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The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is

investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a

line width related to energy transfer properties provide a measure of the average frequency and

spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence,

are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic

regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency

shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high

frequency region of the spectrum. In the intermediate regime, the nonlinear frequency shift for

density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The

weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors

energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width

increase with poloidal wavenumber ky. In addition, in the adiabatic regime where the nonlinear

interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density

and potential fluctuations is observed to match a linear relation, but only if the linear response of the

linearly stable eigenmode branch is included. Implications of these numerical observations are

discussed. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4822335]

I. INTRODUCTION

Wave turbulence is a widely occurring phenomenon in

plasma and fluid systems across various intrinsic temporal

and spatial scales.1,2 Wave (weak) turbulence is typically

characterized by a linear auto-correlation time that is shorter

than the nonlinear decorrelation time as determined from

random fluctuations.3 Strong turbulence4 lies in the opposite

limit where the decorrelation process is nonlinear.3 Weak

and strong turbulence regimes provide a good conceptual ba-

sis for understanding turbulent fluctuations in theoretical and

experimental setups. Of particular interest is the frequency

spectrum, which when subjected to detailed analysis, can

provide insights on turbulence beyond those of wavenumber

analysis. Such insights can be expected to provide benefits

toward eventual control and utilization of plasma turbulence.

The frequency spectra of turbulent fluctuations PðxÞ are

straightforward to obtain in fusion experiments because of

the ease of producing time series from measurement diag-

nostics. However, theoretical models are more likely to pro-

duce wavenumber spectra PðkÞ because of unambiguous

relationships to spectral energy transfer. Frequency spectra

can be produced from numerical solutions, but their interpre-

tation, especially in terms of fluctuation constituents, is not a

simple matter. Better understanding of the wavenumber-

frequency spectrum Pðx; kÞ would be helpful to bridge

experiment and theory. The simplest possible mapping

between the wavenumber spectrum and the frequency spec-

trum would be quasilinear, x ¼ x‘ðkÞ where x‘ is a linear

eigenmode frequency for micro-instabilities at energetically

dominant wavenumbers. However, the true relationship

between wavenumber and frequency can be intractably

complicated.5,6 Moreover, where multiple instabilities occur

over a range of wavenumbers, the frequencies of fluctuations

need not bear a simple relationship to the instabilities. [For

example, see Fig. 10(B) of Ref. 7. While the trapped-

electron mode (TEM) is unstable at the mid-range, the mean

frequency is in the ion direction and appears to be extended

from the ion-temperature-gradient mode (ITG) at the lower

wavenumbers.]

Recent studies of plasma turbulence that account for the

spectrum of “damped” modes offer new insight on the mode

frequency input to plasma turbulence. These studies have

shown that damped modes play a key role in saturated turbu-

lence even at the length scale of instability.6,8–11 Damped

modes excited by the nonlinearity in large numbers may

carry a real frequency (see Fig. 2 of Ref. 11) so that poten-

tially a large number of linear time scales might enter into

the frequency spectrum at a fixed wavenumber. In addition

to these linear frequencies, there can be nonlinear frequency

shifts associated with consistent nonlinear energy transfer

among the modes.12 There have been recent investigations to

explore nonlinear effects on the frequency spectrum, such as

energy transfer among fluctuations of different frequencies.13

While these studies clearly demonstrate a similar energy

transfer in the wavenumber and frequency spectrum, for the

most part these spectra are specified as either the frequency

spectrum Pðx; x0Þ at a fixed spatial location or the wavenum-

ber spectrum Pðk; t0Þ at a fixed time, making comparison

difficult.a)Electronic mail: yegakjh@kaist.ac.kr
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The frequency spectrum at a large wavenumber k ¼ jkj
is expected to be broad. Fluctuations are highly nonlinear at

those wavenumbers and can be typically modeled as a turbu-

lent diffusion. Energy transfer in wavenumber space is

strongly nonlinear and balances the total energy injection

into the system to achieve a steady state. Kim and Terry12

have shown that three-wave coupling with complex frequen-

cies (i.e., including linear growth rates) in a generalized

one-fluid model can have a finite nonlinear frequency shift

relative to linear frequencies. This emerges through nonlin-

ear energy transfer and cannot be explained by turbulent dif-

fusion, i.e., by frequency broadening. Can nonlinear

frequencies be identified in more general models, such as

fluid models with two or more fields, or gyrokinetic models?

Are those frequencies related to nonlinear energy transfer?

We investigate the Pðx; kÞ spectrum and nonlinear frequen-

cies in the Hasegawa-Wakatani (HW) model as a step toward

answering these questions.

The HW model,14 which describes parallel collisional

drift wave turbulence in a minimal and self-consistent way,

is well-known to span weak (~x � D~x) and strong
(~x � D~x) turbulence regimes, where ~x and D~x are the

nonlinear frequency and the spectral width. Gang et al.15

constructed the equations for the correlation functions via

the eddy-damped quasi normal Markovian (EDQNM) clo-

sure16 and showed that the phase locked cross-correlation

between density and potential with n � / inhibits density

advection in the adiabatic regime. In the hydrodynamic re-

gime, the disruption of this strong correlation leads to a

coherent structure where the density fluctuation is trapped

within vorticity. In their analysis, only the frequency broad-

ening is included, while assuming ~x � x‘. Hu et al.17

describe HW turbulence in an EDQNM closure systemically

derived from the Direct Interaction Approximation

(DIA)18,19 and show the smooth transition from weak to

strong turbulence in terms of the adiabaticity parameter.

While the DIA closure does not exclude the nonlinear devia-

tion of frequency from the linear frequency, it has never

been clearly shown. Futatani et al.20 analyze the statistics of

vorticity in the intermediate regime focusing on the low-

mode-number description of the turbulence. Our focus is the

description of the nonlinear frequency ~x and D~x in the

hydrodynamic and adiabatic regimes.

In this paper, the frequency spectrum is investigated

numerically. Our findings are that the electrostatic potential

and electron density fluctuations can have finite nonlinear

frequencies ð6¼ xlinÞ, and the nonlinear frequencies of each

field can be distinct in some regimes. The frequency shifts

can be related to nonlinear energy transfer; therefore, the

nonlinear frequency shift may be included in more refined

wave turbulence theory, and as a comparison-measure for

model validation using experimental measurements.

The HW model is introduced and linear analysis is pre-

sented in Sec. II. A spectrum model from which nonlinear

frequencies and spectral widths can be obtained from the fre-

quency spectrum is presented in Sec. III, along with related

numerical findings. In Sec. IV, a theoretical framework for

interpreting the findings is presented and the implications are

discussed. The final conclusion is given in Sec. V.

II. HASEGAWA-WAKATANI MODEL

In a shearless plane slab geometry with a constant magnetic

field B pointing in the z direction, the two-field HW model21 for

the normalized electrostatic potential / � ðLn=qsÞðe~/=TeÞ and

density w � ðLn=qsÞð~n=n0Þ can be written as follows:

d

dt
r2
? / ¼ að/� wÞ þ �r2

? r2
? / ;

d

dt
w ¼ að/� wÞ � j

@/
@y
þ lr2

? w ; (1)

where

d

dt
¼ @

@t
þ vE � $? and

vE ¼ ẑ � $?/ ;

a � ðLn=qsÞk2
kv

2
e=ð�eixciÞ, ve is the electron thermal velocity,

�ei is the electron-ion collision frequency, xci is the the ion cy-

clotron frequency, qs ¼ cs=xci is the ion sound gyroradius,

xci ¼ eB=mi is the ion cyclotron frequency, Ln ¼ dlogne=dr
is the electron density gradient, and � and l are the collisional

viscosity and diffusivity, respectively. Time and length are

normalized to cs=Ln and qs, and the normalized density gradi-

ent j controls the drift wave frequency. There are two nonlin-

ear terms, vorticity advection vE � $?r2
? / and density

advection vE � $?w. The adiabatic parameter a characterizes

the degree to which electrons can move rapidly along the mag-

netic field lines and establish an approximate adiabatic

response w � /, making the density advection negligible. The

HW model exhibits both an adiabatic regime (a� 1) and a

hydrodynamic regime (a� 1).15 In the model, the cross-phase

between the potential / and the density w evolves dynamically

and self-consistently, compared to the one-field Terry-

Horton22 model with a fixed cross-phase defined by the unsta-

ble linear mode. In the strict adiabatic limit where a!1,

electron density fluctuations are adiabatic, w! /, and the

HW model reduces to a Hasegawa-Mima (HM) equation.23

This purely adiabatic limit does not produce any transport.

In wavenumber space, the set of the equations is written as

@/
@t
¼� a

k2
ð/�wÞ��k2/þ1

2

ẑ �k0�k00ðk002�k02Þ
k2

/0	/00	

@w
@t
¼að/�wÞ� ix	/�lk2wþ1

2
ẑ �k0�k00ð/0	w00	�/00	w0	Þ;

(2)

where / and w are the potential and density at wavenumber

k, /0 and w0 are at wavenumber k0, and /00 and w00 are at

wavenumber k00 ¼ k � k0. Terms that depend on k0 (and k00)
have an implicit sum over k0, and x	 ¼ kyj. The complex

linear eigen-frequencies x are

x1;2 ¼ �
i

2
a 1þ 1

k2

� �
þ ð�þ lÞk2

� �

6
i

2
a 1� 1

k2

� �
� ð�� lÞk2

� �2

þ 4a
k2
ða� ix	Þ

( )1=2

:

(3)
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There are two eigenmode branches, an unstable branch of

frequency x1 and a stable branch of frequency x2. The

Fourier modes on the stable branch are always stable,

Im xlin;2 < 0, whereas the modes on the unstable branch are

unstable only for a limited wavenumber range correspond-

ing to large scale. Given the linear eigen-frequencies x1;2,

the ratios between two fields, which define the eigenvec-

tors, are

b1;2 ¼
w
/

� �
1;2

¼ 1� ix	=a
1� ix1;2=aþ lk2=a

¼ 1� ix1;2k2=aþ �k4=a : (4)

In the adiabatic regime where a� xlin;x	; lk2 and �k2, the

complex ratio becomes

/
w
� 1� i

xlin � x	
a

¼ 1þ i
xlink2

a
;

where xlin is the linear frequency xlin ¼ Re x1;2. The condi-

tion for instability, C � Re hiky/
	wi > 0 imposes a neces-

sary condition for instability on the linear frequency xlin,

0 < xlin < x	;

for wavenumbers ky > 0.

The second-order moment equation that expresses the

nonlinear conservation can be constructed as

dE

dt
¼ C� Dk � D/ � Dw ; (5)

where

E ¼
�
jwj2 þ j$ /j2

2

�
; C ¼ jhwvxi ¼ j

�
�w

@/
@y

�
;

Dk ¼ haj/� wj2i ; D/ ¼ h�jr2
? /j2i ; Dw ¼ hlj$ wj2i :

The dissipation takes place through the parallel collisional

damping Dk and the perpendicular damping D/;w.

In a steady state, the fluctuation in frequency-

wavenumber x� k space is extracted from

fUðk;xÞ;Wðk;xÞg¼
ð ð

dxdte�iðxt�k�xÞf/ðx; tÞ;wðk; tÞg :

(6)

An energy-like equation in the x� k basis comparable to

Eq. (5) can be constructed taking the Fourier transform, mul-

tiplying the conjugates and taking the real part, to obtain

0 ¼ Cðx; kÞ � Dðx; kÞ þ T/ðx; kÞ þ Twðx; kÞ ; (7)

where the expressions for nonlinear density flux C, parallel

collisional dissipation Dk, perpendicular viscous and diffusive

dissipation D/ and Dw, the nonlinear energy contribution T/

from vorticity and Tw from density advection are given by

Cðx; kÞ ¼ jRe hikyUW	i ; (8a)

Dðx; kÞ ¼ Dk þ D/ þ Dw

¼ hajU�Wj2i þ �k4jUj2 þ lk2jWj2; (8b)

T/ðx; kÞ ¼
ð

dk0dx0T̂/ðx; k;x0; k0Þ ; (8c)

Twðx; kÞ ¼
ð

dk0dx0T̂wðx; k;x0; k0Þ: (8d)

The integrands T̂/ðx; k;x0; k0Þ and T̂wðx; k;x0; k0Þ are given

by

T̂/ðx;k;x0;k0Þ¼M/ðk;k0ÞU	ðx;kÞU	ðx0;k0ÞU	ðx00;k00Þ and

(9a)

T̂wðx; k;x0; k0Þ ¼ Mwðk; k0ÞW	ðx; kÞ½U	ðx0; k0ÞW	ðx00; k00Þ
�W	ðx0; k0ÞU	ðx00; k00Þ
; (9b)

where M/ ¼ ẑ � k0 � k00ðk002 � k02Þ=2k2 and Mw ¼ ẑ � k0
� k00=2, and represent nonlinear energy transfer to ðx; kÞ by

the three-mode coupling among the three spectral compo-

nents, ðx; kÞ, ðx0; k0Þ, and ðx00; k00Þ that satisfy the wave res-

onance conditions, xþ x0 þ x00 ¼ 0 and k þ k0 þ k00 ¼ 0.

The frequency relation xþ x0 þ x00 ¼ 0 in the x� k
basis has an equal footing with the wavenumber relation

k þ k0 þ k00 ¼ 0, while the wave resonance condition for

nonlinear wave coupling, xðkÞ þ x0ðk0Þ þ x00ðk00Þ ¼ 0 is a

function of the wavenumbers k; k0; k00, and is only satisfied

for particular wavenumber combinations. The triple

product of fluctuation fields �UU0U00 is dependent on a

complex amplitude jUU0U00j and a complex phase

argðUU0U00Þ ¼ �tan�1ðIm //0/00=Re //0/00Þ.

III. NUMERICAL OBSERVATIONS

The nonlinear simulations have a grid size ðNx � NyÞ
¼ 256� 256, and a resolution of ðDkx;DkyÞ ¼ ð0:1; 0:1Þ.
The diamagnetic parameter, viscosity, and diffusivity are

fixed at j ¼ 1, � ¼ 0:01, and l ¼ 0:01. The adiabatic param-

eter a varies between 0.01 (hydrodynamic regime, labeled

HYD), 2.0 (quasi-adiabatic regime, labeled qADI), and 10.0

(adiabatic regime, labeled ADI).

In these simulations, the conservative nonlinear term is

well preserved to within an error <10�6, and the steady

states are sustained over a sufficiently long time to allow

reliable frequency analysis. Time series for each k are taken

with the time step Dt ¼ 0:05, and the number of time-data

samples is N¼ 8000. This gives the minimum frequency

xmin ¼ p=400 � 0:01. Frequency spectra are obtained by

taking an ensemble average over 10 to 15 time series for

each k. The frequency spectra are obtained for up to ky ¼ 3:2
and the analysis is presented for kx ¼ 0.

As found in previous work,15,17 vortex structures of flow

and density form for the hydrodynamic case a ¼ 0:01, as

shown in the top panel of Fig. 1. Wave-like structures are

not easily observed in this regime since the isotropic effect

of vorticity convection dominates the anisotropy of linear

drift waves. The advection of density fluctuations by velocity

fluctuations produces small-scale density fluctuations around
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the vortex structures. This state is referred to as strong turbu-

lence in the HW model. It is called a hydrodynamic regime

because the dynamics are almost identical to hydrodynamic

systems where density is advected by turbulent velocity

fluctuations, as prescribed by the Navier-Stokes equation.

For a ¼ 2:0 and above, the density fluctuations respond to

the electrostatic fluctuations adiabatically, with density

fluctuations following potential fluctuations according to

qEk � Te$k ne ’ 0 or / ¼ w. There is considerably more ani-

sotropy for a ¼ 2:0 than for a ¼ 0:01. This state is referred to

as weak turbulence in the HW model since the characteristics

of linear drift waves are manifested in the cross-phases of

potential and density fluctuations, and in the frequency spec-

trum. It is evident that the Hasegawa-Wakatani model spans

weak and strong regimes of turbulence by varying only the adi-

abatic parameter a. In the adiabatic regime, density advection is

small because ½/;wð’ /Þ
 � 0, where [] is the Poisson bracket,

while in the hydrodynamic regime, the density advection may

randomize the fluctuations together with vorticity advection.

The definitions of nonlinear frequency and spectral

width are presented in Sec. III A and the numerical findings

are shown in Secs. III B and III C.

A. A model representation of the frequency spectrum
for HW turbulence

In weak turbulence theory,1,2,24 a correlation function of

a wave takes the form

h/	kðt0Þ/kðtÞi ¼ I½xlinðkÞ
e�ixlinðkÞðt�t0Þ ; (10)

where I½xlinðkÞ
 is the wave energy density and is propor-

tional to the wave action of wave-kinetic theory.25 In the fre-

quency basis, the wave spectrum of Eq. (10) is

PðxÞ ¼ h/	kðxÞ/kðxÞi / I½xlinðkÞ
dðx� xlinðkÞÞ ; (11)

where dðxÞ is the Kronecker delta function: dðxÞ ¼ 1 for

x ¼ 0, otherwise dðxÞ ¼ 0. A wave feature, x ¼ xlinðkÞ, is

assumed. With a finite auto-correlation time sac ¼ D~x�1
k , the

spectrum can be extended to the Lorentzian form

Pwt
k ðxÞ ¼ hj/kðxÞj2i /

D~xk

ðx� xlinðkÞÞ2 þ D~x2
k

; (12)

where D~xk can be approximately taken as �Oðc‘Þ at the en-

ergetically dominant wavenumber k, and c‘ is the linear

growth rate. At this wavenumber, the energy balance in a

steady state requires that fluctuation energy driven by the

instability be balanced by nonlinear energy damping. In the

case that this nonlinear damping takes the form of spectral

broadening (i.e., the resonance broadening of the wave-

particle interaction26,27), D~xk � c‘ is reasonable. This spec-

tral form produces the auto-correlation function

h/	kðt0Þ/kðtÞi / e�ixlinðkÞðt�t0Þ�D~xk jt�t0 j :

Equation (12) can be generalized by replacing the linear fre-

quency xlinðkÞ with a nonlinear frequency ~xk, so that

PkðxÞ /
1

p
D~xk

ðx� ~xkÞ2 þ D~x2
k

: (13)

Nonlinear frequencies ~x are, in principal, the eigen-

frequencies of a given nonlinear system and can arise out of

a non-negligible nonlinear contribution from large wave

amplitudes28,29 or out of the interaction of three waves with

non-zero growth rates.12

In strong turbulence where the spectrum is broad, a

wave feature x � xlin would not be observed due to the

short auto-correlation time xlinðkÞ � Dxk. The fluctuations

qualitatively become quasi-random arising from nonlinear

interaction,

Pst
k ðxÞ /

1

p
D~xk

x2 þ D~x2
k

:

For simplicity, the subscript k will be dropped for the nonlin-

ear frequency ~x and spectral width D~x for the rest of this

paper. The Lorentzian spectral form is used only to provide a

fit from which the spectral width can be extracted.

Otherwise, the Lorentzian is not assumed.

FIG. 1. The contours of electrostatic

potential /, vorticity x, and density

fluctuation w for a ¼ 0:01 (top) and

2.0 (bottom). The horizontal and verti-

cal axes represent the radial and poloi-

dal directions.
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A frequency spectrum

Psðx; fkÞ ¼ hjfkðxÞj2i ; (14)

is obtained from simulations, where fkðxÞ is the Fourier

transform of fkðtÞ ¼ ½/kðtÞ;wkðtÞ
 and h� � �i represents the

ensemble average. Assuming the Lorentzian frequency spec-

trum Eq. (13), a nonlinear frequency ~x and a spectral width

D~x are estimated as

~x ¼

ð
PsðxÞxdxð
PsðxÞdx

and D~x ¼ D~xL þ D~xR

2
;

where the left and right half-widths D~xL;R satisfy

ð ~x

~x�D~xL

Psðx; fkÞdx¼
ð ~xþD~xR

~x
PsðxÞdx¼ 1

4

ð1
�1

Psðx; fkÞdx;

consistent with a Lorentzian half-width. The left half-width

D~xL and the right half-width D~xR differ by

D~xL � D~xR

D~xL

����
���� � 10% :

Alternatively, the standard deviation of Ps could be taken

as a measure of the spectral width. However, the frequency

spectra of simulations are not Gaussian at the tail and the stand-

ard deviation tends to overestimate the width. While the

Lorentzian nonlinear frequency and nonlinear spectral width

are used to characterize the spectrum, the measured spectra can

be more complicated than a Lorentzian, as shown in Fig. 2.

B. Nonlinear frequency and spectral width

In the hydrodynamic regime a ¼ 0:01, the frequency

spectra are peaked around zero (~x ’ 0) and quite broad

(D~x � ~x), as shown in Fig. 2(c). These frequency spectra

are observed at most wavenumbers, except for the wavenum-

bers ky < 0:3 where growth rates are maximum. In the most

FIG. 2. Frequency spectra for k ¼
ð0:0; 1:5Þ for (a) ADI, (b) qADI, and

(c) HYD. Red (solid) and blue (dotted)

vertical lines represent the linear fre-

quencies for c > 0 and c < 0. Vertical

cyan and magenta solid lines represent
~xð/;wÞ and the spectral widths are

denoted by cyan (dashed) for potential /
and magenta (dashed-dotted) density w.
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unstable wavenumbers, ky � 0:2, the nonlinear frequencies ~x
align with the linear frequencies of the unstable mode

~x � xlin;1, and the spectrum is relatively narrow D~x � ~x, as

shown in Fig. 3(a). At larger wavenumbers, the nonlinear fre-

quencies remain finite with a value on the order of linear time

scales xlin and c‘, and smaller than the spectral width D~x.

The latter increases linearly with poloidal wavenumber ky.

In the adiabatic regime of Fig. 3(b), for low ky, the non-

linear frequencies follow the linear frequencies of the unsta-

ble mode ~x ’ xlin;1, as in the hydrodynamic regime. They

differ only in that the wavenumber range of ~x ’ xlin;1 is

broader since the most unstable wavenumber is ky ’ 1:0.

However, the spectra at large ky are much narrower, with

D~x � ~x. This is opposite to the behavior in the hydrody-

namic regime, where ~x � D~x. The nonlinear frequencies

also increase linearly in wavenumber ky, i.e., ~x / ky.

While the frequency spectra of potential and density

fluctuations in the hydrodynamic and adiabatic regimes are

very similar, the frequency spectra of potential and density

fluctuations show a different trend in the intermediate re-

gime, a ¼ 2:0, as shown in Figs. 3(c) and 3(d). The nonlinear

frequencies follow the linear frequencies for low and ener-

getically dominant wavenumbers as in all the other regimes.

The nonlinear frequencies of the potential fluctuations

increase in ky like the adiabatic regime, with the nonlinear

broadening ~x � D~x. However, the nonlinear frequencies of

the density fluctuations remain relatively flat, as in the

hydrodynamic regime at the wavenumber ky�1:0.

Summarizing these results, two clear tendencies in fre-

quency behaviors are observed from the a scan. First, the fre-

quency broadening and the nonlinear frequency can arise

due to the nonlinear effects, alone or together. The former is

significant in the hydrodynamic regime and the latter is im-

portant in the adiabatic regime. The frequency broadening

and the nonlinear frequency increase linearly in ky. Second,

for the intermediate a regime, the potential and density fluc-

tuations differ in the nonlinear frequencies. The nonlinear

frequencies for potential fluctuations tend to increase more

steeply, and are larger, than those of density fluctuations.

This is encapsulated in Fig. 4. As ky increases, the nonlinear

interaction appears as a nonlinear frequency shift and/or

frequency broadening, depending on the nature of turbu-

lence, weak or strong.

FIG. 3. Nonlinear frequency ~x (black,þ), nonlinear spectral width D~x (red, 	), linear frequency of xlin;1 (blue, �) and x‘;2 (green, �) are plotted with the

wavenumbers ky and kx ¼ 0 for (a) potential / of HYD, (b) potential w of ADI, (c) potential /, and (d) density w of qADI.

FIG. 4. The rates of change of the nonlinear frequency d~x=dky and the spec-

tral width dD~x=dky with respect to the wavenumber ky are shown for poten-

tial and density fluctuations. Each point represent d~xð/Þ=dky (black, solid),

dD~xð/Þ=dky (red, dotted), d~xðwÞ=dky (blue, dashed), and d~xð/Þ=dky (red,

dotted-dashed).
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C. Cross-phase ~h/w*

The cross-phase between potential and density fluctua-

tions is a key measure that determines particle transport

given fluctuation amplitudes. The cross-phase generally

shifts from the linear cross-phase set by the unstable linear

eigenmode, in weakly interacting turbulence, to something

that is almost random in strong turbulence. Figure 5 shows

how the cross-phases change in ky as the adiabatic parame-

ter changes. The cross-phase of the linear modes on the

unstable branch is positive. A positive cross-phase produces

outward particle fluxes, even in the nonlinear case.

Negative cross-phases like those of linearly stable modes

produce inward particle fluxes. Quasilinear estimates of

particle and thermal fluxes use the cross phase of linearly

unstable modes in the range where linear instability is

dominant.

The cross-phases in the nonlinear state are close to the

linear cross-phases for low ky in both the adiabatic and

hydrodynamic regimes. In the hydrodynamic regime shown

in Fig. 5(a), the cross-phases for low ky match the phases of

the linearly unstable modes. For larger wavenumbers, they

remain approximately zero with no apparent relation to any

linear cross phases, as expected. This represents a situation

where the phases of density and potential fluctuations are

uncorrelated and random. As a increases, the shifts of the

cross-phases from linear to nonlinear values are finite, and

have certain phase correlations. It should be noted that the

wavenumber ky where the cross-phases become shifted from

linear values is close to the wavenumber where the nonlinear

frequency ~x becomes distinct from the linear wave frequen-

cies. This can be clearly seen at ky � 1:2 in Figs. 3(c) and

5(c). It is observed that the cross-phases shift negatively

from the linear cross-phases at the wavenumbers where the

nonlinear frequencies shift positively from linear frequen-

cies. The frequency shift d~x ¼ ~x � xlin;1 appears definitely

correlated with the cross phase D~h/w	 ¼ ~h/w	 � h/w	;‘;1.

In addition, the correlation between cross-phases and

frequencies is observed in the frequency spectrum of each

wavenumber. The positive shift in frequency and the nega-

tive shift in cross-phase, reflected in the relation

d~xD~h/w	 < 0 ; (15)

are also observed for the individual wavenumber spectra as

shown in Figs. 6(a) and 6(b). Consistent with Fig. 5(a), the

cross-phase for each frequency spectrum in the hydrody-

namic regime shows random phases so that the cross-phases

are close to zero. This is shown in Figs. 6(c) and 6(d).

IV. FREQUENCY SPECTRUM ANALYSIS

A. Nonlinear frequency

To explain how the nonlinear frequency shift arises,

the nonlinear energy contributions to the wavenumber

k ¼ ð0:0; 1:0Þ by vorticity advection N/ in the adiabatic

regime are shown in Fig. 7. We focus on vorticity advection

because density advection Nw is much weaker due to the adi-

abatic response of electron density fluctuations to the electro-

static potential fluctuation w � /. With one nonlinearity

dominant the nonlinear interaction is more transparent rela-

tive to the quasi-adiabatic or hydrodynamic regimes. Figures

7(a) and 7(b) show the contribution of vorticity advection T̂/

in terms of

T̂ iðk0x; k0y; kÞ ¼
ð

T̂ iðx; k;x0; k0Þdxdx0 and (16a)

T̂ iðx; k0y; kÞ ¼
ð

T̂ iðx; k;x0; k0Þdx0dk0x ; (16b)

where here i ¼ /, but the same definitions apply to density

advection with i ¼ w. Positive T̂ iðx; k;x0; k0Þ represents non-

linear energy transfer from the electrostatic potential and density

FIG. 5. Cross-phase h~h/w	 ðky; aÞi in

the poloidal wavenumber ky for differ-

ent as (a) HYD, (b) qHYD (a ¼ 0:3),

(c) qADI, and (d) ADI. Black lines

represent the linear cross-phases (solid

line: unstable; broken line: stable) and

the red line with error bars represents

the nonlinear cross phases computed

from the simulations.
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fluctuations at ðx0; k0Þ and ðx00; k00Þ into the i-fluctuation at

ðx; kÞ by three-wave coupling satisfying k þ k0 þ k00 ¼ 0 and

xþ x0 þ x00 ¼ 0. Negative T̂ iðx; k;x0; k0Þ represents nonlin-

ear energy transfer out of the i-fluctuation at ðx; kÞ. Figures 7(a)

and 7(b) show the contours of T̂/ðk0x; k0y; kÞ and T̂/ðx; k0y; kÞ
for k ¼ ð0; 0; 1:0Þ, where red indicates positive values and

blue negative values. The most prominent contributions to

k ¼ ð0:0; 1:0Þ from nonlinear interactions come from two

triads,

• Triad I: k01 ¼ ð0:5;�0:7Þ and k001 ¼ ð�0:5;�0:3Þ and
• Triad II: k02 ¼ ð0:5;�0:9Þ and k002 ¼ ð�0:5;�0:1Þ.

Except for k ¼ ð0:0; 1:0Þ, the nonlinear frequencies in these

two triads correspond reasonably well to the linear frequen-

cies. The frequencies of T̂/ðx; k; k0yÞ for Triads I and II are

x1 ¼ 0:60 and x2 ¼ 0:48, which are somewhat larger or

similar to the linear frequency �0:48. This is because the

dispersion relation x ¼ xlin;1ðkÞ for ky < 1 has negative cur-

vature, consistent with typical drift-wave behavior. Therefore,

the frequencies of nonlinear coupling, x1 ¼ �xlin;1ðk01Þ
�xlin;1ðk001Þ and x2 ¼ �xlin;1ðk02Þ � xlin;1ðk002Þ, satisfy the ap-

proximate inequalities,

�xlin;1ðk002Þ < �xlin;1ðk001Þ < �xlin;1ðk01Þ < �xlin;1ðk02Þ
< xlin;1ðkÞ and xlin;1ðkÞ < x2 < x1 :

In addition, Fig. 7(b) shows that the high-frequency feature

at x � 0:6 corresponds to energy excitation in wavevectors

k from the first triad while the low frequency feature at x2 �
0:48 corresponds to energy loss in wavevector k from the

second triad. There is a feature at ~x ¼ 0:7 representing

strong excitation due to a third triad with wave vectors k03
¼ ð�0:2;�0:3Þ and k003 ¼ ð0:2;�0:7Þ. This preferential non-

linear energy transfer in the high frequency part of the

FIG. 7. The nonlinear contribution to the energy of k ¼ ð0:0; 1:0Þ in ADI by vorticity advection as functions of (a) k
0
x and k

0
y in T̂/ðk; k

0
x; k

0
yÞ and (b) k

0
y and x

in T̂/ðx; k; k
0

yÞ. The expressions can be found in Eq. (16). The red and blue colors represent positive, T̂/ > 0, and negative, T̂/ < 0, energy transfer,

respectively.

FIG. 6. Cross-phases ~h/w	 ðx; k; aÞ of (a) ky ¼ 0:7; qADI (b) ky ¼ 2:4; qADI (c) ky ¼ 0:7; HYD (d) ky ¼ 2:4; HYD. The vertical lines represent linear frequen-

cies xlin;1 and xlin;2, and the horizontal lines represent the linear cross-phases. Black (solid) and red (dotted) represent c > 0 and c < 0.
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spectrum leads a positive nonlinear frequency shift in the

potential fluctuations. Since density fluctuation is tied approx-

imately to the potential fluctuation by strong parallel dissipa-

tion, this shift occurs in the density fluctuation. This

wavenumber k ¼ ð0:0; 1:0Þ is selected because the nonlinear

frequencies begin shifting from the linear frequencies at this

point. At larger k, more wavenumbers k0 are coupled to k, and

the features become more complex and difficult to analyze.

As a decreases, nonlinear density advection begins to

make a stronger contribution to the nonlinear dynamics. In

the quasi-adiabatic case, the nonlinear frequency shift is

observed to be smaller in the density fluctuations than in the

potential fluctuations. This smaller shift could be due to the

density advection.

Figure 8 shows vorticity and density advection for the

wavenumber k ¼ ð0:0; 1:5Þ in the quasi-adiabatic regime.

The wavevector k ¼ ð0:0; 1:5Þ is chosen because the nonlin-

ear frequency shift occurs in a significant way at ky > 1:3.

For the potential fluctuation, Figs. 8(a) and 8(b), the nonlin-

ear transfer by vorticity advection prefers the high frequency

channel as in the adiabatic case, while many more wavenum-

bers and frequencies are involved in the nonlinear coupling.

The high frequency modes between 0:5 < x < 1:0 are

observed to be excited by smaller wavenumbers jk0j; jk00j < jkj
(red part in Fig. 8(a)).

An increasing effect of density advection is evident in

Figs. 8(c) and 8(d). While the wavenumbers contributing to

the advection in Fig. 8(c) are in a similar wavenumber range

to that of Fig. 8(a), the frequency range associated with the

dominant nonlinear transfer is different. The nonlinear exci-

tation favors the low frequency region as shown in Fig. 8(d).

This energy transfer produces the density fluctuation with

smaller frequency shifts. In particular, the positive energy

transfer to low frequencies is due to coupling with lower

wavenumbers, jkj > jk0j; jk00j.
The observations just presented can be compared to the

inverse cascade associated with vorticity advection and the

forward cascade associated with density advection. The posi-

tive energy transfer by smaller wavenumbers k0 to a larger

wavenumber k in the potential fluctuations appears to be at

odds with the “inverse cascade” that statistically describes

the direction of nonlinear transfer by vorticity advection in

two-dimensional fluid systems.30 However, the total energy

transfer
Ð

dxT̂/ðx; k0yÞ < 0 is actually in the direction of an

inverse cascade from the negative energy transfer of triads

with either jk0j < jkj < jk00j or jk00j < jk j < jk0j (blue in

Fig. 8(b)). Also, the positive energy transfer due to coupling

with lower wavenumbers in the density fluctuations coin-

cides with the role of density advection, which produces a

forward cascade in wavenumber space. This forward cascade

occurs via the lower frequency region of the frequency

spectrum.

Here, the nonlinear energy transfer to only two wave-

numbers has been presented as standard cases. As density

FIG. 8. The nonlinear contribution to the energy of k ¼ ð0:0; 1:5Þ in qADI by vorticity advection (a) T̂/ðk
0

x; k
0

yÞ and (b) T̂/ðx; k
0

yÞ, and density advection (c)

T̂wðk
0
x; k

0
yÞ and (d) T̂wðx; k

0
yÞ. The expressions can be found in Eq. (16). The color schemes are the same as in Fig. 7.
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advection becomes stronger and wavenumbers larger, the rela-

tion between the nonlinear transfer and nonlinear frequencies

becomes less clear than these standard cases. Nevertheless,

the trends described in the standard cases are observed qualita-

tively for wavenumbers where a nonlinear frequency shift is

observed. The energy transfer to larger wavenumbers by vor-

ticity advection prefers the high-frequency channel to the low-

frequency channel in energy transfer to larger wavenumbers.

This results in a nonlinear frequency shift to higher frequency.

And the density advection cascades energy in the forward

direction through low frequency space, and that energy trans-

fer correlates with low nonlinear frequency as ky increases.

Therefore, as a decreases, density advection becomes the

dominant nonlinear process, which leads to frequency that is

approximately zero at large k.

B. Cross-phase ~h/w*

To investigate the cross-phase observations described in

Sec. III C, a different approach is taken from the energetics

analysis given above. Consider for the moment a one-field

equation, which generally can be written in the form

@/
@t
¼ L/þM// : (17)

Taking the Fourier series and using U to designate the

Fourier expansion of /, U can be expressed in terms of a lin-

ear response R and source functions N

Uðx; kÞ ¼ Rðx; kÞNðx; kÞ ; (18)

where

Rðx; kÞ ¼ � 1

ixþ Lk

Nðx; kÞ ¼
ð

Mðk; k0ÞU	ðx0; k0ÞU	ðx00; k00Þdk0dx0 :

We write the two-field HW equations in a similar form,

but use the linear eigen-frequencies xi and eigenvectors bi

to express the linear terms. The HW equations in x� k
space assume the following form (see the Appendix for

details):

U ¼ i

b2 � b1

b2

x� x1

þ �b1

x� x2

� �
N/

�

þ �1

x� x1

þ 1

x� x2

� �
Nw

�

W ¼ i

b2 � b1

b1b2

x� x1

þ �b1b2

x� x2

� �
N/

�

þ �b1

x� x1

þ þb2

x� x2

� �
Nw

�
; (19)

where U and W are the Fourier transforms of / and w defined

in Eq. (6), and bi represents the density component of the ith
eigenmode, normalized by the electrostatic potential part of

the eigenmode, as shown in Eq. (A6). The nonlinear terms

ðN/;NwÞ are

N/ ¼ �
1

2

X0
ẑ � k0 � k00

ðk02 � k002Þ
k2

U0	U00	 and

Nw ¼
1

2

X0
ẑ � k0 � k00ðU0W00 �W0U00Þ : (20)

Solutions of the nonlinear system in x� k space do not

correspond to linear modes (unstable or stable) in general.

The response proportional to the pole ðx� xiÞ�1
represents

a stationary linear response that resonates at the frequency

Re xi with the spectral width Im xi, giving rise to the phase

argbi in relation to an arbitrary source. Although this formu-

lation is formally exact, its interpretation as a response func-

tion is worth further investigation using a proper complex

analysis. While an appropriate response function satisfies a

causality relation,31 the apparent presence in the denomina-

tor of both positive and negative growth rates Im xi for the

steady state requires further consideration.

Putting aside the nuances of complex analysis and cau-

sality, the expressions of Eq. (19) describe the cross-phase

behavior and its relation to frequency in a transparent fash-

ion. We obtain a linear relation between the density and

potential fluctuations for the limit in which vorticity advec-

tion dominates, jN/j � jNwj, which corresponds to the adia-

batic case. Consider for the moment a response restricted to

the unstable root ðx� x1Þ�1
, which produces the cross

phase b1 of Eq. (4). This cross-phase belongs to the linearly

unstable mode for each k regardless of frequency. A varia-

tion of the cross-phase in frequency space would not be

expected. However, inclusion of the stable root leads to the

complex ratio U=W,

U
W
¼ b1 1� x� x1

x� x2

� �	
1� b1

b2

x� x1

x� x2

� �
; (21)

and associated cross-phase h/w	 ,

h/w	 ðx; kÞ ¼ �argðb1Þ � arg 1� x� x1

x� x2

� �

þ arg 1� b1

b2

x� x1

x� x2

� �
; (22)

where for each k, the cross-phase between the density and

potential fluctuations varies with frequency x. Moreover,

Eqs. (21) and (22) can be further approximated in the adia-

batic regime by assuming jb2j � jb1j, jc2j � jc1j in order

to bring out more clearly the effect of the linearly stable

response. Near the frequency of the linearly unstable branch

<x1 where dx ¼ x�<x1ðkÞ, Eqs. (21) and (22) become

W
U
’ b1 1� dx� ic1

ð<x1 � <x2Þ � ic2

� �
’ b1e

� dx�ic1
ð<x1�<x1Þ�ic2 and

(23)

h/w	 ðx; kÞ ’ �argðb1Þ þ
c2dx

ð<x1 �<x2Þ2 þ c2
2

: (24)

Since c2 < 0, the cross-phase estimate qualitatively provides

the means for understanding the empirical behavior

102303-10 J.-H. Kim and P. W. Terry Phys. Plasmas 20, 102303 (2013)

Downloaded 04 Oct 2013 to 143.248.6.157. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



summarized in Eq. (15), which indicates that the cross-phase

shifts negatively as frequency increases.

In Figs. 9 and 10, the cross-phase described by Eq. (22)

(not the approximated version of Eq. (24)) is compared with

the cross-phases calculated from the simulations. Figure 9

shows the comparison for wavenumbers between ky ¼ 0:5
and 3.0 in the adiabatic regime. Except for ky ¼ 0:5, the

cross-phases derived from the linear calculation fit extremely

well with the cross-phases from the simulation, especially

within the spectral widths, denoted by the vertical dotted

lines in Fig. 9, where the fluctuation amplitudes are signifi-

cant. At x ¼ xlin;1, denoted by the vertical red (solid) lines

in Figs. 9(a) and 9(b) and blue (dotted) line in Fig. 9(c), the

cross-phases match well those of the linearly unstable

modes. The linear frequencies xlin;1 in Figs. 9(d)–9(f) are far

smaller than the nonlinear frequencies and are not shown in

the figures.

Figure 10 shows the comparison in the quasi-adiabatic re-

gime. The estimate given by Eq. (22) approximately follows

the cross-phase above the nonlinear frequency, x > ~xð/Þ.

For ky ¼ 0:5 and 1.0, the cross-phase deviates from the linear

estimates. A possible cause is nonlinear density advection Nw,

which is not included in the estimates. The nonlinear density

advection Nw absent in Eq. (22) is no longer weak and negligi-

ble in this regime. Density advection is more critical in the

frequency range x < ~xð/Þ because it favors the low-

frequency part of the spectrum in its energy transfer, as dis-

cussed in Sec. IV A.

C. Discussion

The correlation of the nonlinear frequency shift with the

cross-phase shift in the saturated state of the adiabatic regime

can be appreciated from the energy equation, Eq. (5).

Negative cross-phases correlated with positive nonlinear fre-

quency produce a smaller density flux C in the frequency

range where the amplitudes Uðx; kÞ do not vary signifi-

cantly. Since the density flux is the only injection term in the

turbulent energy equation, the flux injects less energy into

the fluctuations than in the purely unstable linear state. In the

FIG. 9. Cross-phases h/w	 (black,þ) in ADI are compared to the estimates by Eq. (22) (red, solid). From the top left to bottom right, the figures are shown for

ky ¼ 0:5; 1:0; 1:5; 2:0; 2:5; 3:0. Black (solid) and red (dotted) horizontal lines represent the linear cross-phases for c > 0 and c < 0. Vertical lines are the same

as in Fig. 2. In the adiabatic regime, the nonlinear frequency and the spectral widths for potential and density fluctuations are the same.
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adiabatic case, it is observed that the energy is damped at the

larger frequencies x > ~xðkÞ for unstable wavenumbers, and

stronger damping is numerically observed at still larger

wavenumbers where no linearly unstable modes exist. This

implies that the nonlinear frequency shift can provide a way

to saturate the nonlinear state created by density-driven tur-

bulence without large frequency broadening.

Also, this correlation suggests that the relationship

between the HM23,32 and the Hasegawa-Wakatani models is

worth reassessing. While the Hasegawa-Wakatani model in

the adiabatic limit can be asymptotically reduced to the

Hasegawa-Mima model, the Hasegawa-Mima model shows

strong turbulence33 while the Hasegawa-Wakatani model

shows weak turbulence in the same limit. This apparent con-

tradiction can be attributed to the role of the cross-phase

between the density and potential fluctuations. Even though

the density fluctuation is slaved to the potential fluctuation,

the absence of an independent density fluctuation in the HM

model misses key dynamics of the cross-phase, which main-

tains density and potential fluctuations in this extended linear

phase. The absence of the cross-phase in the dynamics may

cause the nonlinear interaction to appear only as nonlinear

diffusion, not as a nonlinear frequency shift.

As shown in Sec. IV B, the response of the stable root in

the Hasegawa-Wakatani model gives rise to the dependence

of cross-phases on frequency in the adiabatic and quasi-

adiabatic regimes. In these regimes, the energy analysis

based on unstable and stable linear modes6,9,10 has shown

that the linearly stable modes play an insignificant role in the

nonlinear density fluxes and saturation in the adiabatic re-

gime.10 While our finding emphasizes a linearly stable

response, its effect on the total density flux in the adiabatic

regime is negligible because linearly stable responses gives a

small change in the cross-phase at low wavenumbers

ky�1:0. However, the nature of quasilinear estimates, or the

role of energetically dominant modes in the nonlinear bal-

ance, may need rethinking; this frequency shift and the linear

cross-phase derived in Eq. (22) may need to be taken into

account in simple transport modeling or any subgrid model-

ing, because the level of transport and the amplitudes are

determined through the energy balance, including at large

wavenumbers.

There is distinct asymmetry in the frequency spectrum

of each k and the linear and nonlinear interactions in the adi-

abatic regime. Since the cross-phase decreases with fre-

quency in the adiabatic and quasi-adiabatic regimes, the

FIG. 10. The same plots are shown for qADI.
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density flux C, which is proportional to the cross-phase,

decreases too. Moreover, the observed ratio of amplitudes

U=W is close to the adiabatic response (or the amplitudes of

the linearly unstable branch) at positive dx, and tends to be

small at the negative dx. Therefore, C � sin~h/w	 , and the

parallel dissipation Dk � j/� wj is smaller at positive dx
than at negative dx.

V. CONCLUSIONS

The frequency spectra at each wavenumber in the HW

model are investigated in terms of a nonlinear frequency, a

spectral width, and a cross-phase. In the hydrodynamic re-

gime, a simple broadening of the spectra is observed with

almost zero nonlinear frequency, as expected in strong turbu-

lence. In the adiabatic regime, a significant nonlinear fre-

quency shift in the electron drift direction is observed and

the nonlinear frequencies increase linearly with poloidal

wavenumber ky. The spectra show that the spectral width D~x
is smaller than the nonlinear frequency ~x even at large

wavenumbers where the wavenumbers interact nonlinearly.

Therefore, these observations show that the nonlinear inter-

actions can manifest themselves as a nonlinear frequency as

well as spectral broadening.

Emerging nonlinear frequencies for density and poten-

tial fluctuations can be explained by three-wave nonlinear

interaction with a combination of vorticity and density

advection. The change of the cross-phase in frequency can

be explained by the relation between frequency and phase

via linear drift waves including the linearly stable response.

Investigating the nonlinear energy transfer, it is found that

vorticity advection is correlated with the frequency shift in

the adiabatic regime, since wave coupling excites high fre-

quencies near the end of the dominant energy range. The

frequency shift is propagated through mode couplings to

larger wavenumbers. In the intermediate regime, the non-

linear frequencies for density fluctuations are observed to

be smaller than those of potential fluctuations. Density

advection is attributed to the smaller nonlinear shift of den-

sity fluctuations because the forward cascade favors the

low frequency channel. This line of reasoning describes nu-

merical simulations showing that the nonlinear frequency

becomes zero as simulations go to the hydrodynamics

limit.

In the adiabatic regime, the cross-phase shift D~h/w	

ðx; kÞ between potential and density fluctuations is anti-

correlated with the nonlinear frequency shift dx ¼ x
�xlinðkÞ, i.e., D~h/w	 ðx; kÞdx < 0. This correlation fits well

into a linear relation, not from linearly unstable modes alone,

but arising from the full response of unstable and stable roots

in the dispersion relation.

All the findings are likely to be inter-related with each

other and self-consistently explained within a single frame-

work. For that purpose, a nonlinear response function should

be more rigorously developed with use of a two-point

closure3 so that the cross-phase and the level of the ampli-

tudes can be consistently connected along with the nonlinear

terms, N/ and Nw. Future work will give an answer to the

quantitative description of the frequency shift and the linear

relation of the spectral width and the frequency shift for fixed

wavenumber ky.
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APPENDIX: HW EQUATION IN x2k SPACE

The HW equations in x� k space can be written as

�ix�U ¼ ��L �U þ �N : (A1)

Since ��L is a non-Hermitian matrix, the orthogonality condi-

tion satisfies ��U ��L ��V ¼ ��k, where ��U and ��V are left and right

eigen matrices and ��k is the eigenvalue matrix. The linear

matrix ��L can expressed using the orthogonality relation,
��U ��V ¼ ��I as follows:

��L ¼ ��U
�1��k ��V

�1 ¼ ��V��k ��U : (A2)

The HW equations are then written as

�i��x �U ¼ ��V��k ��U �U þ �N : (A3)

The inversion yields

U ¼ ��Vð�i��x � ��kÞ�1 ��U �N ; (A4)

where

��x ¼ x��I : (A5)

Without loss of generality, we can define ��V , which in turn

determines ��U

��V ¼
�

1 1

b1 b2

�
and ��U ¼ 1

b2 � b1

�
b2 �1

�b1 1

�
; (A6)

where bi represents w=/ for an eigenvalue ki ¼ �ixi.

ð�i��x � ��kÞ�1 ¼
�iðx� x1Þ 0

0 �iðx� x2Þ

 !�1

¼ i

1

x� x1

0

0
1

x� x2

0
BB@

1
CCA: (A7)

Then the fluctuation fields in the wavenumber-frequency

space are
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�U ¼ i

b2 � b1

1 1

b1 b2

 ! 1

x�x1

0

0
1

x�x2

0
BBB@

1
CCCA
�

b2 �1

�b1 1

�
�N

¼ i

b2 � b1

1

x�x1

1

x�x2

b1

x�x1

b2

x�x2

0
BBB@

1
CCCA
�

b2 �1

�b1 1

�
�N

¼ i

b2 � b1

b2

x�x1

þ �b1

x�x2

�1

x�x1

þ 1

x�x2

b1b2

x�x1

þ �b1b2

x�x2

�b1

x�x1

þ þb2

x�x2

0
BBB@

1
CCCA �N :

These yield the expressions

U ¼ i

b2 � b1

b2

x� x1

þ �b1

x� x2

� �
N/

�

þ �1

x� x1

þ 1

x� x2

� �
Nw

�
;

W ¼ i

b2 � b1

b1b2

x� x1

þ �b1b2

x� x2

� �
N/

�

þ �b1

x� x1

þ þb2

x� x2

� �
Nw

�
:

1R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (Benjamin,

New York, 1969).
2V. E. Zakharov, V. S. L’vov, and G. E. Falkovich, Kolmogorov Spectral of
Turbulence I—Wave Turbulence, Series in Nonlinear Dynamics (Springer-

Verlag, 1992).
3J. A. Krommes, Phys. Rep. 360, 1 (2002).

4R. H. Kraichnan, Phys. Fluids 6, 1603 (1963).
5N. Mattor and P. W. Terry, Phys. Fluids B 4, 1126 (1992).
6D. R. Hatch, P. W. Terry, W. M. Nevins, and W. Dorland, Phys. Plasmas

16, 022311 (2009).
7T. Gorler and F. Jenko, Phys. Plasmas 15, 102508 (2008).
8P. W. Terry, D. A. Baver, and S. Gupta, Phys. Plasmas 13, 022307

(2006).
9J.-H. Kim and P. W. Terry, Phys. Plasmas 17, 112306 (2010).

10K. Makwana, P. W. Terry, J.-H. Kim, and D. R. Hatch, Phys. Plasmas 18,

012302 (2011).
11D. R. Hatch, P. W. Terry, F. Jenko, F. Merz, and W. M. Nevins, Phys.

Rev. Lett. 106, 115003 (2011).
12J.-H. Kim and P. W. Terry, Phys. Plasmas 18, 092308 (2011).
13M. Xu, G. R. Tynan, P. H. Diamond, P. Manz, C. Holland, N. Fedorczak,

S. C. Thakur, J. H. Yu, K. J. Zhao, and J. Q. Dong et al. (HL-2A Team),

Phys. Rev. Lett. 108, 245001 (2012).
14A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983).
15F. Y. Gang, P. H. Diamond, J. A. Crotinger, and A. E. Koniges, Phys.

Fluids B 3, 955 (1991).
16S. A. Orszag, J. Fluid Mech. 41, 363 (1970).
17G. Hu, J. A. Krommes, and J. C. Bowman, Phys. Plasmas 4, 2116

(1997).
18R. H. Kraichnan, Phys. Rev. 109, 1407 (1958).
19R. H. Kraichnan, Phys. Fluids 8, 575 (1965).
20S. Futatani, W. J. T. Bos, D. del-Castillo-Negrete, K. Schneider, S.

Benkadda, and M. Farge, C. R. Phys. 12, 123 (2011).
21A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59, 1581 (1987).
22P. Terry and W. Horton, Phys. Fluids 25, 491 (1982).
23A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).
24A. Yoshizawa, S.-I. Itoh, K. Itoh, and N. Yokoi, Plasma Phys. Controlled

Fusion 43, R1 (2001).
25P. H. Diamond, M. N. Rosenbluth, F. L. Hinton, M. Malkov, J. Fleischer,

and A. Smolyakov, in 17th IAEA Fusion Energy Conference (International

Atomic Energy Agency, Vienna, 1998), pp. IAEA–CN–69/TH3/1.
26T. H. Dupree, Phys. Fluids 9, 1773 (1966).
27T. H. Dupree, Phys. Fluids 10, 1049 (1967).
28F. Hinton and W. Horton, Phys. Fluids 14, 116 (1971).
29G. J. Morales and T. M. O’Neil, Phys. Rev. Lett. 28, 417 (1972).
30R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547 (1980).
31G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists

(Academic Press, 2001).
32A. Hasegawa and K. Mima, Phys. Rev. Lett. 39, 205 (1977).
33M. Ottaviani and J. A. Krommes, Phys. Rev. Lett. 69, 2923 (1992).

102303-14 J.-H. Kim and P. W. Terry Phys. Plasmas 20, 102303 (2013)

Downloaded 04 Oct 2013 to 143.248.6.157. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/S0370-1573(01)00066-7
http://dx.doi.org/10.1063/1.1710994
http://dx.doi.org/10.1063/1.860121
http://dx.doi.org/10.1063/1.3079779
http://dx.doi.org/10.1063/1.3006086
http://dx.doi.org/10.1063/1.2168453
http://dx.doi.org/10.1063/1.3496394
http://dx.doi.org/10.1063/1.3530186
http://dx.doi.org/10.1103/PhysRevLett.106.115003
http://dx.doi.org/10.1103/PhysRevLett.106.115003
http://dx.doi.org/10.1063/1.3640807
http://dx.doi.org/10.1103/PhysRevLett.108.245001
http://dx.doi.org/10.1103/PhysRevLett.50.682
http://dx.doi.org/10.1063/1.859851
http://dx.doi.org/10.1063/1.859851
http://dx.doi.org/10.1017/S0022112070000642
http://dx.doi.org/10.1063/1.872377
http://dx.doi.org/10.1103/PhysRev.109.1407
http://dx.doi.org/10.1063/1.1761271
http://dx.doi.org/10.1016/j.crhy.2010.12.004
http://dx.doi.org/10.1103/PhysRevLett.59.1581
http://dx.doi.org/10.1063/1.863761
http://dx.doi.org/10.1063/1.862083
http://dx.doi.org/10.1088/0741-3335/43/3/201
http://dx.doi.org/10.1088/0741-3335/43/3/201
http://dx.doi.org/10.1063/1.1761932
http://dx.doi.org/10.1063/1.1762220
http://dx.doi.org/10.1063/1.1693260
http://dx.doi.org/10.1103/PhysRevLett.28.417
http://dx.doi.org/10.1088/0034-4885/43/5/001
http://dx.doi.org/10.1103/PhysRevLett.39.205
http://dx.doi.org/10.1103/PhysRevLett.69.2923

