional

analysis of turbulent boundary layer is given in Sec. III. The

time scale of coherent structures is estimated in Sec. IV. Sec-

tion V gives the conclusion and the discussion.

II. THEORETIC FRAMEWORK

A. Reduced MHD

To describe the interaction of fluctuations in MHD tur-

bulence in a plasma with a strong mean field, a reduced

description is highly advantageous. Reduced MHD23 pro-

vides the advantage of simplicity of description while allow-

ing the effect of shear in fluctuating flows and magnetic

fields to be investigated in detail. The dimensionless equa-

tions apply under the assumption of B0ðxÞ ¼ Bzẑ and are

given by

dx
dt
þrk j ¼ 0 ; (1a)

@w
@t
þrk / ¼ 0: (1b)

Here x ¼ r2
? / is the vorticity, j ¼ r2

? w is the current

(defined in the opposite direction of the true current), and the

parallel and total derivatives are

rk f ¼ b̂0 � $ f � ½w; f � ¼ @f

@z
� ½w; f � ;

df

dt
¼ @f

@t
þ ½/; f �;

and

½ f ; g� ¼ 1

r

@f

@r

@g

@h
� @f

@h
@g

@r

� �
:

The magnetic potential w and the electrostatic potential /
are symmetric: Eq. (1a) has the nonlinear terms, ½w; j� and

½/;x�, and Eq. (1b) has ½w;/�. In a cylindrical geometry, an

ansatz with the periodicity in the azimuthal and axial direc-

tions gives

f ðr; h; z; tÞ ¼
X
m;k

fmkðr; tÞeiðmh�kzÞ :

Equations (1a) and (1b) have a linear solution describing two

Alfv�en waves moving in the opposite axial directions.
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We will split the fluctuations into a slowly evolving

component f0 with mode numbers m0 and k0 and a rapidly

evolving component with m > m0 and k > k0,

f ¼ f0 þ ~f : (2)

It is assumed that the slow mode ðm0; k0Þ is dominant, i.e.,

f0 � ~f . Hence the slow mode represents the dominant helic-

ity of the QSH state, while the fast modes represent other

helical modes. We derive conditions under which the fluctua-

tion with ðm0; k0Þ suppresses nonlinear interactions with

other fluctuations, making it long-lived and justifying a pos-
teriori the assumption that it is slowly evolving. The fast

time scale is the time scale of the nonlinear interaction of

tearing modes (turbulent correlation time) in a multiple hel-

icity situation. Because the nonlinear interaction saturates

the instability, the time scale is the hybrid tearing instability

time scale. The slow time scale is much longer, representing

mixing of the dominant mode structure by fluctuations that

have been suppressed by the shear of the magnetic-field and

flow of the dominant mode.

For the dominant slowly evolving mode ðm0; k0Þ
¼ ð0; 0Þ, the evolution of �f ¼ fm0k0

¼ f00 is described by

equations for the vorticity and flux of the mode

@ �x
@t
¼ �

X
k0;m0

im0

r

@~/0�

@r
~x0 � @ ~x0�

@r
~/
0

 !"

� im0

r

@~w0�

@r
~j
0 � @

~j0�

@r
~w
0

 !#
; (3a)

@�w
@t
¼
X
k0;m0

im0

r

@~w0�

@r
~/
0 � @

~/0�

@r
~w
0

 !
; (3b)

where ~f 0� ¼ ~f �m0;�k0 and ~f
0 ¼ ~f m0k0 are rapidly evolving, sub-

dominant turbulent helical modes. The evolution equations

for the subdominant turbulent fluctuations ~f ¼ ~f mk are

@ ~x
@t
þ ik~j þ im

r

d�/
dr

~x � d�x
dr

~/

� �
� d�w

dr
~j � d�j

dr
~w

� �� �
�

X�
m0 þ m00 ¼ m
k0 þ k00 ¼ k

im0

r

@~/
00

@r
~x0 � @ ~x00

@r
~/
0

 !
� im0

r

@~w
00

@r
~j
0 � @

~j
00

@r
~w
0

 !" #
;

(4a)

@~w
@t
þ ik~/ � im

r

d�w
dr

~/ � d�/
dr

~w

� �

¼
X�

m0 þ m00 ¼ m

k0 þ k00 ¼ k

im0

r

@~w
00

@r
~/
0 � @

~/
00

@r
~w
0

 !
: (4b)

The notation is simplified by dropping ðm; kÞ and instead

using ~f
0 ¼ ~f m0k0 and ~f

00 ¼ ~f m00k00 . The sum
P* in the nonlinear

terms is done excluding the cases of (m0,k0)¼ (m,k) or

(m00,k00)¼ (m,k).

The fast time scale equation has a set of terms on the LHS

describing the interaction of the subdominant helical modes ~f
with the dominant helicity �f , and a set of terms of the RHS

describing nonlinear interactions among the subdominant heli-

cal modes. With the time scale separation the interaction

involving the dominant helicity is effectively linearized but,

importantly, enters as an inhomogeneous background. When

the inhomogeneity is strong the subdominant fluctuations

respond by developing structure that is set by the balance of the

inhomogeneous interaction terms on the LHS and the nonlinear

interactions on the RHS. This structure is well known to repre-

sent a suppression of the fluctuation activity in regions where

the inhomogeneity is strong.13,18 The slow time scale equation

describes the evolution of the dominant helicity under the

anomalous diffusion caused by the subdominant fluctuations.

When these two sets of equations are solved, we can determine

from the fast time scale equation how strong the inhomogeneity

of the dominant fluctuation must be to suppress the subdomi-

nant fluctuations. The slow time scale equation provides a

measure of the time scale on which the dominant helicity is sta-

tionary. In light of this discussion, while Eqs. (4a) and (4b) con-

tain linear Alfv�en terms, the more important effect is Alfv�enic

propagation on the inhomogeneous background created by the

dominant helicity mode.

B. Large shear approximation

We now consider the inhomogeneous interaction terms

involving the dominant helicity that appear on the LHS of

Eqs. (4a) and (4b). The factor d�/=dr represents the flow of

the dominant helicity mode. The mode that is symmetric in

the axial and azimuthal directions, ðm; nÞ ¼ ð0; 0Þ, has a vorti-

cal flow with the same symmetry. The flow d�/=dr advects the

fluctuating vorticity ~x in the azimuthal direction. If radially

sheared, this flow shears the structures associated with ~x.

Nonlinearity, present because of the nonlinear terms from the

RHS, introduces decorrelation of ~x. As a result, the sheared

fluctuation ~x decorrelates in the radial direction across a

reduced scale ‘0c relative to shear-free scale ‘c.15 The shearing

produced by the dominant vortex flow is quantified by the dif-

ferential of the angular velocity. An expansion of �Vh=r for

local analysis yields the shearing rate in the first order term

X/ðrÞ �
�Vh

r
¼ 1

r

d�/
dr

’ X/ðr0Þ þ ðr � r0Þ
dX/

dr

� �
r¼r0

: (5)

The expansion is valid when the shearing effect is strong in

comparison to shear instability dependent on X
00

/. Moreover,
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the radial correlation length ‘v � Dr should be shorter than

the flow scale length ‘X � ð2X
0

/=X
00

/Þ, where X
0

/ ¼ dX=dr

and X
00

/ ¼ d2X=dr2

Next, consider the factor d�w=dr in Eqs. (4a) and (4b).

This represents the magnetic field of the dominant helicity

mode. Like the vortical flow d�/=dr it too has radial shear. Its

effect is analogous to a flow shear because the subdominant

fluctuations of other helical modes have an Alfv�enic character

in MHD. Alfv�en waves propagate along the magnetic field

with velocity proportional to B. If the field is inhomogeneous

in a direction along phase fronts, the differential propagation

speed distorts the phase fronts as shown in Fig. 2. When the

differential stretching of a phase front reaches the correlation

length associated with the nonlinear interaction between heli-

cal modes, the front breaks and the radial correlation is

reduced. While phase fronts are “sheared,” the process is not

advective shear straining, but rather one of wave refraction.

The refractive shearing produced by the magnetic field of the

dominant helicity mode is quantified by the differential of an

Alfv�en angular velocity. An expansion of �Bh=r for local anal-

ysis yields the refractive shearing rate in the first order term

XwðrÞ �
�Bh

r
¼ 1

r

d�w
dr

’ Xwðr0Þ þ ðr � r0Þ
dXw

dr

� �
r¼r0

; (6)

for ‘B � Dr 	 ‘J � ð2X
0

w=X
00

wÞ. The background axial field

B0 is constant. The magnetic field line that a fluctuation experi-

ences is the combination of the axial magnetic field and the azi-

muthal magnetic field d�w=dr. The phase front is refracted on

the plane perpendicular to the axial magnetic field. The neces-

sary condition for the local approximation, Dr 	 ‘J or ‘X,

gives a clear limit for the approximation. When this condition

is met together with Dr 	 ‘X, the key dynamical effect of the

slow-time fluctuations on the other helical modes includes only

linear shearing and excludes current (or flow) driven instability

proportional to the second derivative of �/ or �w.

In the strong shear limit, the interaction between a mean

flow shear and turbulence has long been characterized as a

reduction in radial correlation length determined from the

balance of shearing rate and eddy turnover rate. The two

terms balance if the system remains turbulent as shear

becomes large. From Fig. 1(a), in which the two rates are

plotted as functions of Dr, it is clear that Dr decreases as the

slope of the shearing term (shearing rate) increases. When

the shear flow is the flow of coherent structure in turbulence,

Dr is the width of a boundary layer at the interface between

the turbulence and the structure, inside of which the turbu-

lence becomes evanescent and drops to very low levels, as

shown in Fig. 1(b). The fluctuations inside the structure can

be expressed by v=vext � Dr=Drext from dimensional analy-

sis. The same concept can be applied to the boundary forma-

tion by magnetic shear, too.

The shearing rate dX/=dr is a familiar quantity for para-

metrizing the strength of suppression by flow shear. The pa-

rameter enters both linear stability calculations, where flow

shear can stabilize certain pressure, density, and current gradi-

ent driven instabilities, and calculations of turbulence where

flow shear reduces correlation lengths and lowers fluctuation

levels.13 Magnetic shear has long been known to stabilize cer-

tain instabilities, with dXw=dr an appropriate measure of the

magnetic shear strength. Here we observe that dXw=dr also

parametrizes a nonlinear, turbulent effect with analogous

reductions of correlation length and turbulence level to those

produced by flow shear. This nonlinear effect was previously

studied for fluctuations of kinetic Alfv�en wave turbulence.18

Here it is extended to MHD turbulence, where the nonlinear

effects of dX/=dr and dXw=dr are considered jointly.

C. Turbulence closure equations

Now, a simple dimensional analysis is applied in order

to obtain a radial decorrelation length represented in Fig. 1.

Multiple balances between a shear on the LHS and nonlinear

decorrelation on the RHS can be possible because there are

magnetic and flow shears as well as multiple nonlinear terms

in Eqs. (4a) and (4b). One balance is when the flow shear is

dominant (X0/ � X0w). The balance is achieved with a nar-

row radial correlation length Dra arising from the vorticity

equation (4a) or Drb from the induction equation (4b). The

application of dimensional analysis yields

Dra �
~/

rX0/
Max 1;

~w
2

~/
2

 ! !1=2

and Drb �
~/

rX0/

 !1=2

;

where Maxð1; ~w
2
=~/

2Þ represents which nonlinear term is re-

sponsible for the balance: E
B nonlinearity ½~/; ~x� in flow

FIG. 1. Illustration of (a) the balance

between shearing rate and eddy turn-

over rate and (b) the resulting boundary

layer formation.
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dominant turbulence or nonlinear magnetic flutter ½~w; ~j� in

magnetic field dominant turbulence in Eq. (4a). When flow-

dominant turbulence ð~/ � ~wÞ interacts with the flow shear

of the dominant helicity mode, the correlation length Dra

becomes equivalent to the length Drb so that the reduced

length by flow shear Dr � Dra � Drb can be determined.

Here Dr is the same as the scaling obtained in Navier-Stokes

equation.15 For magnetic field dominant turbulence ð~w � ~/Þ,
the correlation length cannot be easily determined since

Dra=Drb � ~w=~/.

When the magnetic shear is dominant (X
0

w � X0/), a

similar scaling is obtained

Dra �
~w

rX0w
Max 1;

~/
2

~w
2

 ! !1=2

and Drb �
~w

rX0w

 !1=2

:

In the magnetic field dominant turbulence, the reduced corre-

lation length Dr � Dra � Drb can be estimated. This scaling

Dr � ð~w=rX0wÞ
1=2

in the magnetic field fluctuation outside of

the current vortex is not the same as the scaling obtained in

kinetic Alfv�en wave18 as in the Navier-Stokes equation. The

difference can be attributed to the wave property that KAW

is dispersive, x � k?kk, in the radial direction while Alfv�en

wave is not x � kk. So wave characteristics are the one of

the determining factors.

The dimensional analysis in the previous paragraphs

could not give any insight into the scaling of the boundary

width when magnetic shear is at the same order as flow shear

as well as when flow fluctuations are at the equivalent ampli-

tudes with magnetic field fluctuations even under one domi-

nant shear, either X0w or X0/. Therefore, a more systematic

treatment is necessary to sort out how the balance between

shear and turbulence is achieved.

One approach is to apply a statistical closure to Eqs. (4a)

and (4b), consider the nonlinear interactions as nonlinear diffu-

sion, and compare shearing rates with nonlinear diffusion

rates. We consider a variant of the EDQNM closure, which

closes a statistical moment hierarchy at second order. The

EDQNM yields equations for quadratic correlations (e.g., ener-

gies) expressed in terms of quadratic correlations. However,

we take a simpler approach and apply the statistical ansatz of

quasi-Gaussian statistics to the evolution equations directly,

not the energies. The result is that the nonlinearities become

turbulent diffusivities that depend on quadratic correlations

and leave out incoherent and inhomogeneous forcing. This

procedure does not correctly account for the energy balance of

turbulence; however, it captures well the nonlinear decorrela-

tion response at least dimensionally, by the renormalization of

the turbulent response. This method was used in the investiga-

tion of flow shear suppression in neutral fluid15 and magnetic

field shear suppression in kinetic Alfv�en turbulence.18

We calculate the turbulent responses for the EDQNM

procedure, obtaining the form ~LijUj ¼ Si, where U ¼ ð~x; ~jÞ

cþ iX/ þ d11

@2

@r2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~L11

~xkm þ �iXw þ d12

@2

@r2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~L12

~jkm

¼ � im

r
~/

d�x
dr
þ im

r
~w

d�j

dr
; (7a)

�iXw þ d21

@2

@r2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~L21

~xkm þ cþ iX/ þ d22

@2

@r2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~L22

~jkm ¼ 0;

(7b)

where only the highest-order radial derivative terms are

retained consistent with standard asymptotic boundary layer

analysis for large shear in the magnetic field and flow (the

detailed procedure is shown in Appendix A). The nonlinear

diffusion coefficients are nominally all the same order of

dij � d, where d indicates OðdijÞ, which complicates the

analysis. The Laplace transform is applied to the fast-time

fluctuation. The radial derivatives of the slowly evolving

(and dominant) current and vorticity in the right-hand side

represent forcing or damping terms proportional to gradient.

Each nonlinear diffusion coefficients dij has contributions

from magnetic field and velocity field correlations

dij ¼ dij
// þ dij

/w þ dij
w/ þ dij

ww;

where dij
ab are defined in Eqs. (A7)–(A10) with

a; b ¼ ð/;wÞ. As an example, the coefficient d11
// is given by

d11
// ¼ �

1

2pi

ði1þc0

�i1þcÞ

dc0
im0

r
/m0;c0

~L22

Detð~LijÞ

 !
Wc0;c


 �im0

r

� �
/�m0;�c0 ; (8)

where Wc0;c is the decorrelation rate for fluctuations at c0 driv-

ing c, and Detð~LijÞ ¼ ~L11
~L22 � ~L12

~L21. Equation (8) implies

that a radial velocity fluctuation ~vr ¼ ð�im0=rÞ/�m0;�c0 of a

poloidal wavenumber �m0 is propagated by the response

function ~L22=ð~L11
~L22 � ~L12

~L21Þ and interacts with the radial

velocity fluctuation ~vr ¼ ðim0=rÞ/m0;c0 of the poloidal

FIG. 2. Schematic description of Alfv�enic fluctuation distortion by linear

magnetic shear. Reprinted with permission from Astrophys. J. 665, 402

(2007). Copyright 2007 IOP Publishing Ltd.18
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wavenumber m0 giving rise to nonlinear diffusion. The closure

equations are renormalized by replacing the linear response

function by ~Lij in the nonlinear diffusion coefficients dij.

There are sixteen dij
ab, 2ða ¼ ~/; ~wÞ 
 4ð~Lij=Detð~LijÞÞ 
 2

ðb ¼ ~/; ~wÞ. The derivation and the detailed definition of dij

are presented in Appendix A.

The nonlinear diffusion dij is generally complex. When it

is real, such as in strong turbulence of Navier-Stokes and MHD

systems, the nonlinear interaction described by dij can be sim-

ply modeled as eddy damping. Therefore, the diagonal compo-

nents, d11 and d22, represent generalized turbulent viscosity and

resistivity. The non-diagonal components, d12 and d21, describe

the modification to wave dynamics by nonlinear interactions

between velocity field and magnetic field. In comparing Eqs.

(4a) and (4b) with Eqs. (7a) and (7b) we observe that the nonli-

nearities have been replaced with d11@
2=@r2, d12@

2=@r2,

d21@
2=@r2, and d22@

2=@r2. Thus we expect that the radial cor-

relation lengths will involve ratios of dij=X
0. The diffusivities

are proportional to quadratic correlations of fluctuation levels

and account for how the fluctuations interact dynamically to

give rise to decorrelation. Dimensionally the diffusivities are

proportional quadratically to fluctuations in the weak turbulence

regime, i.e., d// � ~/
2
; in the strong turbulence regime the

diffusivities vary linearly, i.e., d// � ~/.

A more complete closure would also determine the inco-

herent turbulent source and satisfy other constraints, such as

realizability.24 However, because shearing is a linear process

in the two time scale analysis, its effect on turbulence correla-

tions and levels resides in the turbulent response, making the

present treatment adequate. We also note that, like the

description of coherent vortices in 2D Navier-Stokes turbu-

lence,15 the two time scale analysis separates the coherent,

non-Gaussian component of turbulence (in this case the domi-

nant helicity mode) from the incoherent Gaussian component

(other helicities), justifying the quasi-Gaussian approximation

of the closure.

III. SCALING OF TURBULENT BOUNDARY LAYER

Solving Eqs. (7a) and (7b) is a highly difficult task, if

possible. Rather than seeking a solution, a response function

for turbulent fluctuations can be explored by asymptotic

expansion for large shear. The response functions G~x and G~j

of vorticity and current perturbations ~x and ~j satisfy

~L11G~xðr; r0Þ þ ~L12G~jðr; r0Þ ¼ dðr � r0Þ ;
~L21G~xðr; r0Þ þ ~L22G~jðr; r0Þ ¼ 0 :

(9)

When the equations are solved for G~x;~j , turbulent fluctua-

tions ~x and ~j are

ð~x; ~jÞ ¼
ð

r0
G~x;~jðr; r0ÞRðr0Þ;

where R represents the inhomogeneous terms in Eqs. (7a) and

(7b). Since large shear results in a sharp decrease in turbulent

fluctuations over a short radial distance, the WKB expansion

is best suited for the problems.25 The WKB ansatz yields

G~x ¼ exp
X

n¼�n~x

�nS~x;n

 !
and G~j ¼ exp

X
n¼�nj

�nSj;n

 !
;

where � is an order parameter. A complex function Sðr; r0Þ
represents both amplitude and phase change from the source

Rðr0Þ. If G � expð� jr � r0 jn=S0Þ, the fluctuation falls off

exponentially over a boundary layer width Dr ¼ jr � r0j
¼ S

1=n
0 , where jGðDrÞ j ¼ 1=e. The formal procedure for G is

to obtain Gþðr > r0Þ and G�ðr > r0Þ and match asymptoti-

cally over r ¼ r0. However, the solutions for the homogene-

ous equation (9) is enough for the investigation of the

boundary layer width Dr. In addition, the turbulent diffusion

d is treated as a given characteristic of turbulence existing

outside the dominant helical structure.

It is assumed that the ratio of shear to diffusion is propor-

tional to 1=�2 where X
0

/;X
0

w � 1=�2 where � is small. That

limit corresponds to maxðX0

w;X
0

/ÞDr=d � Oð��2Þ � 1. The

solutions can be sought for with n~x ¼ nĵ ¼ �1. Therefore,

we insert the first and second derivatives

@G~x

@r
� ��1 @Sx;�1

@r
G~x and

@2G~x

@r2
� ��2 @Sx;�1

@r

� �2

G~x

into Eq. (9). Analytical solution is possible with the assump-

tions of cþ iX/ and k þ iXw being in the smaller order than

1=�2 and G~x ¼ cG~j , where c is a complex constant. The

exponent Sx;�1 � r
ffiffi
r
p

is obtained. Then the boundary layer

width Dr over which fluctuations decrease exponentially is

1

Dr

� �3

��i
X0wðd12 þ d21Þ þ X0/ðd11 þ d22Þ

2DetðdijÞ
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½X0wðd12 þ d21Þ þ X0/ðd11 þ d22Þ�2 þ 4DetðdijÞðX0/2 � X0w

2Þ
q

2DetðdijÞ
: (10)

Here the expression (10) is obtained with c¼ 1. Notice that dij

is complex and so is Dr. Due to complex Dr, the fluctuation

which penetrates into the dominant mode is oscillatory in gen-

eral. Still, Dr is a good measure of the length scale over which

fluctuations decrease significantly.

The dominant radial scale (turbulent boundary layer

width) can be divided into two limiting cases. One is the

“linear” interaction between flow and magnetic shears result-

ing when Q� 1 where

Q �
½X0wðd12 þ d21Þ þ X0/ðd11 þ d22Þ�2

4DetðdijÞðX0/2 � X0w
2Þ

�����
����� ; (11)
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where Q is simply the ratio of the first term to the second

one in the radical of Eq. (10). Here, “linear” simply

mean that the effective shear X0eff can be expressed a linear

combination of magnetic and flow shears, as X0eff ¼
c1ðX0/ þ c2X

0
wÞ where c1;2 are complex constants, or

1

Dr

� �3

� �i
X0wðd12 þ d21Þ þ X0/ðd11 þ d22Þ

DetðdijÞ
: (12)

The signs of Re c1 and Re c2 are dependent on the nonlinear

diffusion coefficients dij, which are determined by the corre-

lations of the turbulent magnetic field and velocity fluctua-

tions outside the dominant mode structure. We do not go

into the details of Alfv�enic turbulence, related to overlapping

tearing modes. Since flow shear is well-known to suppress

turbulence in general, we start with an assumption that

Re c1 > 0. Then, magnetic shear suppresses the turbulence

together with flow shear if Re c2 > 0. Magnetic shear weak-

ens the suppression by flow if Re c2 < 0. And in this case,

the relative direction of each shear is important.

In the other limiting case Q	 1, the effective shear

can be expressed in the quadratic relation between mag-

netic and flow shears, X
0

eff ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0/

2 � X0w
2

q
. The magnetic

shear and the flow shear always cancel out so as to weaken

the suppression. The “quadratic” interaction is independent

of the ambient turbulence since the effective shear is pro-

portional to X
02
/ � X

02
w in comparison to X0/ þ c2X

0
w, where

c2 is dependent on turbulent fluctuations. In this case

1

Dr

� �3

� �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
02
/ � X

02
w

DetðdijÞ

s
: (13)

In fact, the division of “linear” and “quadratic” interactions

between the shears is somewhat artificial, and the boundary

layer widths for both interactions have the same scaling of

Dr � d

X
0

eff

 !1=3

; (14)

where a generic d represents nonlinear diffusion dij for scal-

ing analysis. However, the distinction between “linear” and

“quadratic” interactions is instructive when Q� ð	Þ1.

In order to make clear the relation between magnetic

shear and flow shear, it is helpful to take a quasilinear approx-

imation. In the quasilinear limit, the linear operators Lij with-

out nonlinear diffusion coefficients dij, instead of the

renormalized operators ~Lij, are used for the calculation of the

nonlinear diffusion coefficients dij as shown in Appendix B.

Since L1 � L11 ¼ L22 and L2 � L12 ¼ L21, there are only two

propagators of P6 ¼ 1=ðL17L2Þ in comparison to the four

nonlinear propagator ~Lij=Detð~LijÞ in Eq. (8). Two propagators

P6 correspond to the Alfv�en waves propagating forward and

backward along the magnetic field line of the dominant mode.

Then the nonlinear diffusion coefficients dij are expressed in

the linear combination of eight nonlinear decorrelation rates

d
ð‘Þ6
ab (2
 2
 2), where a; b being ð~/; ~wÞ (refer to Eq. (B2)).

Here the superscript ð‘Þ are used for the quasilinear decorrela-

tion rates to avoid confusion: d
ð‘Þþ
// is the quasilinear diffusion

coefficient arising from the interaction of electrostatic fluctua-

tions, i.e., velocity fluctuations. In the case where the wave

turbulence is well balanced between the waves propagating in

both the directions, that is, d
ð‘Þ
ab � d

ð‘Þþ
ab ¼ d

ð‘Þ�
ab , the boundary

width of the “linear” interaction can be simplified

1

Dr

� �3

� �i
d
ð‘Þ
//X0/ � d

ð‘Þ
/wX0w

Detðdð‘Þij Þ
; (15)

where Detðdð‘Þij Þ ¼ ðd
ð‘Þ2
// � d

ð‘Þ2
ww Þ � ðd

ð‘Þ2
/w � d

ð‘Þ2
w/ Þ. The width

of the “quadratic” interaction is the same as Eq. (13) except

the new determinant. Now Eq. (15) shows when flow shear

dominates magnetic shear in the “linear” interaction. Con-

sider that both shears are the same order of amplitude. When

the decorrelation arising from the nonlinear interactions

between velocity fluctuations or magnetic field fluctuations

are large in comparison to the one arising between velocity

and magnetic field fluctuations, i.e., d
ð‘Þ
//; d

ð‘Þ
ww � d

ð‘Þ
/w; d

ð‘Þ
w/,

the flow shear mainly determines the effective shear and the

turbulent boundary layer ðDrÞ�3 ! X
0

/=d
ð‘Þ
//. When

d
ð‘Þ
//; d

ð‘Þ
ww 	 d

ð‘Þ
/w; d

ð‘Þ
w/, the magnetic field shear makes a larger

contribution to the effective shear and the boundary width

dominantly, yielding ðDrÞ�3 ! X
0

w=d
ð‘Þ
/w.

The interaction between magnetic shear and flow is

shown to be dependent on the turbulent correlations.

Although dij is likely to be in the same order, the above

description of either linear or quadratic shear-shear interac-

tions allows better insight into the relation of shear strengths.

In the “linear” interaction between the two shears, the scal-

ing can be written with the Alfv�en velocity VAðr0Þ and flow

velocity V0ðr0Þ of the dominant mode

1

ðDrÞ3
�
ðX0/ þ aX0wÞ

d
� 1

d

d

dr

Bh

r

� �
V0

VA

LJ

LX
þ a

� �
; (16)

where the coefficient a is in general �Oð1Þ, the flow shear

length LX¼ X//X/0 and the field shear length LJ ¼ X//X/0.

In case of the sub-Alfv�enic flow ðVA=V0 	 1Þ and the simi-

lar shear lengths of flow and magnetic field, LJ � LX, a

coherent structure is likely to be bounded by the magnetic

field shear X0w ¼ r�1dðBh=rÞ=dr, not by the flow shear

X0/ ¼ dðVh=rÞ=dr.

IV. COMPARISON TO TEARING MODES

In Sec. III, from the structure of the dominant mode, the

scaling of the turbulent boundary layer width Dr is obtained

in terms of the magnetic and flow shears and the turbulent

diffusion rates. A condition for the existence of a single heli-

cal state will be developed in this section.

The local approximation is valid when the boundary

layer width is far smaller than the magnetic scale length ‘J ,

or flow shear length ‘X. For this to hold, the boundary width

Dr should satisfy
Dr

minð‘J; ‘XÞ
	 1 :

In addition, for the effective suppression, a boundary layer

should be smaller than any macroscopic length associated
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with fluctuations outside the layer. The magnetic island

width w0, formed by an unstable tearing mode, is the small-

est of the macroscopic length scales. The island width should

be larger than the width of the boundary layer so that the

island structure serves as a coherent structure in this context.

The criterion for the turbulence suppression, then, becomes

Dr=w0 	 1 : (17)

The width of the nonlinear tearing mode is

w0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rqBtearing

r =mq0Beq
h

q
[chap. 7.2 of Wesson26] where

Btearing
r is the radial magnetic field of a tearing mode, Beq

h is

the poloidal magnetic field of the equilibrium, and q is the

safety factor. When the helical structure of a tearing mode is

to be treated as the dominant fluctuation structure described

in Sec. II, the magnetic field associated with the magnetic

shear should be orthogonal to both the radial direction and

the mode propagation directions of the tearing modes. In this

orthogonal direction, the local magnetic shear X
0

w of the

coherent structure is not the same as the equilibrium mag-

netic field Beq
h giving rise to unstable tearing modes. The

tearing mode forms a resonant surface that is helical in na-

ture. A perturbation resonant with this resonant surface has

the form of expðimvÞ, where v ¼ h� ðn=mÞ/ is an angular

coordinate orthogonal to the helix. The magnetic field in this

orthogonal direction is

�B
� ¼ Beq

h 1� n

m
qðrÞ

	 

¼ � q0Beq

h

q

� �
ðr � rsÞ ; (18)

where rs is the resonant surface q(rs)¼m/n.

The local magnetic field shear experienced by the turbu-

lence is from �B
�
, not from Beq

h . The angular Alfv�en velocity

Xw arises from �B
�
=r � q0Beq

h =q.

Therefore, the qualitative comparison gives the maximal

suppression for

Dr

w0

�
���� d1=3

X1=3

eff 0

Xw

Btearing
r

� �1=2����	 1 : (19)

From a naive observation, the magnetic shear from q0 in the

magnetic island width would weaken the effect of the mag-

netic shear in Xeff0 , leading to a less optimal condition for

magnetic shear suppression. However, the macro shear q0 only

increases the angular frequency Xw of the local tearing mag-

netic field, giving equal footing to both local magnetic and

flow shear from the unstable tearing modes. As far as the ratio

of a turbulent boundary width to a magnetic island width is

concerned, it does not matter whether the effective shear is

from the magnetic field or the flow shear.

Vortex structures decay as a result of turbulence mix-

ing as shown in the RHS of Eq. (3). In Eq. (7), it is possible

to estimate ~Lij dimensionally, i.e., ~L11 � ðX0/ þ d11=Dr3Þr.

The rate of mixing is governed by the amplitude of turbu-

lent fluctuations in the layer. The fluctuation amplitudes x̂
and ĵ in the vortex could be algebraically estimated with

r � Dr

~x �
X
0

/ þ d22=Dr3

X
02
effDr

im

r
~w

d�j

dr
� ~/

d�x
dr

� �
;

~j �
X
0

w þ d21=Dr3

X
02
effDr

im

r
~w

d�j

dr
� ~/

d�x
dr

� �
:

Both fluctuation levels in the coherent structure are inver-

sely proportional to X0effDr since X0w;X
0
/; dij=Dr3 � X0eff . This

factor reduces the levels and makes the fluctuations much less

efficient at relaxing the coherent structure profiles via turbu-

lent diffusion. The profile relaxation times are denoted by s�x

and s�j , and their magnitudes can be extracted dimensionally

from the following:

�x
s�x
� � 1

2pi

ð
dc

�
�
X
k0;m0

�
im0

r

@~/0�

@r
~x0 � @ ~x0�

@r
~/
0

 !

� im0

r

@~w0�

@r
~j
0 � @

~j0�

@r
~w
0

 !��

� 1

X
02
effDr3

ðhbrvri � hvrvriÞ
d�x
dr
þ ðhvrbri � hbrbriÞ

d�j

dr

� �
;

where @=@r � 1=Dr and
Ð

dch~/~wi � ~/~w=X
0

effDr are used.

Assuming hvrvri � hvrbri � hbrbri and strong turbulence

d � br, the estimate s�x � s�j is

1

s�j

� 1

s�x
� br

X
0

eff

� br

q0Beq
h =ðq‘BÞ

� br

Beq
h

‘B

q0=q
: (20)

The life time of the vortex structure is proportional to the

effective shear X
0

eff , which, for the RFP equilibrium, can be

represented by Beq
h =br.

If the shearing effects described here are excluded, the

coherent structure is an unstable tearing mode with a linear

growing rate ctearing ¼ s�1
tearing. This time scales parametrizes

not just instability, but nonlinear saturation. Hence a compar-

ison of s�j with stearing indicates the extent to which shearing

effects modify the dynamics. When s�j=stearing�1, the inner-

most tearing mode can sustain itself by suppressing the

incoming turbulence generated by other outlying tearing

modes. Assuming that all radial derivatives, q0=q and ‘B, are

all tied to the poloidal magnetic field Bh, we compare the life

time s�j to the linear tearing growth rates. For the sake

of comparison we consider the behavior of ctearings�j for

a tokamak. For the tokamak, the linear growth rate is ctearing

� ðq0Þ2=3s1=3
R s2=3

A � B
�2=3

h for m¼ 1.27

ctearings�j � B
1=3

h ðTokamakÞ :

For larger poloidal magnetic field, the ratio of structure life-

time to tearing mode growth time is larger. For the RFP, the

linear tearing growth rate is ctearingðRFPÞ � B
2=5
0 .28 Since

the poloidal magnetic field and the toroidal magnetic field in

the RFP are of the same order, the linear growth rate should

be proportional to a power of the poloidal magnetic field

between 0 and 2/5. This yields

ctearings�j � Ba
h ðRFPÞ ;
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where 1 < a < 1:4. We observe that the scaling of lifetime

with Bh is much stronger (more favorable for coherence) in

the RFP than in the tokamak.

This result is qualitatively consistent with the observa-

tion of the longer persistence of the QSH state with the

increase of plasma current.29 Since the resistivity and the vis-

cosity are not included in the analysis, it is hard to directly

compare our result to the Lundquist number scaling29 with

the amplitudes of the dominant mode and secondary modes,

where the amplitude of the dominant mode increases with

the Lunquist number and the amplitudes of the secondary

modes decrease. The decrease of the amplitudes of the sec-

ondary modes, whatever its reason, is more likely to enhance

the shear suppression by these shears, since the secondary

modes are the source of free energy for the turbulence repre-

sented by d in the scaling.

V. CONCLUSION

We have obtained the scaling for the turbulent bound-

ary width established in the presence of the large magnetic

and velocity shears of a coherent vortex structure, based on

the fact that either large flow shear or magnetic shear sup-

presses turbulence unless there is instability induced by one

of shears. The turbulent layer width is inversely propor-

tional to an effective shear X0eff
1=3, where the effective shear

is a dimensional estimate extracted from the combination of

complicated nonlinear diffusions and the magnetic and flow

shears. The effective shear is characterized in two limits as

having either a “linear” or “quadratic” interaction between

the magnetic and flow shears. In the “linear” interaction,

flow and magnetic field shears can suppress the ambient tur-

bulence together or partially cancel each other to weaken

nonlinear suppression depending on the relative direction of

the shears. The characteristics of the ambient turbulence are

important in deciding the relative roles of the shears. In the

“quadratic” interaction, they always work against each

other to weaken the nonlinear suppression. In the quasilin-

ear approximation where the turbulent response is domi-

nated by Alfv�en waves, either of the shears is dominant in

suppression and the other shear weakens the suppression by

the “quadratic” interaction. Even though this paper does not

explore a concrete relation between the shears in details,

the result encompasses a large range of possibilities that

can arise from the combination of magnetic and flow

shears. Regardless of whether the system is in the linear or

quadratic limit, system responses scale with X0eff
1=3 with

additive or subtractive combinations providing a larger or

smaller overall numerical coefficient.

The scalings of the boundary layer width and the life-

time scaling of the coherent vortex structure are compared to

the tearing island width and linear tearing growth rate, which

quantifies the energy injection rate by tearing modes into the

magnetic island. Larger shears give a longer life-time to the

coherent structure in proportion to Xeff 0 . A larger poloidal

magnetic field tends to give a longer life-time. The life-time

relative to the linear tearing growth time gives a stronger de-

pendence on poloidal magnetic field in the RFP than in toka-

maks, thus favoring the formation of this coherent structure

in the RFP. This is consistent with the observation that a hel-

ical state in the RFP is favored by large plasma current.

This dimensional analysis is based on the simple con-

cept of the turbulent boundary layer. This analysis makes use

of several simplifying assumptions. Account is not taken of a

possible oscillatory response across the layer. The turbulence

diffusion coefficients dij are treated independent of magnetic

and flow shear. The coherent structure is treated as axisym-

metric when in fact it is helical and three-dimensional. Quan-

titative results from numerical simulation are therefore

highly desirable and will be pursued in the future. Despite

the limitations of the approach, the trends represented by the

scaling reflect robust physics and suggest new measure-

ments. These include the magnetic shear and flow shear of

the dominant helical state and turbulence inside and outside

the helical structure.
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APPENDIX A: DERIVATION OF TURBULENT
DIFFUSION COEFFICIENTS

In order to obtain the governing nonlinear equation, the

set of the equations (4) is rewritten as

L11 ~x þ L12
~j ¼�

X�
m0 þ m00 ¼ m

k0 þ k00 ¼ k

im0

r

@~/
00

@r
~x0 � @ ~x00

@r
~/
0

 !"

� im0

r

@~w
00

@r
~j
0 � @

~j
00

@r
~w
0

 !#
; (A1a)

L21
~/ þ L22

~w ¼
X�

m0 þ m00 ¼ m
k0 þ k00 ¼ k

im0

r

@~w
00

@r
~/
0 � @

~/
00

@r
~w
0

 !
; (A1b)

where

L1 ¼ L11 ¼ L22 ¼
@

@t
þ im

r

d�/
dr
¼ cþ imX/ðrÞ ;

L2 ¼ L12 ¼ L21 ¼ ik � im

r

d�w
dr
¼ iðk � mXwðrÞÞ :

(A2)

Applying the Laplacian to Eq. (A1b) and dropping the

lower derivative in Eq. (A1), we obtain

L11 ~x þ L12
~j ¼

X�
m0 þ m00 ¼ m

k0 þ k00 ¼ k

im0

r

@ ~x00

@r
~/
0 � @

~j
00

@r
~w
0

 !
;

L21 ~x þ L22
~j ¼

X�
m0 þ m00 ¼ m

k0 þ k00 ¼ k

im0

r

@~j
00

@r
~/
0 � @ ~x00

@r
~w
0

 !
:

(A3)

Then dropping the sum for simple notation yields
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~x ¼ 1

DL

im0

r
L22

@ ~x00

@r
~/
0 � @

~j
00

@r
~w
0

 !
� im0

r
L12

@~j
00

@r
~/
0 � @ ~x00

@r
~w
0

 !" #
;

~j ¼ 1

DL
� im0

r
L21

@ ~x00

@r
~/
0 � @

~j
00

@r
~w
0

 !
þ im0

r
L11

@~j
00

@r
~/
0 � @ ~x00

@r
~w
0

 !" #
;

(A4)

where

DL ¼ L11L22 � L12L21 :

Substituting Eq. (A4) in the RHS of Eq. (A3), we obtain

L11 þ d11

@2

@r2

� �
~x þ L12 þ d12

@2

@r2

� �
~j ¼ f ;

L21 þ d21

@2

@r2

� �
~x þ L22 þ d22

@2

@r2

� �
~j ¼ g ;

(A5)

where f,g are the source terms independent of x̂ and ĵ

dij ¼ dij
// þ dij

/w þ dij
w/ þ dij

ww ; (A6)

i and j are the indexes of f1; 2g, and

d11
// ¼

im0

r
~/
0

� �
L22

DL

�im0

r
~/�m0

� �� �
;

d11
/w ¼

im0

r
~/
0

� �
L12

DL

�im0

r
~w�m0

� �� �
;

d11
w/ ¼ � im0

r
~w
0

� �
L21

DL

�im0

r
~/�m0

� �� �
;

d11
ww ¼ � im0

r
~w
0

� �
L11

DL

�im0

r
~w�m0

� �� �
;

(A7)

d12
// ¼ � im0

r
~/
0

� �
L12

DL

�im0

r
~/�m0

� �� �
;

d12
/w ¼ � im0

r
~/
0

� �
L22

DL

�im0

r
~w�m0

� �� �
;

d12
w/ ¼

im0

r
~w
0

� �
L11

DL

�im0

r
~/�m0

� �� �
;

d12
ww ¼

im0

r
~w
0

� �
L21

DL

�im0

r
~w�m0

� �� �
;

(A8)

d21
// ¼ � im0

r
~/
0

� �
L21

DL

�im0

r
~/�m0

� �� �
;

d21
/w ¼ � im0

r
~/
0

� �
L11

DL

�im0

r
~w�m0

� �� �
;

d21
w/ ¼ � im0

r
~w
0

� �
L22

DL

�im0

r
~/�m0

� �� �
;

d21
ww ¼ � im0

r
~w
0

� �
L12

DL

�im0

r
~w�m0

� �� �
;

(A9)

d22
// ¼

im0

r
~/
0

� �
L11

DL

�im0

r
~/�m0

� �� �
;

d22
/w ¼

im0

r
~/
0

� �
L21

DL

�im0

r
~w�m0

� �� �
;

d22
w/ ¼

im0

r
~w
0

� �
L12

DL

�im0

r
~/�m0

� �� �
;

d22
ww ¼

im0

r
~w
0

� �
L22

DL

�im0

r
~w�m0

� �� �
:

(A10)

In the above expressions the angle bracket h� � �i are a short-

hand notation of

h� � �i ¼
X

m0

1

2pi

ði1þc0

�i1þc0

Wc0;c dc0ð� � �Þ ; (A11)

where Wc;c0 is the decorrelation rate for fluctuations at c0 driv-

ing c. The diffusion coefficients dij in the Eqs. (A7)–(A10) is

defined in terms of the linear operators Lij.

From the renormalization procedure, it follows that the

linear operators in the LHS of Eq. (A5) are redefined as

~Lij ¼ Lij þ ~dij
@2

@r2
(A12)

and ~dij is dij defined with ~Lij instead of Lij in Eqs. (A7)–

(A10). For simplicity the tilde (~) is dropped and dij is used

for the renormalized nonlinear diffusion rates.

APPENDIX B: EDDY DAMPING RATE IN QUASILINEAR
LIMIT

In the quasilinear limit where the nonlinear diffusion

coefficients dij are determined by the linear response func-

tion Lij without the renormalization, Eq. (A12), the shear

interaction is transparent. In this zeroth order approximation

of Lij, using Eq. (A2),

DL ¼ L2
1 � L2

2 (B1)

and

L11

DL
¼ L22

DL
¼ L1

DL
¼ Pþ þ P�;

L12

DL
¼ L21

DL
¼ L2

DL
¼ Pþ � P� ;

where the forward and backward Alfv�en propagators are
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Pþ ¼
1

L1 � L2

and P� ¼
1

L1 þ L2

:

Each nonlinear diffusion dij can be written

2d11 ¼
	

d
ð‘Þþ
// þ d

ð‘Þ�
//



þ
	

d
ð‘Þþ
/w � d

ð‘Þ�
/w



�
	

d
ð‘Þþ
w/ � d

ð‘Þ�
w/



�
	

d
ð‘Þþ
ww þ d

ð‘Þ�
ww



;

2d12 ¼ �
	

d
ð‘Þþ
// � d

ð‘Þ�
//



�
	

d
ð‘Þþ
/w þ d

ð‘Þ�
/w



þ
	

d
ð‘Þþ
w/ þ d

ð‘Þ�
w/



þ
	

d
ð‘Þþ
ww � d

ð‘Þ�
ww



;

2d21 ¼ �
	

d
ð‘Þþ
// � d

ð‘Þ�
//



�
	

d
ð‘Þþ
/w þ d

ð‘Þ�
/w



�
	

d
ð‘Þþ
w/ þ d

ð‘Þ�
w/



�
	

d
ð‘Þþ
ww � d

ð‘Þ�
ww



;

2d22 ¼
	

d
ð‘Þþ
// þ d

ð‘Þ�
//



þ
	

d
ð‘Þþ
/w � d

ð‘Þ�
/w



þ
	

d
ð‘Þþ
w/ � d

ð‘Þ�
w/



þ
	

d
ð‘Þþ
ww þ d

ð‘Þ�
ww



;

(B2)

where

d
ð‘Þ6
ab ¼ im0

r
a0

� �
P6

�im0

r
b�m0

� �� �
; (B3)

and a and b are either the electrostatic potential fluctuation
~/ or the magnetic flux fluctuation ~w.
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