Poster Open Access

A Case Study On Classification Of Foot Gestures via Surface Electromyography

Lyons, Kenneth R.; Joshi, Sanjay S.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-06-11</subfield>
  </datafield>
  <controlfield tag="005">20200120164844.0</controlfield>
  <controlfield tag="001">569072</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:569072</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">11-14 June 2015</subfield>
    <subfield code="g">RESNA</subfield>
    <subfield code="a">Annual Conference of Rehabilitation Engineering and Assistive Technology Society of America</subfield>
    <subfield code="c">Denver, CO, USA</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A fundamental problem for individuals with amputations proximal to the elbow is the lack of methods for controlling an upper limb prosthetic. Myoelectric control is limited in flexibility when few residual muscle sites are available, and noninvasive approaches to this problem are needed when surgical techniques such as targeted muscle reinnervation are not suitable. Controlling an upper limb prosthetic with the leg is one such approach. In this case study, we investigate recognition of foot gestures via surface electromyography using methods commonly employed in upper limb gesture recognition research. For comparison with the current standard in gesture recognition, electromyographic sensors recorded muscle activity from the forearm while participants performed gestures with the dominant hand. Then, participants performed an analogous set of foot gestures with sensors on the lower leg. Participants found the mapping between the hand and foot to be intuitive, and offline results show that classification accuracy for the two cases is comparable, motivating further work in applying this idea to upper limb prosthetic control.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Joshi, Sanjay S.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6892092</subfield>
    <subfield code="z">md5:d9c151e6705745e7cbc72ee1f96415eb</subfield>
    <subfield code="u">https://zenodo.org/record/569072/files/resna2015-poster.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Lyons, Kenneth R.</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">electromyography</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">prosthetics</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.569072</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Case Study On Classification Of Foot Gestures via Surface Electromyography</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
34
16
views
downloads
All versions This version
Views 3434
Downloads 1616
Data volume 110.3 MB110.3 MB
Unique views 3232
Unique downloads 1515

Share

Cite as